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1. Introduction

The inverse Gaussian regression model (IGRM) has been widely used in industrial engineering, life testing, reliability,
marketing, and social sciences [1-7]. “Specifically, IGRM is used when the response variable under the study is positively
skewed [8-10]. When the response variable is extremely skewness, the IGRM is preferable than gamma regression model
[11]. In dealing with the IGRM, it is assumed that there is no correlation among the explanatory variables [12-32]. In
practice, however, this assumption often not holds, which leads to the problem of multicollinearity. In the presence of
multicollinearity, when estimating the regression coefficients for IGRM using the maximum likelihood (ML) method, the
estimated coefficients are usually become unstable with a high variance, and therefore low statistical significance [33].
Numerous remedial methods have been proposed to overcome the problem of multicollinearity [34-38]. The ridge
regression method [39] has been consistently demonstrated to be an attractive and alternative to the ML estimation method.
Ridge regression is a biased method that shrinks all regression coefficients toward zero to reduce the large variance [40].

This done by adding a positive amount to the diagonal of X" X. As a result, the ridge estimator is biased but it guaranties
a smaller mean squared error than the ML estimator.
In linear regression, the ridge estimator is defined as

ﬁRidge = (XT X+k I)_1XT Yy (1)

where Y is an N x1 vector of observations of the response variable, X = (Xl, ey Xp) isan N X P known design matrix

of explanatory variables, = (,Bl, ey ﬂp) isa P x1 vector of unknown regression coefficients, | is the identity matrix

46


mailto:farah-abd-ul-ghani@uomosul.edu.iq
https://stats.mosuljournals.com/article_174331.html
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0004-0009-9099-1633
https://orcid.org/0009-0009-1835-0803

Iragi Journal of Statistical Sciences, Vol. 19, No. 1, 2022, Pp. (46-53)

with dimension pxp , and k >0 represents the ridge parameter (shrinkage parameter). The ridge parameter, K ,
controls the shrinkage of B toward zero. The OLS estimator can be considered as a special estimator from Eq. (1) with

k =0. For larger value of K , the ﬁRidge estimator yields greater shrinkage approaching zero [39, 41].
1.  Inverse Gaussian regression model

The inverse Gaussian distribution is a continuous distribution with two positive parameters: location parameter, £ , and
scale parameter, 7 , denoted as 1G (u, 7) . Its probability density function is defined as

2

1 1(y-u
f(y,u7)=————exp ——[ j , Yy >0. (2)

it

The mean and variance of this distribution are, respectively, E (y )=z and var(y ) =7 °.

Inverse Gaussian regression model is considered a member of the generalized linear models (GLM) family, extending the
ideas of linear regression to the situation where the response variable is following the inverse Gaussian distribution.
Following the GLM methodology, Eq. (1) can re-write in terms of exponential family function as

f (y,,u,z'):%{—%+%}+{—%In(2ﬂy3)—%In(r)}, ®)

where C (y,7) =—(1/2)In(2zy *)—(1/2)In(z) and W_Tfl(e)zl{—%+l} . Here, 7 represents the
t| 2u® u

dispersion parameter and 1/ ,u2 represents the canonical link function.
In GLM, a monotonic and differentiable link function connects the mean of the response variable with the linear predictor
17 =X B, where X; is the i row of X and B isa (P +1)x1 vector of unknown regression coefficients. Because 7,

depends on B and the mean of the response variable is a function of 7; , then E(y;) =14 =0 _1(77i )=0 _1(X-:- B).
Related to the IGR, the =1/JXTB . Another possible link function for the IGRM is log link function,

T
H=exp(x; B).

The model estimation of the IGRM is based on the maximum likelihood method (ML). The log likelihood function of the
IGRM under the canonical link function is defined as

Y, X B =7 1 Int 3
1 X p|l-—————-In(2zy’) . 4
(B) = Z{ { .ﬁ} 2y 2 (27y?) (4)
The ML estimator is then obtained by computing the first derivative of the Eq. (3) and setting it equal to zero, as
(’% 1 1
X B

Unfortunately, the first derivative cannot be solved analytically because Eq. (4) is nonlinear in . The iteratively weighted

least squares (IWLS) algorithm or Fisher-scoring algorithm can be used to obtain the ML estimators of the IGRM
parameters. In each iteration, the parameters are updated by

BT =B+ 17 (B)S (B, ®
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1 2 T\t
where S (B) and | *(B) are S(B)=0¢(B)/ P and | *(B) = (—E (a ((B)/ opop )) evaluated at B¢,
respectively. The final step of the estimated coefficients is defined as
Bicry =B X" Wi, (7)
where B = (X' WX) W = diag(®) , r is a vector where i element equals to M, = (1/ &%)+ ((y; — i ) i),

and =1/ 1/XT B . The covariance matrix of ﬁlGRM equals

) 1
coV(Birm ) = {_E [;:;(BBT) ﬂ =B, (8)

and the MSE equals
MSE(BIGRM )=E (BIGRM _B)T (BIGRM -B)
=rtr[B] 9)

