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1. Introduction

In some cases, the study variable cannot be easily measured or is too expensive, yet it can be easily ranked for no cost or at a bit
of cost. The writings on ranked set sampling RSS discuss a wide range of strategies for obtaining more efficient estimators for
the study variable by including auxiliary information. RSS, is a logical approach to data collection that improves estimation.
The method of ranking units is based on the values of one of the auxiliary variable(s) correlated to the variable of the study. The
rank of units inside groups, from smallest to largest, for the variable we wish to study with our naked eye is frequently
challenging to accomplish when the group size is quite large. And, if it is mostly completed, the ranking process will encounter
faults, reducing the effectiveness of RSS. As a result, exploring alternate methods for ranking the units inside the group has
become vital to avoid arrangement problems. Therefore, alternate ways for ordering units inside the group have been proposed,
including the median ranked set sampling MRSS. Mclntyre[6] was the first to introduce the concept of ranked set sampling RSS
in his exceptional attempts to develop an estimator that would be more effective for estimating the yield of Australia’s vast
grazing regions. After Halls and Dell[4] utilized RSS to estimate the output of animal fodder in pine woodlands, the concept
appeared to gain traction, and they were the first to use the term ranked set sampling to refer to their method of estimation.
Takahase and Wakimo to[11], the two scientists who provided the first mathematical proofs for this type of sampling, proved
that the arithmetic mean of this type of sampling is an unbiased estimator of the population's arithmetic mean and that the
variance is less than the variance of the arithmetic mean of a simple random sample SRS, assuming perfect ranking of the
elements.

Dell and Clutter[3] came at the same result as the previous authors, but without the necessity that the elements be in perfect
order, implying that there may or may not be ranking flaws in the elements. Stokes[9] proposed utilizing the auxiliary variable
to estimate the ranks of the variable we want to examine (the main variable), because it is difficult to rank units with the naked
eye when dealing with large numbers of units. AL-Saleh and Samawi[2] the proposed estimators are compared to other existing
estimators using a bivariate simple random sample and application to the bivariate normal distribution. They are estimated using
a bivariate ranked set sampling technique. Zamanzade and Al-Omari[12] compared empirical mean and variance estimators
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based on new ranked set sampling to their counterparts in ranked set sampling and simple random sampling using Monte Carlo
simulation. Muttlak[7] suggested studying median ranked sets samplingMRSS as a strategy to minimize errors in the process of
ranking units within groups. Syam et al.[10] investigated the average population using double median ranked set sampling
method, demonstrating that DMSRSS estimators were more efficient than their simple random sampling, stratified random
sampling, ranked sampling, and stratified ranked set sampling counterparts. This method produces reliable estimations of a
population's mean regardless of the symmetry or asymmetry of the distribution. To estimate the ratio of a finite population, the
Al-Omari with Al-Nasir[1] multistage median, ranked sampling MMRSS approach was used. The results demonstrate that the
proposed estimators are unbiased and have the lowest variance when compared to simple, stratified, ranked, and median ranked
sampling procedures, and that the efficiency of the MMRSS estimators grows as the number of sample size determination
cycles increases. Using auxiliary variables, we present a highly generalized approach for estimating the population mean using
the MRSS schemes, which is discussed in detail in this study. Based on this demonstration, it is established that a large number
of prior estimators belong to the proposed class of estimator, and this proposed estimator is more efficient in estimating the
mean population than the corresponding previous estimators in MRSS and SRS.

2+ Methodology for MRSS:

Muttlak suggested studying median ranked sets sampling MRSS as a strategy to minimize errors in the process of ranking units
within groups. And the following summarizes the MRSS procedure for drawing a sample of size n. We randomly select m?
sample size from the population, and divide this sample into m groups each group having a size of m units, and then arrange

units within each group. If the size of group m is odd, we measure the median of each group, i.e. the rank unit(mTH) , however,
if the group size is an even number, we withdraw the units of rank (%) for measurements from half of the groups and measure

the units of rank(mT”) , from the remaining half. In both cases, the first cycle will produce a sample size of m units. To obtain
the needed sample size n = mr, we can repeat the cycle r times. The MRSS process is summarized as follows:

1- Choose m2sample items at random from the targeted population.
2- Divide the m? items into m groups of size m each, and then rank the items inside each group.
3- If the sample size m is odd, choose the (mT“)thsmallest rank item, this corresponds to the median of each

group from step 2. While if the sample size is even from step 2, choose the (%)”1 and (mT”)”l smallest rank from the

initial = and subsequent = samples for measurement respectively.
nitial . 5

4- Stages 1-3 should be reiterated r times till you have a sample of size n = mr.
Now assuming the sample size m is odd, then MRSS,, represent median ranked set sampling, where the items of MRSS, for
main variable Y and the two auxiliary variables X; and X,, and suppose that the ranking depends on the auxiliary variable X;,
described are follows.

Oy gy wpes ) sy ey ey )

Oy Hanesy 5onpez )
where y;[;; and X240, denotes the i" judgment ordering in the " set in the j* cycle for the study variable Y and auxiliary
variable X, respectively. Also X110y denotes the i*" ranking in the " set in the j** cycle for the auxiliary variable

X;where(i = 1,2,---,mand j = 1,2,---,r). Finally, if the sample size m is even, then MRSS, represent median ranked set
sampling, let k= % , where items of MRSS, as follows.

