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 The presence of the high correlation among predictors in regression modeling has 

undesirable effects on the regression estimating. There are several available biased 

methods to overcome this issue. The inverse Gaussian regression model (IGRM) is a 

special model from the generalized linear models. The IGRM is a well-known model in 

research application when the response variable under the study is skewed data. Numerous 

biased estimators for overcoming the multicollinearity in IGRM have been proposed in the 

literature using different theories. An overview of recent biased methods for IGRM is 

provided. A comparison among these biased estimators allows us to gain an insight into 

their performance.  
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1. Introduction 

The inverse Gaussian regression model (IGRM) has been widely used in industrial engineering, life testing, reliability, 

marketing, and social sciences [1-7]. “Specifically, IGRM is used when the response variable under the study is positively 

skewed [8-10]. When the response variable is extremely skewness, the IGRM is preferable than gamma regression model 

[11]. In dealing with the IGRM, it is assumed that there is no correlation among the explanatory variables [12-32]. In 

practice, however, this assumption often not holds, which leads to the problem of multicollinearity. In the presence of 

multicollinearity, when estimating the regression coefficients for IGRM using the maximum likelihood (ML) method, the 

estimated coefficients are usually become unstable with a high variance, and therefore low statistical significance [33]. 

Numerous remedial methods have been proposed to overcome the problem of multicollinearity [34-38]. The ridge 

regression method [39] has been consistently demonstrated to be an attractive and alternative to the ML estimation method. 

Ridge regression is a biased method that shrinks all regression coefficients toward zero to reduce the large variance [40]. 

This done by adding a positive amount to the diagonal of 
T

X X . As a result, the ridge estimator is biased but it guaranties 

a smaller mean squared error than the ML estimator.   

In linear regression, the ridge estimator is defined as 

 
1ˆ ( ) ,

T T
Ridge k −

= +β X X I X y   (1) 

where y  is an 1n   vector of observations of the response variable, 1
( ,..., )

p
=X x x  is an n p  known design matrix 

of explanatory variables, 1
( ,..., )

p
 =β  is a 1p   vector of unknown regression coefficients, I  is the identity matrix 
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with dimension p p , and 0k   represents the ridge parameter (shrinkage parameter). The ridge parameter, k , 

controls the shrinkage of β  toward zero. The OLS estimator can be considered as a special estimator from Eq. (1) with 

0k = . For larger value of k , the ˆ
Ridgeβ  estimator yields greater shrinkage approaching zero [39, 41].  

1. Inverse Gaussian regression model 

The inverse Gaussian distribution is a continuous distribution with two positive parameters: location parameter,  , and 

scale parameter,  , denoted as ( , )IG   . Its probability density function is defined as 

 

2

3

1 1
( , , ) exp , 0.

22

y
f y y

yy


 

  

  −
 = −  
   

  (2) 

The mean and variance of this distribution are, respectively, ( )E y =  and 
3

var( )y  = . 

Inverse Gaussian regression model is considered a member of the generalized linear models (GLM) family, extending the 

ideas of linear regression to the situation where the response variable is following the inverse Gaussian distribution. 

Following the GLM methodology, Eq. (1) can re-write in terms of exponential family function as 

 
3

2

1 1 1 1
( , , ) ln(2 ) ln( ) ,

2 22

y
f y y   

 

   
= − + + − −   

  
  (3) 

where 
3

( , ) (1/ 2) ln(2 ) (1/ 2) ln( )C y y  = − −  and  
2

( ) 1 1

2

y a y 

  

 −
= − + 

 
. Here,   represents the 

dispersion parameter and 
21/   represents the canonical link function. 

 In GLM, a monotonic and differentiable link function connects the mean of the response variable with the linear predictor 
T

i i = x β , where ix  is the ith row of X  and β  is a ( 1) 1p +   vector of unknown regression coefficients. Because i

depends on β  and the mean of the response variable is a function of i , then 
1 1( ) ( ) ( )T

i i i iE y g g − −= = = x β . 

Related to the IGR, the 1/ T
i = x β . Another possible link function for the IGRM is log link function,  

exp( )T
i = x β .  

