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    The proposed method in this paper dealt with the problem of data contamination in the 

Cox Proportional Hazards Regression model (CPHRM) by using Wavelet Shrinkage to de-

noise data, calculating the discrete wavelet transformation coefficients for wavelets 

(Symlets and Daubechies), and thresholding methods (Universal, Minimax, and SURE), as 

well as thresholding rules (Soft and Hard). A software in the MATLAB language built for 

this propose will compare the proposed and classical method using simulation and real data. 

All the proposed methods have better efficiency than the classical method in estimating the 

Cox Proportional hazards model depending on both average of Akaike and Bayesian 

information criterion . 
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Introduction 

   There are two major regression models used for censored data: proportional hazards (PH) model for Cox as a semi-parametric 

method (Cox, 1972) and accelerated failure time (AFT) models as a parametric method, e.g. Exponential, Weibull, and 

Lognormal distributions are parametric models lead to some benefits (Lawless, 1998). However, Cox regression is the most 

widely employed model in survival analysis. 

 In addition, the Cox model is widely used because it is reliable, the estimated risks are never negative, and the hazard ratio 

can be computed (Singh, 2011). The Cox model has played a vital role in applied survival analysis during the last three decades. 

The model and its software implementations have popularized survival analysis and made it accessible to researchers in varied 

disciplines who are not necessarily statisticians. It has been so successful that it is probably used in most practical analyses of 

the effects of covariates on survival (Royston, and Lambert, 2011). In order to calculate and test regression coefficients, even 

when all of the parametric model's assumptions are met, the CPHRM, has high efficiency when it is parametric models (for 

example, the Weibull and Gamma model with proportional hazards). When parametric model assumptions are not available 

(for example, when a Weibull and Gamma model are employed but the data is not from the Weibull and Gamma survival 

distribution respectively, resulting in an erroneous model choice), the CPHRM analysis is more efficient than parametric 

models (Harrell, 2015). Also, the CRPHM assumes two parts: that the proportional hazard (PH) is constant with time, while 

PH are variables have a log-linear relationship (Ekman, 2017).  

On the other hand, wavelets are a good tool for the approximation of high dimensional functions, which feature dominant 

directions of the periodicity. One-dimensional shift invariant spaces and tensor-product wavelets are generalized to 

multivariate shift invariant spaces on non-tensor-product systems. The estimation of the non-parametric regression model in 

the (AFT) model under right random censorship and investigate the asymptotic rates of convergence of estimators based on 
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thresholding of empirical wavelet coefficients (Linyuan et al. 2006). Wavelet Estimates with censored data are considered, to 

investigate the asymptotic rates of convergence of estimators by using thresholding of wavelet coefficients (Linyuan et al. 

2007). Yogendra et al. (2010) discuss estimation of the density derivative by using wavelets methods by using randomly-

censored data and extend the results to asymptotic convergence rates due to Prakasa Rao (1996) and Chaubey et al. (2008) 

under random censorship model. Eddy (2011) suggest approach in estimating the function suitable compactly supported 

wavelets like the Daubechies, Symlets or Coiflets family of wavelets, the smoothness and time-frequency properties of these 

wavelets allow us to find an asymptotically estimators of the slope coefficient of the linear model. Rogério (2016) suggest 

extraction of an observation in the presence of random noise by wavelet shrinkage has been studied under assumptions that 

the contaminate is independent and identically distributed and that the samples are evenly spaced with time. Xing et al. (2017), 

discuss the estimation a models with censored data by using wavelet method when the survival function and the censoring 

times has a stationary α-mixing sequence, and of the wavelet estimators for varying functions. Christophe et al. (2019) suggest 

a deal with the estimation of a non-parametric regression with both additive and contaminate, for uniform multiplicative 

contaminate is considered, and develop a projection estimator by using a several wavelets. Jinru et al. (2020), explained the 

wavelet estimators of censored mixture density and discuss their point wise asymptotic convergence rates.   

2. Cox proportional hazard Regression model: 

The CPHRM is as in the following formula: 

( ) ( ) ( )1exp, ][
10  =

=
p

i ii xthtxh   

 Where 
pxxx ,,, 21    is a collection of covariate ( )th0   for all explanatory factors, the baseline hazard time t represents the 

hazard for a person with a value of 0. 
p ,,, 10    are regression coefficient which is estimated by the partial likelihood 

method (Aako and Are, 2020). 