<y 1[?]1"’“11(?)1""21[?]1') ' (y 2[?]1"’“12(?)1"’“22[?]1) ""(yk[?]i’xlk(?)f'xzk[?]f)’

(reszy iz Tanpeszy) = (afeszyp omeizy e

1)

@

Let ¥,%;,%,,S;,S%and SZ, denotes the natural, unbiased estimates of the finite population mean, ¥, X;, X, and
varianceoy , 07, o%,, of the main variable and two auxiliary variables in SRS, respectively. [7], has estimated the mean of a
finite population using median ranked sets sampling and has demonstrated that it is impartial to the population mean and has a
lower variance than the simple random sample, as shown below. The estimator of the mean population is known according to
the following relationship in median ranked sets sampling and the odd case.

YMRsso =% =1 Xizq yi[mTﬂ]j » X1MRsso = 111 Dim1 Xiz1 x1i(mT“)j and

= 1
X2MRSSo = n Z§=1 Z‘Lﬂ;l le.[mTﬂ]j

These estimators are unbiased for the average population, which means that.
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E(}_’MRSS::) =Y ,E( X1mrsso) = X1 and E( Xaypsso) = X

o3 Z?il(fi[m_’rl]‘?)z
V(Pmrsso) = 0 [m_“] =" Tyo) + Tyo) = mrzl
m _%.2
] i o M
V(X1mrsso) = mn le(m_“) B Txl(o) ! Txl(o) - mn
2
] 1. ) e M
V (X2mrsso) = Eaxz[@] - n TXz(O) 'sz(o) - mn
2

Now the estimators are defined as follows for the even case.
— 1
YMRsse = Y=l Yy yi[%]j + Xik+1 yi[mT”]j]
_ 1
X1MRSSe = Yzl Y xli(%j + Xkt x1i(mT+2)j]
_ _ l Kk
X2MRSsse = 3, Y-l Xita le-[%]j + Xk le-[mT“]j]
And also, these estimators are unbiased for the average population
E(Jumrsse) =Y ,E( Ximrsse) = Xy and E( Xopypsse) = X
As for the variance estimated of the arithmetic mean by median ranked sets sampling and in the even case, it is denoted by the

following formula:
2

V(Ymrsse) = [m] +a? [m+2] PO
V(X1mrsse) = ;[le(%) le(mT’rZ)] % ~ Txye
V(Xamrsse) = i [O',fz[%] + sz miz 1= UT%Z ~ x2(9)
Where Tye) = 7 {Zﬁll(}_’-[m] — 1)+ By ~ 7)2}

Ty = Zmn{zl 1(x ( ) X,)? +2E k(x (m+2) Xl)z}

Tayie) = {Zl 1(x21[m] X)*+3¥m k(x [m+2]—X2) }

In terms of the covariance between the averages of the main and auxiliary variables obtained using median ranked sets
sampling, are defined as follows in both cases:

- (g
i = — yx1 i > — 2Yx2
Cov(Yurssor X1mrsso) = n Tyx,0) > Cov(Yurssor X2mrsso) = n Tyx,(0)
_ _ _ Oxqx, — = _ Tyxq
Cov(X1mrssor X2mRrss0) = — Ty x500) Cov(Yursser X1mrsse) = n e
_ _ __ Oyx, = = — Tx1x5
COU(yMRSSe:xZMRSSe) =0 Ty, & Cov(X1mrsser X2mrsse) = n Ty xye)

Where Tyxi00) = {ZL 1, i)~ Y) (%, (m) )?1)}
Tyra(@ = {Zi=1(y-[m_+1] = 1) () = XZ)}
Teix200) = {Zl (T (meny = X1) Ty —)?2)}

Tyxie) = {Zl 1y — Y)(x, (™)~ )?1)+Z;’;k(yi[m2+z] N, () )?1)}

2mn

Tyxy(e) = #{Zm()’-[m] - Y)(xZi[%] -X)+ Z?ik(yi[mTﬂ] -Y) (xZi[mT“] - Xz)}
A TIECHED AICHMES SES N HEES HICNHEEY A

And g;; ; (i qt]) = y,x1,X, itis used to express the co-variance between the main and auxiliary variables in simple random
sampling procedures, see for further information [7] and [8].

3. Proposed generalized estimator:

The mean of the population is one of the essential metrics that scholars are interested in investigating because of its significance
in identifying the features of the community. As a result, most samples are utilized to find estimators for this unknown
parameter in various methods. Samawi, Al-Omari, and Khan were among a limited group of researchers who dealt with this
parameter by estimate in theMRSS. Using median ranked sets sampling, we will show suggested estimation for investigating
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the mean population in this paper. Because the proposed estimation is generalized estimation, we may obtain any required
estimation by making a few simple modifications in the proposed estimation. The following is a broad description of the

proposed estimator.

7(9)

— X
gm@ = YMRsst (f -

)0 (-2 )02 [k (exp (L AMRSSly)g1 1 (1 — f) (exp( 2 Z2MRSSly) g1

1MRSSL X2MRSS1 X1+ X1MRSSI X2+ X2MRSS1

Where, 6, 6, are unknown constants selected to keep the mean squared error of the 7;;31)(1) estimator to the smallest possible

value, k is a well-known constant scalar that can take either one or zero values, g, & g,,are standards values that can take
(—1,0,1), each of the values k, g, and g, is utilized to determine the estimator form that can be generated from of the
estimator defined above.