The model estimation of the IGRM is based on the maximum likelihood method (ML). The log likelihood function of the 

IGRM under the canonical link function is defined as 

 
3

1

1 1 ln
( ) ln(2 ) .

2 2 2

Tn
Ti i
i i

i i

y
y

y




 =

   
= − − − −  

   


x β
β x β   (4) 

The ML estimator is then obtained by computing the first derivative of the Eq. (3) and setting it equal to zero, as 

 

1

( ) 1 1
0.

2

n

i i
T

i i

y
=

 
 = − =

  
 


β

x
β x β

  (5) 

Unfortunately, the first derivative cannot be solved analytically because Eq. (4) is nonlinear in β . The iteratively weighted 

least squares (IWLS) algorithm or Fisher-scoring algorithm can be used to obtain the ML estimators of the IGRM 

parameters. In each iteration, the parameters are updated by 

 
( 1) ( ) 1 ( ) ( )( ) ( ),r r r rI S+ −= +β β β β   (6) 
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where 
( )( )rS β  and 

1 ( )( )rI −
β  are ( ) ( ) /S =  β β β  and ( )( )

1
1 2( ) ( ) / TI E

−
− = −   β β β β evaluated at 

( )r
β , 

respectively. The final step of the estimated coefficients is defined as  

 
1ˆ ˆ ˆ ,T

IGRM
−=β B X Wm   (7) 

where ˆ( )T=B X WX , 
3ˆ ˆdiag( )i=W , m̂  is a vector where ith element equals to 

2 3ˆ ˆ ˆ ˆ(1/ ) (( ) / )i i i i im y  = + − , 

and ˆˆ 1/ T
i = x β . The covariance matrix of ˆ

IGRMβ  equals  

 

1
2
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−

−
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and the MSE equals  

 
1

1
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[ ]

1
,
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p
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=
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where j  is the eigenvalue of the B  matrix and the dispersion parameter,  , is estimated by [42]  

 

2

3
1

ˆ( )1
ˆ .

( ) ˆ

n
i i

i i

y
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
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=

−
=

−
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2. Ridge estimator 

In the presence of multicollinearity, the matrix ˆT
X WX  becomes ill-conditioned leading to high variance and 

instability of the ML estimator of the IGRM parameters. As a remedy, Månsson and Shukur [43] proposed the IGR ridge 

estimator (IGRR) as 

 

1

1

ˆ ˆˆ ˆ( )

ˆ ˆ ˆ( ) ,

G
T T

IGRMI R

T

R

T

k

k

−

−

= +

= +

β X WX I X WXβ

X WX I X Wv
  (11) 

where 0k  . The ML estimator can be considered as a special estimator from Eq. (11) with 0k = . Regardless of k

value, the MSE of the ˆ
IGRRβ is smaller than that of ˆ

IGRMβ because the MSE of  ˆ
IGRRβ is equal to [33] 

 
2

2 2
1 1

ˆMSE( ) ,
( ) ( )

IG

p p
j j

j

RR

jj j

k
k k

 


 = =

= +
+ +

 β   (12) 

 where j  is defined as the jth element of ˆ
IGRM β and   is the eigenvector of the ˆT

X WX  matrix. Comparing with the 

MSE of Eq. (9), ˆMSE( )IGRRβ  is always small for 0k  . 

3. Liu estimator 

Another popular biased estimator which is known as Liu estimator has been adopted in Poisson regression model. The 

inverse Gaussian Liu estimator (IGLE) is defined as  

 
1ˆ ˆˆ ˆ( ) ( ) ,I

T
L

T
GG E I RMd−= + +β X WX I X WX I β   (13) 
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where 0 1d  .  Regardless of d value, the MSE of the ˆ
IGLEβ is smaller than that of ˆ

IGRMβ because the MSE of  

ˆ
IGLEβ is equal to [33] 

 

2 2

2

2 2
1 1

( )
ˆMSE( ) ( 1) .