The main advantages of the Cox PH model  

1- without estimate h_0 (t) we can estimate the parameters (β_i ) 

2- we don't have to assume that h_0 (t) follows a Weibull model, or a Gamma model, or any another parametric model. 

CPHRM assumptions: 

1- The h_0 (t) is non-parametric. 

2- On the log-rate scale, covariate effects are additive and linear. 

3- Proportional hazards: Over time, the ratio of hazard rates for two groups remains constant. 

4- Time t is "automatically" adjusted. 

Time-dependent and time-independent variables are the two types of covariates used in survival analysis. 

2.1. Tim-dependent Covariates 

Whereas time-dependent covariates are those whose values do change over time. Time-dependent covariates are further 

categorized into two types, internal and external covariates. Kalbfleisch and Prentice claim that (Aako and Are, 2020), If a 

time-dependent covariate meets the criteria, it is termed external. 

( ) ( ) ( ) ( ) ],|[],|[ uTuXtXPuTuXtXP == for all u, t, such that 0 < u < t. This means that at although the covariate 

could affect the hazard function over time, its upcoming path up to every time t > u The occurrence of a failure at time u has 

no effect. in another way, exogenous variables do not need the survival of a subject to exist. An external covariate is one whose 

value is known in advance at any moment in the future, such as a subject's age or a drug's recommended dose during a research 

(Liu, 2005). 

In the other hand Time-dependent variables may be readily incorporated into the model to account for characteristics that vary 

over time. the hazard function is defined as:  

Let ( )tZ ij
   are independent variables (  covariate of the   unit under observation), for ni ,,2,1 = , pj ,,2,1 = , and t 

and t is an observation with time scale. The notation Z_ij (t) indicates that the value of   varies as a values with time scale. 

Then the CPHRM with time-dependent covariates specifies that the hazard rate for the   individual as in the following formula: 

( ) ( ) ( )( ) ( )2βexp0 tZthth ii =  

 ( )th0  is the baseline hazard rate, Z_ij (t)  is a vector by   dimension of independent variables for unit i and that may be either 

fixed or dependent time, and  is a regression coefficients for vector by   ( )p1  dimension. The advantages of the CPHRM 

over other types of time-to-event methods is the ( )th0  can be left unspecified in practice. The functional form that a 

practitioner should perform is that ( )th0  is a non-negative value of t. For researchers with weak substantive theory for the 
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hazard shape when Z_ij (t)  =0, The CPHRM model is more flexible. However, because it assumes proportional hazards (PHs), 

the CPHRM places a significant limitation on the data. Time-dependent Value of variable differs over time Hazard ratio (HR) 

formula (3), (Gail et al., 2007): 

  𝐻𝑅̂ = 𝑒𝑥𝑝[∑ 𝛽̂𝑖
𝑝
𝑖=1 (𝑋𝑖

∗ −  𝑋𝑖)]                                                           (3) 

When X_i^*=(X_1^*,X_2^*,…,X_p^*) and X_i = (X_1,X_2,…,X_p) 

2.2. Time-independent Covariates 

Independent variables (Covariates) whose values do not vary with time are said to be time-independent (Aako and Are, 2020). 

Time-independent The value of the variable remains constant throughout time, whereas the exponential expression includes X 

but not t. The X in this case are known as time-independent X. Moreover, the hazard ratio comparing any two specifications 

of X predictors is constant throughout time, according to the (PH) assumption underpinning the Cox PH model. This indicates 

that the risk posed by one individual is proportionate to the risk posed by any other individual, with the proportionality constant 

remaining constant throughout time. the cox PH model with time-independent covariates in the formula (4), (Gail et al., 2007). 

( ) ( ) ( )4exp, ][
10  =

=
p

j jiji xthtXh   

 2.3. Time-independent and dependent covariates 

Both time-independent and time-dependent predictor variables, we can write the extended Cox model that incorporates both 

types, as in the following formula:   

Where   time-independent,   time-dependent. 

( ) ( ) ( ) ( )5exp, ][ 1 2

1 10  = =
+=

p

j

p

r rirjiji txxthtXh   

Where 
1

,,, 21 pi XXXX =  time-independent, ( ) ( ) ( ) ( )tXtXtXtX pr 2
,,, 21 =  time-dependent. 