It is worth noting that in the definition of the estimator 179(51)(0 above, the index (1) takes one of the letters( o or e ), where if

(! = o) indicates that the estimator Y’;i)(o) are defined on the odd case from theMRSS,, and if (1 = e) indicates that the

estimators }7;79,3(6) are defined on the even case from the MRSS,.
By setting the following error bounds, it will be possible to study the qualities of the suggested estimator to make the process of
obtaining these properties easier. To reformulate this estimator, we assume the following.

y i—? X i_X X i—)?
Let Toqy = yiMR;S s Ty = 7’(1“’*;;9 L& Ty = LMR;; 2 :l=oore
According to what has been demonstrated by [7], the mean estimated by MRSS is an unbiased estimate concerning the
population's mean. And upon it E( 7o) = E (t1y) = E( 1209) = 0

V(YMRSS0) Cov(YyMRSS0X1MRSS0) __
E (c2 ) O] £ ) _ 7%, = Vo1(o)
Tow/) = V(yMRSSe) __ ! Tor 1) = Cov(YMRsSeX1MRSSe) __
—vz = Yo v = Yoie)
V(X1MRSS0) _ V1o Cov(IMRSS0X2MRSS0) _ Voa(o)
2 _ X12 o _ }7)?2 02(o
E(Tl(l)) T ) V(Z1mrsse) _ v ' E(TO(D’TZ(D) ") CovImrsseXamrsse) _ v
G X 02(€)
V(X2MRsS0) _ Vato) Cov(%X1MRSS0¥2MRSS0) _ 1200y
2 _ )?22 o _ 7X, 12(o
E(Tz(l)) ") V(X2mRsse) = ! E(Tl(l)’rz(l)) ") Cov(X1mMRsSeX2MRSSe) =
X2 2@ X1X2 12(9)
To evaluate the properties of the estimator 7;1%)([) in both its odd and even cases, it will be rewritten in a way that makes the
process of obtaining these qualities easier by relying on the error bounds ;) ; i = 0,1,2 & [ = o, e so that the estimator?éﬁ’l)(l),
becomes as follows up to the first degree of approximation.
@ _ o (g1k+201)70(1) (g2(1-k)+262) 701 [k ((291*'9%)*'491 91)+491(91—1)]Ti(1)
ng(l) =Yi{1+ TO(l) - 2 - 2 + P +
[(1-’<)((292+9§)+492 92)+492(92-1)]T§(z) _ (gik+20)T0 T (92(1-K)+265)To(nT2(p) N [9261(1-k)+6, g1k+2919z]T1(z)Tz<z)}
8 2 2 2

It will be necessary to add and subtract the ¥ value from the equation (3-2) to obtain the following form, which will serve as the
basis for determining the properties of the estimator?

gm)°
17,(g) =7 . (g1k+261)To(p) _ (92(1-K)+262)T4(p) + [k ((291‘*9%)‘*491 g1)+491(91—1)]‘f§(1) n
gm(l) - To() 2 2 8
[(1—")((292‘*9%)"’492 gz)+492(92—1)]T§(1) _ (gak+20)T0 T (92(1-K)+262)To(n T2 n [9201(1-k)+82 g1k+26162]T1 (T2 () } 3)
8 2 2 2

And by taking the mathematical expectation for both sides of the equation (3), we can calculate the bias amount for the
estimator??__ which is defined for the odd and even cases.

gm(l)’
. (o) =[x ((2g1+92)+261 g1)+46,(61-D)]v1 [(1-1)((292+93) +46, g2 )+46, (62— 1) v
Bias (Y ) =Y + -
gm(l) 8 8
(g1k+261)v01)  (g2(1-K)+262)v02(p) n [g291(1—k)+92glk+29192]v12(1)} (4)
2 2 2
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It is also possible to calculate the mean squared error for the estimator Y;ﬁl)(l) by squaring equation (3) and then taking the
mathematical expectation up to the terms of order n~tof it, and as follows.

Mse (Y;,i)(l)) y? {Vo( +—(glk+281)2 iy t —(92(1_?”62)2 vy — (91 + 201)vo1) — (g.(1—Fk) +
20;)ve2() + (glk”el)(?(l €428 12(1)} (5)

Y(g)

It is worth noting that equation ( 4) represents the formula for the mean squared error of the estimator |n the odd and even

cases, where either of the two cases can be obtained by making the index (1) take the symbol (o) to denote the odd case or by
making the index (1) take the symbol (e) to denote the even case. We also note that there is a relationship between the form of
the mean square error formula of the estimatorY,,, ), computed by median ranked sets sampling and the same estimator, but
that the latter depends in its calculation on simple random sampleSRS, by rewriting equation ( 4) in another way, as shown
below.

@ _ y® | (g1k+26 )? (g2(1-k)+26,)?
Mse (ng(l)) = Mse(Yy) - { - %2 T+ ; 4x2 T —
(g1k 26,) _ (g2(1-k)+26,) + (91k+291)(92(1 k)+263) T, }
7%, yx1(D) Y%, yx2(D 281 %2 x1x2(1)
(6)
Where
= 1 (g1k+261)? (g2(1-k)+26)?
Mse(Y,;) = ;{033 +91+Rf0,?1 + %R%aﬁz — (g1k +26,)R10yy, — (g2(1 — k) + 26;)R,0,,, +
(g1k+201)( g2(1-k)+263)
. . 22 2 RlRZO_xle} (7)
Is the mean squared error of the Y estimator that corresponds to the ¥,y estimator usingSRS, R; = L& R, = XL and
2
_ X X1—- % X— %
=y (5)91( )"Z[k(exp( = T )T (=) (exp(E = )% (8)
When we examine the second term of the equation ( 6), we can see that the mean square error of the estimatorY;;‘fl)(l) under

MRSS is less than the mean square error of the estimator 1795 under SRS in both the odd-even cases, as shown in the following

steps.
In the odd case: Let

(91k+261) R1(X,_mi1y—K1)  (92(1-K)+202)Rp(X_ rm+1)-X2)12
7 =izm & +1_7)_ 1(757) _ 2[5
(0) T pp 4=l yi[mT] 2 2
Where it is noted that the term Z,,) is a perfect square, which allows the formulation of the mean squared error of the estimator

Ym0y in the form shown by equation ( 9), and it shows the result that indicatesM se (Y;i)(o)) < Mse(¥,;).