( 1) ( 1)

p p
j j

j jj j j

IGLE

d
d

 


  = =

+
= + −

+ +
 β   (14) 

4. Liu-type estimator 

Alternative to Liu estimator, the Liu-type estimator was proposed by Liu [44] to overcome the problem of severe 

multicollinearity. The inverse Gaussian Liu-type estimator (IGLT) is defined as  

 
1ˆ ˆˆ ˆ( ) ( ) ,I

T
GGLT

T
I RMk d−= + −β X WX I X WX I β   (15) 

where d−     and 0k  .  In Eq. (15), the parameter k can be used totally to control the conditioning of 

ˆT
k+X WX I . After the reduction of ˆT

k+X WX I  is reach a desirable level, then the expected bias that is generated 

can be corrected with the so-called bias correction parameter, d  [45-49].  

Liu [44] proved that, in terms of MSE, the Liu-type estimator has superior properties over ridge estimator. The MSE of  

ˆ
IGLTβ  is defined as  
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2
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 
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5. Two-parameter estimator 

Following Asar and Genç [50] and Huang and Yang [51] the two-parameter estimator in linear regression model is defined 

as: 

 
1ˆ ˆ( ) ( ) ,T T

TPE OLSk k d−= + +β X X I X X I β   (17) 

where 0 1d   and 0k  .  For IGRM, the two-parameter estimator (IGTP) is defined as: 

 
1ˆ ˆˆ ˆ( ) ( ) .I

T
T

T
GG P I RMk k d−= + +β X WX I X WX I β   (18) 

It is obviously noted that the ˆ
IGTPβ  is a combination of two different estimators IGRR and IGLE. Furthermore, if 1k = , 

Eq. (18) will be the ˆ
IGLEβ  while if 0k = , Eq. (18) will be the ˆ

IGRMβ . Besides, when 0d = , then Eq. (18) will equal 

ˆ
IGRRβ .  

In terms of MSE, the two-parameter estimator has superior properties over ML estimator. The MSE of  ˆ
IGTPβ  is defined 

as  

 

2 21
2 2

2 2
1

( )
ˆMSE( ) ( 1) .

( ) ( )
I

p
j j

j j j j

GTP

kd
k d

k k

 


  

+

=

 +
= + − 

+ +  
β   (19) 

6. Real application 

To demonstrate the usefulness of the shrinkage estimators in real application, we present here a chemistry dataset with 

( ) ( ),    65,15n p = , where n  represents the number of imidazo[4,5-b] pyridine derivatives, which are used as 

anticancer compounds. While p  denotes the number of molecular descriptors, which are treated as explanatory variables 

[52]. The response of interest is the biological activities (IC50). Quantitative structure-activity relationship (QSAR) study 

has become a great deal of importance in chemometrics. The principle of QSAR is to model several biological activities 

over a collection of chemical compounds in terms of their structural properties [53]. Consequently, using of regression 

model is one of the most important tools for constructing the QSAR model.  
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First, to check whether the response variable belongs to the inverse Gaussian distribution, a Chi-square test is used. The 

result of the test equals to 5.2762 with p-value equals to 0.2601. It is indicated form this result that the inverse Gaussian 

distribution fits very well to this response variable. That is, the following model is set 

 
50

15

1

ˆˆ exp( ).IC j j

j

y 
=

= x   (20) 

Second, to check whether there is a relationship among the explanatory variables or not, Figure 1 displays the correlation 

matrix among the 15 explanatory variables. It is obviously seen that there are correlations greater than 0.90 among MW, 

SpMaxA_D, and ATS8v ( 0.96r = ), between SpMax3_Bh(s) and ATS8v ( 0.92r = ), and between Mor21v with 

Mor21e ( 0.93r = ). 

Third, to test the existence of multicollinearity after fitting the inverse Gaussian regression model using log link function 

and the estimated dispersion parameter is 0.00103, the eigenvalues of the matrix ˆT
X WX  are obtained as 

91.884 10 ,

63.445 10 , 
52.163 10 , 

42.388 10 , 
31.290 10 , 

29.120 10 ,
24.431 10 , 

21.839 10 , 
21.056 10 , 

5525 , 3231, 2631 , 1654 , 1008 , and 1.115 . The determined condition number max minCN / =  of the data is 

40383.035 indicating that the severe multicollinearity issue is exist. 