3. Wavelet Shrinkage 

Wavelet shrinkage is well established technique for removing the noise present in the observation, while preserving the 

significant features of the original data (Donoho, 1994). The wavelet shrinkage based on thresholding of the wavelet 

coefficients. 

3.1. Wavelet  

Wavelet are small waves that can be grouped together to form larger waves or different waves. A few fundamental waves were 

used, stretched in infinitely many ways, and moved in infinitely many ways to produce a wavelet system that could make an 

accurate model of any wave. Consider generating an orthogonal wavelet basis for functions   (the space of square 

integrable real functions), starting with two parent wavelet: the scaling function   (also called farther wavelet) and the mother 

wavelet  . Other wavelets are then generated by dilations and translations of  and 
 
 (Donald et al., 2004). The dilation and 

translated of the functions are defined by formulas (6) and (7). 

)6(,)2(2)( 2

, zqkqyy kk

qk −=   

)7(,)2(2)( 2

, zqkqyy kk

qk −=   

The discrete wavelet transform (DWT) is a widely applicable observation processing algorithm that is used in various 

applications, for instance, science, engineering, mathematics and computer science. DWT decomposes an observation by using 

scaled and shifted versions of a compact supported basis function (mother wavelet), and provides multiresolution 

representation of the observation (Iolanda, 2007).  

Given a vector of an observation y consisting of 
k2  observations, where k is an integer and the DWT of y due to formula (8).   

)8(ywW =  

Where w is wavelet matrix with  ( )nn  dimensions,  is a vector with ( )1n   dimensions  including both scaling and 

wavelet coefficients. The vector of wavelet coefficients can by organized into ( )1+k   vectors.  Tkk VWWWW 021 ,,...,,=  . 

At each DWT, the approximation coefficients are divided into bands using the same wavelet as before, with the result that the 

details are appended with the details of the latest decomposition, as in the following formula: 

)9(y
00

0

1 k

T

k

k

k k

T

k

T VVWWWw +==  =
 

)(2 RLf 



 
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At each level (k), the observations can be reconstructed of the de-noise data (reduce of the contamination) by the inverse DWT 

(Ramazan et al., 2002). 

3.2 Thresholding 

Thresholding is the simplest method of non-linear wavelet de-noising, in which sub dividing the wavelet coefficient in to two 

sets, one of which represents signal while the other represents noise. There are different rules to apply the thresholds of the 

wavelet coefficients, and several different methods for choosing a threshold value exist such as: 

A. Universal Threshold Method 

 Donoho and Johnstone (1994) submitted universal threshold method, which is given by formula (10). 

( ) )10(2ˆ nLogMAD

U  =  

 Where 
MAD̂    is the standard deviation estimator of details coefficients, and equal to  . Where MAD is the median absolute 

deviation of the wavelet coefficients at the finest scale. 

B. Minimax Threshold Method  

 The optimal minimax threshold method submitted by Donoho and Johonstone, (1994) as an improvement to the universal 

threshold method, Minimax is based on an estimator   that attains to the minimax risk, as:  

( )
( )

( ) )11(,
~

supinf
~

~~ ffRFR
FRff 

=  

Where  

( )   )12(,
~1

,
~

1

2

 =
=

n

i
ffE

n
ffR  

 Where ( )ixff =  and ( )ixff
~~

= , denote the vectors of true and estimated sample values. The threshold minimax estimator is 

different from universal counter parts, in which the minimax threshold method is concentration on reducing the overall mean 

square error (MSE) but the estimates are not over-smoothing.  

C. SURE Threshold Method 

 The sure threshold proposed by Donoho and Johonstone (1994), which based upon the minimization of stein's risk estimator. 

In sure threshold method specifies a threshold estimate of   at each level  k  for the wavelet coefficients, and then for the soft 

threshold estimator we have. 

)13(),min(}:{2),(
0


=

−−=
d

k

kk WWknWSURE   

Where ],,2,1:[ dkWk =  be a wavelet coefficients in the kth level, and then, select 
S  that minimizes SURE ( )W, . 

)14(),(minarg WSURES  =  

Where   be a wavelet coefficients in the kth level, and then, select   that minimizes SURE  . 

3.3 Thresholding Rules 

There are many rules for the thresholding. The two types used in this research will be discussed. 