Mse(Y;i)(o)) = Mse(¥y) — Z (9)

In the even case: Let

(01k+200) Ry, (m)=%1)  (921-K)+26,)Ro (%, ym) ~2) 2
Z(e) (y [m] Y) — 2 2 - 2 2 +

(g1k+261) Rl(xu.(m_+2) —-X1)  (92(1-K)+202)R; (fzi[mTﬂ]—Xz)] 2}

i [(ii[mTH] -¥)-

2
2 2

In this case, also, we note that Z . is the sum of two perfect squares, and therefore also remains in the even case the mean
squared error of the estimator Y(g) ) Is equivalent to what was reached by equation ('10), but replacing the second term from the

right side of the equation with the amount Z o instead of Z,,, and the result that we reached is thatMse (Y;;‘jl)(e)) < Mse(¥ys).

Mse (17;%(8)) = Mse(Ygs) - Ze (10)

As for the bias formula defined by equation ( 4), we can write it as shown in the following figure, which shows that the bias
amount of the estimator Y;fil)(l) represents the product of subtracting the bias amount of the estimator Ygs calculated by simple
random sampling from a positive quantity, which indicates that the bias amount of the estimator ¥,,,; based on MRSS is less

than the bias amount of theSRS.
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(Zgl+g%)+401 g1)+461(61—1)]Tx1(l) N

Bias (7(9) ) = Bias(l_(qs)—l_/{[k(

gm(l)

8n

[1-1)((292+93)+462 92) +402(62-D|Tx, _

(g1k+200)Tyx ) (92(1-K)+2602)Ty, (1)

8n

2n

2n

2n

+

(11)

[9201(1-k)+62 g1k+26, 92]Tx1x2(l)}

WhereBias(l_(qs), is the bias amount of the¥ ;estimator calculated using a simple random sample, and its formula is as follows:

. = = [k ((231"'.9%)"'491 g1)+491(91—1)]a§1 [(1—")((292‘*3%)"‘492 92)+492 (92—1)]%%2 (9g1k+261)0yx,
BlaS(Y 5) =Y + - _—L
8n 8n 2n
(gzu—k);lzez)ayxz 4 L9200+, f:melez]oxlxz} (12)

It is necessary to know the optimal values for the unknown constants 8,and 6, to obtain the best formula for the

estimatorYg(;‘fl)(l), and this is accomplished through the process of partial derivation of equation ( 5) for those values and then

extracting the optimal values for them, as will be demonstrated below.
_ 2[vo1) Y2y~ Vo2V12()] =91 k[v1yv2) Vi)

B1opt = (13)

2V V20 V12 )

A 2[vo2) V1))~ Yo1)V12(0]—92 (1- R W1y V2 () Vi)
6 = 14
zopt 21V~ )) (19
For odd and even cases, we get the average squared error of the optimum ng(z) estimator by substituting equations (3-13) and

(3-14) into formula (3-5) and as follows:

7@ \_ y2 _ WhHavi0 s ~2vo10) ”oz(z)vlz(z))}
Mse,p, (ng(z)) =Y {Vo(l) 220770 (15)
Additionally, by substituting the optimal values for élom and 6720,,t with equations ( 1) and ( 4), we will obtain the optimal

estimator for the finite population mean and the optimal bias amount for 17;53(1) by theMRSS.

; : v@ .
4. Some of the estimators derived frongm(,).

We obtain several exponential and non-exponential types for ratio, product, and ratio-cum-product estimators from YJi)(l).By

replacing the values (64,0,,K, g, & g,) in Eq (3-1) with specific values. And we will denote each estimator by the value of

the case number corresponding to it and enter this value in the letter i inY;:,)l(l). The following table shows the forms of some of

these estimators.

Table (1) Some estimates generated from }_’;i)(l)

1| o o 0o 0o o Vo = Fuss
_ X
2 1.0 0 0 0 7@ =5 1
gm(l) = YMRssl (xllt_/IRSSl
@3 - X1MRsst
3 0 -1 0 0 0 Yoty = Purssi ( X, )
— X X
4 1 1.0 0 0 =7 ———)(—
gm() = YMRSS! (xllxIRSSl)(xZIL/IRSSl
6 _ - X1MRsst | X2MRssL
5 -1 -1 0 O 0 ng(l)—YMRssz( X, )( X, )
X X, — %
6 1 0 1 1 0 vy® _5 1 oxp (Rl FaMRsst
gm() = YMRSS! (leRSSl) p(X1‘|' X1MRSSL
x X, — %
7 1 0 1 1 0 vy? 5 1MRSS! 1 1MRSSI
gm0 = Ymrsst ( X, ) p(X1 + Tyunss
X X X, — X
8 1414 1 1 0 y® 5 N 2MRSSLy oy (AL — FIMRSSL
gm() = YuRss! (leRSSl)( X, )( p(X1‘|‘ X1MRsSL
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Here 7 is replaced by}_’(l) which represents the traditional unbiased estimator of the population mean ¥ under theMRSS,

gm(D) gm(l)’
as suggested by [7], 17;72,3(1) is called the ratio estimator under theMRSS, was suggested by [1],1/;73,1)(1) is called the product
estimator under theMRSS, Y s called the multiple ratio estimator under theMRSS y® s called the multiple product