The estimated inverse Gaussian regression coefficients and the estimated theoretical MSE values for the MLE, and the 

used estimators are listed in Table 1”. According to Table 1, it is clearly seen that the IGTP has MSE values less than the 

MSE of the IGRM, in general. Moreover, the MSE of the IGTP estimator is the lowest among all estimators. Specifically, 

it can be seen that the MSE of IGTP estimator was about 44.24%, 39.17%, 32.62%, and 12.11% lower than that of IGRM, 

IGRR, IGLE, and IGLT, respectively.  

 
Figure 1. Correlation matrix among the 15 explanatory variables of the real data. 

 

Table 1: The estimated coefficients and MSE values of the used estimators 

 Methods     

̂   
IGRM IGRR IGLE IGLT IGTP 

MW 1.002 0.744 0.835 0.731 0.841 

IC3 1.237 0.977 1.087 0.969 2.005 

SpMaxA_

D 

-1.102 -1.363 -1.269 -0.905 -1.304 

ATS8v -1.379 -1.67 -1.846 -1.126 -1.101 

MATS7v -1.219 -1.48 -1.386 -1.019 -1.421 

MATS2s -1.215 -1.476 -1.382 -1.015 -1.417 

GATS4p -1.237 -1.498 -2.405 -1.037 -1.439 

SpMax8_

Bh.p. 

2.506 2.145 2.309 2.707 2.304 
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SpMax3_

Bh.s. 

2.069 1.808 1.902 2.269 1.867 

P_VSA_e

_3 

2.001 1.739 1.833 2.2 1.798 

TDB08m -2.103 -2.365 -2.27 -1.903 -2.305 

RDF100m 1.571 1.309 1.403 1.77 1.368 

Mor21v -2.434 -2.695 -2.601 -2.235 -2.636 

Mor21e -2.352 -2.613 -2.519 -2.152 -2.554 

HATS6v 2.211 1.95 2.044 2.411 2.009 

MSE 3.295 2.258 1.823 1.658 1.215 

7. Conclusions 

In this paper, we presented a thorough review of literature regarding the biased estimators in inverse Gaussian regression 

model when the multicollinearity is existing. According to real data application, the two-parameter estimator has better 

performance than IGRM, IGRR, IGLE, and IGLT, in terms of MSE. In conclusion, the use of the two-parameter estimator 

is recommended when multicollinearity is present in the inverse Gaussians regression model. 
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 مقدرات التقليص في نموذج الانحدار الكاوسي المعكوس: مراجعة الموضوع
 عثمان  و  رفل اديب فرح عبد الغني يونس  

 قسم الاحصاء والمعلوماتية ،كلية علوم الحاسوب والرياضيات، جامعة الموصل، الموصل ، العراق. 
 

المتنبئين في نمذجة الانحدار له تأثيرات غير مرغوب فيها على تقدير الانحدار. هناك العديد من ا  :  الخلاصة ن وجود علاقة ارتباط عالية بين 
( هو نموذج خاص من النماذج الخطية المعممة. IGRMالطرق المتحيزة المتاحة للتغلب على هذه المشكلة. نموذج الانحدار الغاوسي العكسي )

جًا معروفًا في تطبيق البحث عندما يكون متغير الاستجابة تحت الدراسة عبارة عن بيانات منحرفة. تم اقتراح العديد من المقدرات  نموذ IGRMيعد 
في الأدبيات باستخدام نظريات مختلفة. يتم تقديم لمحة عامة عن الأساليب المتحيزة    IGRMالمتحيزة للتغلب على العلاقة الخطية المتعددة في  

 . تسمح لنا المقارنة بين هذه المقدرات المتحيزة بالحصول على نظرة ثاقبة لأدائها.IGRMلـ الحديثة  
 متعدد الخطية. مقدر متحيز نموذج الانحدار الغاوسي المعكوس ؛ محاكاة مونت كارلو   :الكلمات المفتاحية 