A. Soft Thresholding  

 The other standard technique for wavelet de-noising is Soft thresholding of the wavelet coefficient, also proposed by Donoho 

and Johnostone, which is defined as follows (Jeena, 2013). 
( )  ( ) )15(+−= WnWnsignWn s  

Where  

)16(

01

00

01

}{

















−

=

+

=

Wnif

Wnif

Wnif

WnSign  

and  

( )
( ) ( )

( )
)17(

00
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
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Coefficients smaller than threshold are set to zero, and additionally all coefficients greater than threshold are reduced by the 

amount of threshold. Thus, the Soft thresholding is a continuous mapping.   

B. Hard Thresholding  

 Donoho and Johnstone proposed Hard thresholding, it is a simplest scheme thresholding interpreting the statement of (keep or 

kill). The Hard thresholding used straightforward technique for implementing wavelet de-noising (Katsuyuki, 2021). The 

wavelet coefficient is set to the vector Wn(H) with element. 

)18(
0

)(
















=





WnifWn

Wnif
Wn H  

coefficients exceeding   are left untouched, while smaller than or equal to    are eliminated or set to 0. Thus, the operation of 

hard thresholding is not continuous mapping.  

4. Proposed method  

The proposed method included dealt with the problem of Cox Proportional hazards model ℎ(𝑡) data contamination, by using 

Wavelet Shrinkage. First, the discrete transformation coefficients ( )tW  for a wavelet ( )tw  (e.g. Symlets and Daubechies 

wavelets) composed of two parts (wavelet and scaling functions) are calculated from formula (19): 

( ) ( ) ( )19,,2,1;(t) nthtwtW ==   

Using the first level of discrete wavelet coefficients 
0,1W , 

1,1W , … , ( ) 12,1 −nW   The threshold level   is estimated by one of 

the methods (e.g. SURE, Minimax, and Universal threshold) for estimating the threshold level as formulas (10), (11), and (14).  

The threshold level   is estimated by one of the methods (e.g. SURE, Minimax, and Universal threshold) for estimating the 

threshold level as formulas (10), (11), and (14).  

Thresholding rules, Soft and Hard are used to keep or kill the discrete wavelet coefficients obtained from the formulas (15) 

and (18), depending on the threshold level estimated  , such that discrete wavelet coefficients  below of    are zeroed (kill) 

and above of   are keep. More clearly, large coefficients that are greater than   remain unchanged, while those that are less than 

or equal to  are deleted or are a set of zero.  Thus, we get the modified discrete wavelet transformation coefficients  , then it is 

used to compute the inverse of the modified discrete wavelet transform as in formula (20). 

( )( ) ( )20(t) tMWInvhw =  

Finally, the proposed wavelet Cox Proportional hazards model is obtained in the formula (21) and which has less 

contamination. 

( ) ( ) ( )21exp, ][
10  =

=
p

i ii xthtxhw   

Formula (21) represents the proposed model without the time-dependent covariates, while formula (22) represents the proposed 

model with the time-dependent covariates and which also has less contamination. 

( ) ( ) ( ) ( )22exp, ][ 21

110  ==
+=

p

k kk

p

i ii txxthtxhw   

 5. Evaluation criteria 

Akaike information criterion (AIC) and Bayesian information criterion (BIC) which depend on Log-likelihood (LL) will be 

used as selection criteria for the models. The model with the lowest value of AIC and BIC term appears the best model to Cox 

PH regression (Rinku and Manash 2016).  

( ) ( )2322AIC pKLL +−=  

( ) ( ) ( )24Ln.2BIC nKLL +−=  

6. Experimental and Application  

For case the time-independent and dependent covariates, simulation data visualizations (Appendix -program-1). Three cases 

were selected for the sample size (100, 200, and 300). It was assumed that there are five covariates, three of which are not 

time-dependent and two are time-dependent from an autoregressive model AR(1), with 8.01 =  and  8.02 −= , for the first 

simulation with n = 100. The vector regression parameters were also imposed  T5.05.0175.05.0 − . Noises with a 

Laplace distribution ( )25.0,0L  are added to the Cox PH model, dependent variable without noise and with noise for the first 

simulation with n = 100 shown figure (1). The 60% data is censored, and 40% is uncensored, with constant hazard rate (0.1) 

as initial value. 
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Figure (1): Dependent variable without noise and with noise 

 For the purpose of the comparison between the proposed and classical method in estimating the CPHRM, also the experiment 

was repeated to (1000) times and the average criteria for AIC and BIC was calculated. Two wavelets (Sym2) and (db13) were 

used with different methods in estimating the threshold level (SURE, Minimax, and Universal), for two threshold rule (Soft 

and Hard), and for different samples (100, 200, and 300). The results are summarized in Tables (1-3). 