T igm(D) Tigm()
estimator under theMRSS, Y;fn)(l) is called the ratio type exponential estimator under the MRSS, Y;;)(l) is called the product type
exponential estimator under the MRSS, andYg(T?(l) is called the ratio-cum-product type exponential estimator under theMRSS. It
should be noted that the general estimator ¥,,,;, can be used to derive a large number of additional estimators using the same

methodology. Furthermore, the properties of the estimators Y;,?L(l) i =1,2,--,8 represented by the bias amount Bias (Y;f,)l(l))

and the mean squared error Mse (Y(i) ) may be determined using the equations ( 4) and ( 5). Noting that we can calculate

gm(l)
the exact estimators shown in table (1) using SRS and the estimator defined in equation ( 8) meaning Yg(si);i =128
calculation, as well as using equations ( 7) and ( 12) to extract the properties of those estimators to compare them to the
properties of MRSS estimators and use the relative efficiency.
5. Comparing estimators' efficacy:
To determine the accuracy of the estimator?‘9. . it will be compared to the rest of the other estimators that were defined in the

gm(l)’
previous section by calculating the efficiency criterion between those estimators according to the following relationship:
7(9)
o@ o M)
eff (V2 v =—208 i=12,-8 (16)
( gm(l) gm(l)) Mse(ygm(l))
The following table provides the conditions that make the suggested estimator 17;;33(1) more efficient than the rest of the other

estimators by MRSS and based on equation ( 16), as shown below.

Table (2) Accuracy of the proposed estimator 79 with Y9 i =12, ,8in MRSS

gm() gm()’

7@ ) ( [€D)] ) 2V01(D) Yo2(D)V12(1) <1
Mse (Y:t}m(l) < Mse ng(l) (ng(l)vl(l) +‘U§1(Dv2(1)

T 2V41(1) Vo2 (DV12() T2V l[vlvl—vz ]

Mse (Y(gl)(l)) < Mse (Y(Tzn)(l)) 201() 02()212() 1M1 V2 1;(1) <1
9 9 Wo2V1) Vo1 V2 Y1) V1 V2 — V12 0)]

2V01(D) Yo2()V12()~2Vo1() V1) V2~V ()]

Mse (Y(;c,rzl)(l)) < Mse (Y(r3n)(z)) 201(1) 02(1)212(1) 01() V1) V2(1) 12(1) <1
g g Wo2(n?10 o1 V2 V1) V1) V2 -vl_z(l)]
— 4 2V01() Vo2 ()V12() T2[Vo1 ()Y, l][vlvl—vz 1

Mse (Y(i)(z)) < Mse (y(m)(l)) _ 01(D) 022() 12(D) 01D Voz1 V1V 12(1)2 <1
g g @o2?10 P01 V20 T P10 P20 +2V120 110 V20 V12 )]
— 5 2V91(1) Yo2(D)V 1—2[17 a4 l][U nHv 1—172 ]

Mse (Y(}i)(z)) < Mse (Y(m)(l)) _ 01(l) o;() 12) “2[Vo1() Vo2 V1 V2(1) 12(1)2 <1
g 9 o2 V1) o1y V2) V1) Y20 +2v 120 V1@ V20 V2]
— 6 2V01(D) Yo2()V120) +F3V01 (D [V1(D) V2 ()~ 2 (p ]

Mse (Y(gl)(l)) < Mse (Y(m)(l)) 5 01(D) oz(z) 120 F3%01 D V1) V2() 12(12) <1
g g Wo21yV1 ) tVo1(1)V2() +2-25V1() (V1) V2 () ~Vi2)]
v 2001) Vo2()P12()~Yo1() P10 V2) ~Vi2)]

Mse (Y(ri)(l)) < Mse (Y(;)(z)) ; 01() 022() 120 ~Yo1 V1) V2 12(1)2 <1
g g o2y V1) t¥o1(1)V2() +0-25V1() (V1) V2 () ~V12p)]
— 2V91()) Vo2 ()V12(0) +3[Vo1 () TV l][vlvl—vz ]

Mse (Y(T‘?l)(l)) < Mse (Y(SB(l)) _ 01()202() 120 +3[Vo1() V120 V1 V20 ~V120) <1
g g (o201 FPo1 V2 1225010 V20 + 2002 0 1P1) V20 “V12 )]

6. Working simulation:

An actual data set is utilized to demonstrate the comparability of the proposed estimators compared to one another. The data set
contains 252 men's body fat percentages determined by underwater weighing and different body circumference measurements.
For more information on these data, see “http:/lib.stat.cmu.edu/datasets/bodyfat/” for more details. We decide on the study
variable .body fat percentage is represented by the variable Y, while the first auxiliary variable X; represents belly
circumference, and thigh circumference is represented by the second auxiliary variableX,. Where the following features of the
community are present:

Y =19.150,X, = 92.556 ,X, = 95.406 ,07 = 70.036,07, = 116.275, 0, = 275.562,py,, = 813 ,p,,,
=056 and py,,, = 0.767

60



Iraqi Journal of Statistical Sciences, Vol. 19, No. 1, Pp. (54-66)

Using the median ranked sets sampling MRSS technique, as explained in part 2, a simulation study compares the estimators.
The ranking process will be carried out using the auxiliary variableX,. According to specific empirical metrics' estimates such
as the percentage relative bias (.) , and the percentage relative efficiencies PRE(.), where the values of PRB(.) help to assess
the different estimators' empirical bias, whereas the PRE(.) show which estimator is the most efficient from an empirical
standpoint, the results of 25,000 simulations are used. As shown in Table ( 6), and the PRB(.) and PRE(.) are obtained by
using the formulas given below.

7@ _ 1|1 25000  i7() _V Vi
PRB(7D) =2 [ 5300V e — D] X 10050 =g, 12,8

7® Y (Tgma) . 4
PRE (ng(z)) = m x100; i=g,12,--8 an

AL 0] o
Mse (ng(l)) ~ 25000 Zfzcioloo(gm(z)x -Y)? ;i=g912-8

7 (9)
Yom@

which suggests that it was able to describe the population mean in the most accurate manner possible using the MRSS

technique, while the estimator Yg(ﬁl)(l) has the second-lowest mean squared error. Regarding the proposedYg(i)(l), estimator in
7a%Y)
Y

tables (5 and 6); we see that it has the highest relative efficiency compared to the mean of median ranked set sampling m(D)”
i = 6,8) are second

From Tables (3 and 4), it appears that the estimator has the lowest mean squared error in both the odd and even cases,

And that efficiency increases with increasing sample size. It is worth noting that the estimators (}7;2([),

order in efficiency when compared to theYQ(fn)(l), estimator because they rely in their definition on the exponential form, and that
efficiency increases with increasing sample sizen = mr. Comparing the estimators (7;:,)1(1) ,i=24) to 17;,’;1)(1) in terms of
efficiency, they are ranked third and fourth respectively. When it comes to the estimators (V(i) i = 3,5,7), they have the

gm()”’
lowest estimation efficiency because there is a positive correlation between the data and those estimations are based on a
negative relationship, which demonstrates their poor estimation ability. When it comes to the relative bias scale, it appears from

the two tables (5and 6) that the generalized estimator 173731)([), has the lowest possible bias compared to other estimators, with the

lowest bias being 2% in the odd and even cases, and with the increase in sample size, that bias fades until it is close to zero.
7. Final remarks:

When comparing the results of the simulation study with the theoretical results obtained through table (2), it becomes clear that

the proposed estimator }_’;i)(l), by MRSS exhibits a high relative efficiency when estimating the mean of a population and is not

affected by the type of relationship between the auxiliary and main variables, in contrast to other estimators affected by this

type of relationship. In terms of relative bias, the estimatorl?;fn)(l), has the lowest bias, and that bias decreases as the size of the

ordered sample increases. And the two equations (3-9) and (3-10) also demonstrate that theM RSSoutperforms the SRS in terms

of accuracy when it comes to estimating the mean population. As a result, the estimator @i)(l),outperforms all of the estimators

described in table (1) and other types of estimators that can be derived from it.

61



Table 3: Mse (7" 1) Of proposed estimators as determined during simulation when m is odd

3 0.97297 0.50588 0.66176 0.41071 0.53294 0.36517 0.3669 0.32758 0.18945

4 12 0.89514 0.4369 0.65431 0.35978 0.49631 0.35429 0.31495 0.27517 0.18954

3 5 15 0.83651 0.27651 0.63424 0.23512 0.46162 0.34531 0.23491 0.2343 0.19776
10 30 0.53691 0.19895 0.41255 0.15716 0.43945 0.1149 0.21285 0.13249 0.10898

15 45 0.47529 0.15651 0.45291 0.12091 0.35517 0.08049 0.1743 0.10254 0.11125

20 60 0.41451 0.0945 0.39516 0.078497 0.31957 0.03517 0.15957 0.10099 0.10012

3 15 0.48148 0.24794 0.32588 0.20035 0.26147 0.17758 0.17845 0.15879 0.08972

4 20 0.44257 0.21345 0.32215 0.17489 0.24315 0.17214 0.15247 0.13258 0.08214

5 5 25 0.41325 0.13325 0.31212 0.11256 0.22581 0.16765 0.11245 0.11215 0.05689
10 50 0.26345 0.09447 0.20127 0.07358 0.21472 0.05245 0.10142 0.06124 0.05248

15 75 0.23264 0.07325 0.22145 0.05545 0.17258 0.03524 0.08215 0.04879 0.05124

20 100 0.20225 0.06698 0.19258 0.03424 0.15478 0.047891 0.07478 0.04469 0.05012

3 21 0.25074 0.13397 0.17294 0.11017 0.14073 0.09879 0.09922 0.08939 0.08147

4 28 0.23128 0.11672 0.17107 0.09744 0.13157 0.09607 0.08623 0.07629 0.06698

7 5 35 0.21662 0.07662 0.16606 0.06628 0.1229 0.09382 0.06622 0.06607 0.05842
10 70 0.14172 0.05723 0.11063 0.04679 0.11736 0.03622 0.06071 0.04062 0.03652