Table (1): Average of criteria AIC and BIC for (1000) when n = 100 

Method Wavelet Threshold Method Threshold Rule AIC BIC 

Proposed Sym2 SURE Soft 293.69 304.73 

Sym2 SURE Hard 294.06 305.09 

Sym2 Minimax Soft 293.41 304.43 

Sym2 Minimax Hard 294.16 305.19 

Sym2 Universal Soft 293.07 304.09 

Sym2 Universal Hard 293.30 304.33 

db13 SURE Soft 293.54 304.57 

db13 SURE Hard 294.18 305.21 

db13 Minimax Soft 293.29 304.31 

db13 Minimax Hard 294.09 305.12 

db13 Universal Soft 293.04 304.07 

db13 Universal Hard 293.49 304.51 

Classical 294.35 305.37 

 

 

Table (2): Average of criteria AIC and BIC for (1000) when n = 200 

Method Wavelet Threshold Method Threshold Rule AIC BIC 

Proposed Sym2 SURE Soft 692.56 707.05 

Sym2 SURE Hard 693.36 707.85 

Sym2 Minimax Soft 691.68 706.17 

Sym2 Minimax Hard 693.17 707.66 

Sym2 Universal Soft 689.92 704.42 

Sym2 Universal Hard 691.06 705.55 

db13 SURE Soft 691.21 705.70 

db13 SURE Hard 692.79 707.29 

db13 Minimax Soft 690.15 704.64 

db13 Minimax Hard 692.97 707.47 

db13 Universal Soft 688.08 702.57 

db13 Universal Hard 689.27 703.76 

Classical 693.09 707.58 

 

Table (3): Average of criteria AIC and BIC for (1000) when n = 300 

Method Wavelet Threshold Method Threshold Rule AIC BIC 

Proposed Sym2 SURE Soft 1133.2 1149.7 

Sym2 SURE Hard 1134.1 1150.7 

Sym2 Minimax Soft 1132.4 1148.9 
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Sym2 Minimax Hard 1134.3 1150.8 

Sym2 Universal Soft 1130.6 1147.1 

Sym2 Universal Hard 1131.4 1147.9 

db13 SURE Soft 1131.2 1147.7 

db13 SURE Hard 1133.5 1150.0 

db13 Minimax Soft 1130.5 1147.0 

db13 Minimax Hard 1134.0 1150.5 

db13 Universal Soft 1128.0 1144.5 

db13 Universal Hard 1129.8 1146.3 

Classical 1134.4 1150.9 

 

 Tables (1–3) show that all the proposed methods have better efficiency than the classical method in estimating the Cox PH 

model depending on both average of criteria (AIC and BIC) for various selected samples, except the case (n = 200), for the 

(Sym2) wavelet, SURE and Minimax threshold method, Hard rule. Also, (db13) wavelet with Universal threshold method and 

Soft threshold rule was the best efficient compared with all other proposed methods and with the classical method because it 

has the lowest average of both criterions and for various selected samples (AIC = 293.04, BIC = 304.07), (AIC = 688.08, BIC 

= 702.57), and (AIC = 1128.0, BIC = 1144.5) respectively. For most simulation experiments, (db13) Wavelet was better than 

(Sym2), Also Universal threshold method was better than SURE and Minimax, and Soft rule better than Hard for all cases. 

Note that the average values of the two criterions increase with the increase in the sample size, any decrease in the efficiency 

of the proposed and classical estimated models if the sample size increases. 

6.2 Application Part 

 This Application shows how to fit of the CPHRM from panel data, years of observed of loan status represent dependent 

variable. For the model includes only time independent predictors, any information that remains constant throughout the life 

of the loan. Just a set of points and vintage information, when creating loans as an independent predictor of time, because it is 

the degree given to borrowers at the beginning of the loan, and the return is constant throughout the life of the loan. 

 CPHRM is a semi parametric method to adjusting survival rate estimates to quantify the impact of independent variables. The 

method represents the effects of independent variables as a multiplier of a  . The hazard function is the nonparametric part of 

the Cox PH regression function, whereas the effect of the independent variables is a log-linear regression. To fit the model, 

the sample data is randomly split into two parts. First, split the data into training (60% of data equal to 58092 observations 

from 96820). The hypotheses to be tested are as follows: 

:0H  The model is unfit vs. :1H  The model is fit 

2,10:0: 10 == jHvsH jj   

  The model is unfit vs.   The model is fit 

  

Table (4): Classical Cox PH Mode 

Cases available Beta S.E. Z p-

value 

Chi-

square 

p-

value 

AIC BIC 

Event 3917 -0.6960 0.0368 -18.888 0.000 
1017.5 0.000 84470 84493 

Censored 54175 -1.2747 0.0454 -28.060 0.000 

Total 58092         

l 

 Table (4) shows that the data included (3917) observations event and (54175) censored, and the classical Cox PH Model is fit, 

because the value of chi-square (1017.5) for overall (score) is greater than its tabulated value under the significance level ( = 

0.05) and degrees of freedom (2) which is equal to (5.99), p-value equal to zero and its less than  . The classical Cox regression 

coefficients (-0.6960 and -1.2747) are significant because the absolute values of Z (18.888 and 28.060) respectively are greater 

than tabulated value (1.96), p-values equal to zero and its less than  . 

 The efficiency of the classical CPHRM is represented by the criterion AIC, which is equal to (84470), and the criterion BIC, 

which is equal to (84492). The baseline cumulative HR can be converted to the hazard rate h, except for adding a step for 

analysis. The Classical CPHRM assumes that the observation time is measured as a continuous variable. The coxphfit function 

in MATLAB supports methods for handling joins in a time variable. 

Also, CPHRM will be estimated by proposed method, depending on the wavelet shrinkage represented by the (sym2) wavelet, 

with SURE threshold method for estimating the threshold level, and using the soft threshold. Using the same covariates (score 
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group and vintage information) and data generated previously. To fit the proposed CPHRM, and to test the previous 

hypotheses. 

Table (5): Proposed Cox PH Model 

Cases available Beta S.E. Z p-

value 

Chi-

square 

p-

value 

AIC BIC 

Event 3917 -0.7037 0.0368 -19.098 0.000 
1038.7 0.000 83754 83776 

Censored 54174 -1.2861 0.0454 -28.311 0.000 

Censoredb 1         

Total 58092         

 

 Table (5) shows that the data included (3917) observations event, (54174) censored, and censored cases before the earliest 

event in a stratum (Censoredb) equal to one. The proposed Cox PH Model is fit, because the value of chi-square (1038.7) for 

overall (score) is greater than its tabulated value under the significance level  and degrees of freedom (2) which is equal to 

(5.99), p-value equal to zero and its less than  . The proposed Cox regression coefficients (-0.7037 and -1.2861) are significant 

because the absolute values of Z (19.098 and 28.311) respectively are greater than tabulated value (1.96), p-values equal to 

zero and its less than  . The efficiency of the proposed Cox PH Model is represented by the criterion AIC, which is equal to 

(83754), and the criterion BIC, which is equal to (83776). The baseline cumulative hazard rate H can be converted to the 

hazard rate h as before, the proposed Cox PH model assumes that the observation time is measured as a continuous variable 

and after the wavelet shrinkage procedure, the data became continuous, which was used in the account classical Survival, One 

Minus Survival, Hazard, and LML Function at mean of covariates. 

To comparison of the proposed method (Wavelet shrinkage) with the classical method of estimating the Cox PH model. 

Starting with the data of the first sample, table (4) and (5) shows that the proposed method is better than the classical method 

for the data of the first experiment from the simulation, because the values of AIC and BIC (83754 and 83776) respectively 

for the proposed method was less than AIC and BIC (84470 and 84492) respectively for the classical method. The Chi-square 

value to test the significance of the proposed estimated model was greater than the classical model, and also its estimated 

parameters with the stability of the standard error values for both models. 

 The proposed Cox PH model estimated has a continuous variable, while the classical method for the data of the first experiment 

from simulation had a discrete variable, as clear in computing and plotting of proposed and classical functions for Survival, 

One Minus Survival, Hazard, and LML Function at mean of covariates, in the Figures (2-5). 