15 105 0.12632 0.04662 0.12072 0.03772 0.09629 0.02762 0.05107 0.03439 0.02889

20 140 0.11112 0.03112 0.10629 0.02712 0.08739 0.01629 0.04739 0.02274 0.01985

Table 4: Mse 1 Y;:,)l(l) ) of proposed estimators as determined during simulation when m is even

3 12 1.38884 0.86174 1.18584 0.83491 1.00744 0.60168 0.92758 0.41028 0.38756

4 16 1.18948 0.68136 1.01974 0.64744 0.81032 0.47516 0.83451 0.40756 0.25472

4 5 20 0.80684 0.62178 0.98591 0.61028 0.70758 0.41028 0.71956 0.33956 0.21538
10 40 0.74362 0.60964 0.81042 0.26178 0.63292 0.36156 0.52974 0.25916 0.18741

15 60 0.6125 0.50028 0.80682 0.29651 0.41028 0.20748 0.43252 0.18941 0.13548

20 80 0.51294 0.41024 0.61024 0.21116 0.25252 0.10156 0.23251 0.10254 0.10098

3 18 0.68942 0.42587 0.58792 0.41245 0.49872 0.29584 0.45879 0.20014 0.18878

4 24 0.58974 0.33568 0.50487 0.31872 0.40015 0.23258 0.41225 0.19878 0.12236

6 5 30 0.39842 0.30589 0.48795 0.30014 0.34879 0.20014 0.35478 0.16478 0.10269
10 60 0.36681 0.29982 0.40021 0.12589 0.31145 0.17578 0.25987 0.12458 0.10098

15 90 0.30125 0.24514 0.39841 0.14325 0.20014 0.09874 0.21125 0.10089 0.06212

20 120 0.25147 0.20012 0.30012 0.10058 0.12125 0.04578 0.11125 0.05876 0.05123

3 24 0.35471 0.22293 0.30396 0.21622 0.25936 0.15792 0.23939 0.11007 0.10088

4 32 0.30487 0.17784 0.26243 0.16936 0.21007 0.12629 0.21612 0.10939 0.09941

8 5 40 0.20921 0.16294 0.25397 0.16007 0.18439 0.11007 0.18739 0.09239 0.04551
10 80 0.1934 0.15991 0.2101 0.07294 0.16572 0.09789 0.13993 0.07229 0.03981

15 120 0.16062 0.13257 0.2092 0.08162 0.11007 0.05937 0.11562 0.03129 0.03112

20 160 0.13573 0.11006 0.16006 0.06029 0.07062 0.03289 0.06562 0.02586 0.02278

Table 5: PRE & iPRBi of iroiosed estimators as determined durini simulation when m is odd
100 192.3 147 123.2 182.6 266.4 265.2 297 513.6
3 (0.2689) (1.5583) (1.8869) (0.7458) (1.4789) (0.8974) (1.2589) (0.4578) (0.3982)
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100 204.9 136,8. . 1%14. . 1§H1 2%7_7 284.2 3253 4723

4 (0.2358) (1.24587) (1.goYgyi1 Journal qpSightical Sciences, Y19, No- 1, Pp, Bx66) (1.3258) (0.3525) (0.3125)
100 3025 131.9 117.6 181.2 2422 356.1 357 423

3 5 (0.1231) (0.8951) (1.4581) (0.3691) (1.2871) (0.3845) (1.0258) (0.2856) (0.1825)
100 269.9 130.1 126.6 122.2 467.3 252.2 405.2 492.7

10 (-0.0961) (0.5612) (1.2512) (0.1451) (1.1245) (0.1548) (0.9874) (-0.2215) (-0.0254)
100 303.7 104.9 129.4 133.8 590.5 2727 4635 427.2

15 (-0.0743) (0.3215) (1.2241) (0.0856) (1.0872) (0.0895) (0.6541) (-0.1548) (-0.0087)
100 4386 104.9 120.4 129.7 1179 259.8 410.4 414

20 (-0.0421) (0.1457) (1.0878) (0.0634) (0.9875) (0.04581) (0.2358) (-0.0045) (-0.00025)
2 100 194.2 147.7 1238 184.1 271.1 269.8 303.2 536.6

(0.02699) (0.15983) (0.96345) (0.07058) (0.19789) (0.018348) (0.26778) (0.2279) (0.0318496)

A 100 2073 137.4 122 182 257.1 290.3 3338 538.8

(0.02368) (0.128587) (0.96725) (0.05479) (0.19012) (0.012158) (0.28116) (0.17525) (0.0249936)
- 100 310.1 1324 118.4 183 2465 3675 3685 726.4

(0.01241) (0.09351) (0.74905) (0.03291) (0.17871) (0.00809) (0.22116) (0.1418) (0.0145936)

10 100 278.9 130.9 128.4 1227 502.3 259.8 430.2 501.9

(-0.00951) (0.06012) (0.6456) (0.01051) (0.16245) (0.003496) (0.21348) (-0.11175) (-0.0020384)
5 100 3176 105.1 1321 1348 660.2 283.2 476.8 454

(-0.00733) (0.03615) (0.63205) (0.00456) (0.15872) (0.00219) (0.14682) (-0.0784) (-0.0007024)

20 100 302 105 195.6 130.7 422.3 2705 452.6 4035

(-0.00411) (0.01857) (0.5639) (0.00234) (0.14875) (0.0013162) (0.06316) (-0.00325) (-0.000026)