 
  

Figure (2): Classical and proposed Survival Function at mean of covariates 
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Figure (3): Classical and Proposed One Minus Survival Function at mean of covariates 

 
Figure (4): Classical and Proposed Cum Hazard Function at mean of covariates 

 
Figure (5): Classical and Proposed LML Function at mean of covariates 

 For the purpose of generalizing the results of the comparison between the proposed and classical method in estimating the Cox 

PH model, the application was repeated to (1000) times and the average criteria for AIC and BIC was calculated. Two wavelets 

(Sym2) and (db13) were used with different methods in estimating the threshold level (SURE, Minimax, and Universal), for 

two threshold rule (Soft and Hard), and for different samples (0.9 of the original data set equal to 87138, 0.6 of the original 

data set equal to 58092, and 0.3 of the original data set equal to 29046). The results are summarized in Tables (6-8). 

Table (6): Average of criteria AIC and BIC for (1000) times, when n = 87138 

Method Wavelet Threshold Method Threshold Rule AIC BIC 

Proposed Sym2 SURE Soft 129800 129820 

Sym2 SURE Hard 130090 130120 

Sym2 Minimax Soft 125250 125270 

Sym2 Minimax Hard 125610 125630 

Sym2 Universal Soft 121250 121280 

Sym2 Universal Hard 121740 121760 

db13 SURE Soft 129740 129760 

db13 SURE Hard 130007 130100 

db13 Minimax Soft 123450 123480 



 Iraqi Journal of Statistical Sciences, Vol. 19, No. 1,2022 ,  Pp. (17-29) 

26 

 

db13 Minimax Hard 124010 124030 

db13 Universal Soft 120610 120640 

db13 Universal Hard 120790 120820 

Classical 130910 130930 

 

Table (7): Average of criteria AIC and BIC for (1000) times, when n = 58092 

Method Wavelet Threshold Method Threshold Rule AIC BIC 

Proposed Sym2 SURE Soft 83367 83389 

Sym2 SURE Hard 83562 83584 

Sym2 Minimax Soft 80331 80353 

Sym2 Minimax Hard 80572 80594 

Sym2 Universal Soft 77667 77689 

Sym2 Universal Hard 77992 78014 

db13 SURE Soft 83324 83346 

db13 SURE Hard 83546 83568 

db13 Minimax Soft 79133 79155 

db13 Minimax Hard 79503 79525 

db13 Universal Soft 77239 77261 

db13 Universal Hard 77359 77381 

Classical 84103 84124 

   

 

 

Table (8): Average of criteria AIC and BIC for (1000) times, when n = 29046 

Method Wavelet Threshold Method Threshold Rule AIC BIC 

Proposed Sym2 SURE Soft 38984 39004 

Sym2 SURE Hard 39082 39102 

Sym2 Minimax Soft 37466 37487 

Sym2 Minimax Hard 37586 37607 

Sym2 Universal Soft 36135 36156 

Sym2 Universal Hard 36299 36320 

db13 SURE Soft 38964 38984 

db13 SURE Hard 39075 39095 

db13 Minimax Soft 36867 36888 

db13 Minimax Hard 37052 37072 

db13 Universal Soft 35921 35941 

db13 Universal Hard 35981 36002 

Classical 39353 39374 

 

 Tables (6–8) show that all the proposed methods have better efficiency than the classical method in estimating the Cox PH 

model depending on both average of criteria (AIC and BIC) for various selected samples. And db13 wavelet with Universal 

threshold method and Soft threshold rule was the best efficient compared with all other proposed methods and with the classical 

method because it has the lowest average of both criterions and for various selected samples (AIC = 120610, BIC = 120640), 

(AIC = 77239, BIC = 77261), and (AIC = 35921, BIC = 35941) respectively. For all applications, (db13) Wavelet was better 

than (Sym2), Universal threshold method was better than SURE and Minimax, and Soft rule better than Hard. Also note that 

the average values of the two criterions increase with the increase in the sample size, any decrease in the efficiency of the 

proposed and classical estimated models if the sample size increases. 

7. Conclusions 

1. The proposed methods (Wavelet shrinkage) have better efficiency than the classical method in estimating the Cox PH model 

depending on both average of criteria (AIC and BIC) for various selected samples (for simulation and application). 

2. Db13 wavelet with Universal threshold method and Soft threshold rule was the best efficient compared with all other 

proposed methods and with the classical method for various selected samples (for simulation and applications). 
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3. For most simulation experiments and applications, (db13) Wavelet was better than (Sym2), Also Universal threshold method 

was better than SURE and Minimax, and Soft rule better than Hard for all cases.   

4. The average values of the two criterions increase with the increase in the sample size, any decrease in the efficiency of the 

proposed and classical estimated models if the sample size increases (for simulation and applications). 

5. For the application process, the proposed method converted the data from discrete to continuous distribution. 

8. Recommendations 

1. Considering the proposed method for estimating the Cox PH model. 

2. The use of other types of orthogonal wavelets, methods for estimating the threshold level, and the thresholding rules in 

estimating the Cox PH model. 

3. Conducting future studies to estimate the parameters Weibull, Gomppertz, and Log-Logistic Regression model using 

Wavelet Shrinkage. 

4. Using a Bayesian approach with Wavelet Shrinkage in estimation the Cox PH model. 

Appendix 

% Program 

clc 

clear all 

%rng('default') 

 n=300;p1=3;p2=2;K=p1+p2;v1=.5;ru1=.8;ru2=-.8; 

for j=1:1000 

x=rand(n,p1)*v1; Censored=[ones(.6*n,1);zeros(0.4*n,1)]; e1=randn(n,1); x1=zeros(n,1); x1(1)=e1(1); 

e2=randn(n,1);x2=zeros(n,1);x2(1)=e2(1); beta1=[.5 .75 1]';beta2=[.5 -.5]'; h0=.1; 

for i=2:n 

    x1(i)=ru1*x1(i-1)+e1(i);  x2(i)=ru2*x2(i-1)+e2(i);  

end 

corrcoef(x2(1:n-1),x2(2:n)); plot(x2(1:n-1),x2(2:n),'.'); 

% The noise 

lambda=0.5;mu=0;b=.25;u=rand(1,n);v=-log(u)/lambda; z=randn(1,n);noise=(mu+b*sqrt(2*v).*z)'*10;  

ht=h0.*exp((x*beta1+[x1 x2]*beta2))+noise; 

[bCoxTD,logl,HCoxTD,stats] = ... 

    coxphfit([x x1 x2],... 

    ht,... 

    'Censoring',Censored,... 

    'Baseline',0); 

AIC(j)=-2*logl+2*(K+1);BIC(j)=-2*logl+log(n)*K; 

% proposed 

XD = wdenoise(ht,'Wavelet','db13', 'DenoisingMethod','universal','ThresholdRule','soft'); 

[bCoxTD,logl,HCoxTD,stats] = ... 

    coxphfit([x x1 x2],... 

    XD,... 

    'Censoring',Censored,... 

    'Baseline',0); 

AICw(j)=-2*logl+2*(K+1);BICw(j)=-2*logl+log(n)*K; 

end 

MAIC=mean(AIC); MAICw=mean(AICw); 

MBIC=mean(BIC); MBICw=mean(BICw);  

[MAIC MBIC MAICw MBICw] 
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 إستخدام التقليص المويجي في أنموذج إنحدار كوكس للمخاطر النسبية )دراسة محاكاة( 

 

 طه حسين علي و جوانا رستم قادر

 

 ، العراق ولاقتصاد، جامعة صلاح الدين، اربيلقسم الاحصاء والمعلوماتية، كلية الادارة 
 

ت التحويل  تم في هذا البحث إقتراح معالجة مشكلة تلوث البيانات في أنموذج كوكس للمخاطر النسبية باستخدام التقليص المويجي، من خلال حساب معاملا  : الخلاصة
بة )الناعمة ، كذلك قواعد العت (SURE) ، و   (Minimax)،   (Universal) ، وطرائق العتبة (Daubechies) و (Symlets) المويجي المتقطع، للمويجات  

والمصمم لهذا   MATLAB بلغة  والصلبة(. سيتم أيضاً المقارنة بين الطرائق المقترحة والتقليدية باستخدام المحاكاة والبيانات الحقيقية، التطبيق تم من خلال برنامج
 للمخاطر النسبية اعتماداً على متوسط معيار معلومات  الغرض. كانت جميع الطرائق المقترحة تتمتع بكفاءة أفضل من الطريقة التقليدية في تقدير أنموذج كوكس

(Akaike) و(Bayesian) . 
 ، انكماش المويجات ، قواعد العتبة. Cox PH: نموذج لمفتاحيةالكلمات ا

 