100 187.2 145 1216 178.2 253.8 252.7 2805 307.8

3 (0.011076) (0.13583) (0.38538) (0.056464) (0.039578) (0.018028) (0.13189) (0.40842) (0.00358)
100 198.1 135.2 119.8 175.8 240.7 268.2 303.2 3453

4 (0.009752) (0.104587) (0.3869) (0.043832) (0.038024) (0.006279) (0.13858) (0.31365) (0.00281)
100 282.7 130.4 115.6 176.3 230.9 327.1 327.9 370.8

75 (0.005244) (0.06951) (0.29962) (0.026328) (0.035742) (0.004245) (0.10858) (0.25344) (0.00164169)
100 247.6 128.1 1223 120.8 391.3 233.4 348.9 388.1

10 (0.003524) (0.03612) (0.25824) (0.008408) (0.03249) (0.001948) (0.10474) (-0.20295) (-0.00022)
100 271 104.6 1236 131.2 4573 2473 367.3 437.2

15 (0.002652) (0.01215) (0.25282) (0.003648) (0.031744) (0.001295) (0.07141) (-0.14292) (-0.000079)
100 357.1 1045 1147 1272 682.1 2345 488.7 559.8

20 (L0.001364) (-0.00543) (0.22556) (0.001872) (0.02975) (0.0008581) (0.02958) (-0.00765) (-0.000003)

Table 6: PRE & (PRB) of proposed estimators as determined during simulation when m is even

100 161.2 117.1 103.2 137.9 230.8 149.7 3385 358.4
3 (0.3725) (1.8457) (2.3641) (1.0845) (1.8781) (1.3564) (2.3564) (0.9878) (0.3884)
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100 174.6 116,6 J% g/) f g}o 39 1425 291.9 467

4 (0.3125) (1.6894) (2.1498f1 Journal of Saptical Sciencey ¥l 19, No. 1, Pp; Gyi6) (2.1245) (0.7254) (0.3454)
100 129.8 81.84 101.9 114 196.7 112.1 237.6 374.6

5 (0.2897) (1.2879) (1.8975) (1.2231) (1.4452) (1.2254) (2.1012) (0.4215) (0.3542)
100 122 91.76 232.9 117.5 205.7 140.4 286.9 396.8

10 (0.1124) (0.8647) (1.4562) (1.2561) (1.42014) (1.2045) (2.0124) (0.5881) (0.0147)
100 122.4 75.92 168.7 149.3 295.2 141.6 323.4 452.1

15 (0.10258) (0.7712) (1.2145) (0.9981) (1.1214) (1.1845) (1.9875) (0.7254) (0.098)
100 125 84.06 194.3 203.1 505.1 220.6 500.2 508

20 (0.0124) (0.4562) (1.11258) (0.6612) (1.0124) (1.1012) (1.6891) (0.2221) (0.0047)
100 161.9 117.3 103.3 138.2 233 150.3 344.5 365.2

3 (0.03735) (0.18857) (1.20205) (0.10445) (0.23781) (0.027528) (0.48728) (0.4929) (0.03106)
100 175.7 116.8 105.3 147.4 253.6 143.1 296.7 482

4 (0.03135) (0.17294) (1.09125) (0.09964) (0.21981) (0.025306) (0.4409) (0.3617) (0.02762)
100 130.2 81.65 101.9 114.2 199.1 112.3 241.8 388

5 (0.02907) (0.13279) (0.96875) (0.11831) (0.19452) (0.024908) (0.43624) (0.20975) (0.02832)
100 122.3 91.65 238.2 117.8 208.7 141.2 294.4 363.3

10 (0.01134) (0.09047) (0.7481) (0.12161) (0.192014) (0.02449) (0.41848) (0.29305) (0.00116)
100 122.9 75.61 171.1 150.5 305.1 142.6 298.6 484.9

15 (0.010358) (0.08112) (0.62725) (0.09581) (0.16214) (0.02409) (0.4135) (0.3617) (0.007841)
100 125.7 83.79 199 207.4 549.3 226 428 490.9

20 (0.00134) (0.04962) (0.57629) (0.06212) (0.15124) (0.022424) (0.35382) (0.11005) (0.00036)
100 159.1 116.7 103.1 136.8 224.6 148.2 3223 3516

3 (0.01522) (0.16457) (0.48082) (0.08356) (0.047562) (0.027208) (0.24164) (0.00088542) (0.000349)
100 171.4 116.2 105 145.1 241.4 141.1 278.7 306.7

4 (0.01282) (0.14894) (0.4365) (0.079712) (0.043962) (0.012853) (0.21845) (0.00064926) (0.0003107)
100 128.4 82.38 101.8 1135 190.1 111.6 226.4 459.7

5 (0.011908) (0.10879) (0.3875) (0.094648) (0.038904) (0.012654) (0.21612) (0.00037575) (0.000318)
100 120.9 92.05 219.2 116.7 197.6 138.2 267.5 485.8

10 (0.004816) (0.06647) (0.29924) (0.097288) (0.0384028) (0.012445) (0.20724) (0.00052569) (0.000013)
100 121.2 76.78 162.4 145.9 270.5 138.9 513.3 516.1

15 (0.0044232) (0.05712) (0.2509) (0.076648) (0.032428) (0.012245) (0.20475) (0.00064926) (0.000088)
100 123.3 84.8 182.6 192.2 412.7 206.8 524.9 595.8

20 (0.000816) (0.02562) (0.230516) (0.049696) (0.030248) (0.011412) (0.17491) (0.00019629) (0.0000041)
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