P, 1
=’[Z—’
i

where /IJ- is the eigenvalue of the B matrix and the dispersion parameter, 7 , is estimated by [42]

ol i)
s Dl

(10)

2. Ridge estimator

In the presence of multicollinearity, the matrix X" WX becomes ill-conditioned leading to high variance and
instability of the ML estimator of the IGRM parameters. As a remedy, Mansson and Shukur [43] proposed the IGR ridge
estimator (IGRR) as

0 T & -IvT YW p
Biorr = (XX WX +KI) X' WXB)ry (1)
= (X" WX + k1) X" WY,
where k > 0. The ML estimator can be considered as a special estimator from Eq. (11) with kK = 0. Regardless of K
value, the MSE of the ﬁmRR is smaller than that of ﬁlGRM because the MSE of ﬁlGRR is equal to [33]

MSE(Bens) =S — 02y (12)
=7) ———+ —_—
R} (2 +k)? (4 +k)?

where o is defined as the j" element of 7|§|GRM and 7 is the eigenvector of the X' VWX matrix. Comparing with the

MSE of Eq. (9), MSE(,crg ) is always small for k > 0.

3. Liu estimator
Another popular biased estimator which is known as Liu estimator has been adopted in Poisson regression model. The
inverse Gaussian Liu estimator (IGLE) is defined as

ﬁIGLE = (XT WXJFI)_l(XT WX +d I)ﬁIGRM ) (13)

48



Iragi Journal of Statistical Sciences, Vol. 19, No. 1, 2022, Pp. (46-53)

where 0 <d <1. Regardless of d value, the MSE of the ﬁ,GLE is smaller than that of ﬁ,GRM because the MSE of
BIGLE is equal to [33]

2 2
MSE(ﬁ.GLE):ri ) —nzia—"

e : 14
=4, (4 +1)° (4 +)? (4

4.  Liu-type estimator
Alternative to Liu estimator, the Liu-type estimator was proposed by Liu [44] to overcome the problem of severe
multicollinearity. The inverse Gaussian Liu-type estimator (IGLT) is defined as

Bior = (X WX+k D)X WX -d D) eay - 13)

where —o<d <o and k >0 . In Eq. (15), the parameter K can be used totally to control the conditioning of

X" WX +k | . After the reduction of X" WX +k I is reach a desirable level, then the expected bias that is generated
can be corrected with the so-called bias correction parameter, d [45-49].
Liu [44] proved that, in terms of MSE, the Liu-type estimator has superior properties over ridge estimator. The MSE of
BigLt s defined as

2
i

p
+d+k)?Y —— (16)
j=1

- b, (4; —d)?
MSE(BK;LT):TZ 4 -d) 7 +k)2'
j

T4 +k)?

5.  Two-parameter estimator
Following Asar and Geng [50] and Huang and Yang [51] the two-parameter estimator in linear regression model is defined
as:

Bree = (X" X+k DH(X" X+k d DBoys . 17

where 0 <d <1 and k >0. For IGRM, the two-parameter estimator (IGTP) is defined as:
Biorp = (X" WX+k D)X WX +k d I)Bgru - (18)

It is obviously noted that the ﬁ,GTP is a combination of two different estimators IGRR and IGLE. Furthermore, if K =1,
Eqg. (18) will be the ﬁIGLE while if K =0, Eq. (18) will be the ﬁIGRM . Besides, when d =0, then Eq. (18) will equal

Picre -
In terms of MSE, the two-parameter estimator has superior properties over ML estimator. The MSE of ﬁmTP is defined
as

R (4 +kd)? a’?

MSEBgrp) =7 | ———+k 2(d -1)2 —— |, (19)
TP ;gj(zﬁk)z (4 +k)?

6. Real application
To demonstrate the usefulness of the shrinkage estimators in real application, we present here a chemistry dataset with

(n, p) = (65,15), where N represents the number of imidazo[4,5-b] pyridine derivatives, which are used as
anticancer compounds. While P denotes the number of molecular descriptors, which are treated as explanatory variables

[52]. The response of interest is the biological activities (ICsg). Quantitative structure-activity relationship (QSAR) study
has become a great deal of importance in chemometrics. The principle of QSAR is to model several biological activities
over a collection of chemical compounds in terms of their structural properties [53]. Consequently, using of regression
model is one of the most important tools for constructing the QSAR model.
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First, to check whether the response variable belongs to the inverse Gaussian distribution, a Chi-square test is used. The
result of the test equals to 5.2762 with p-value equals to 0.2601. It is indicated form this result that the inverse Gaussian
distribution fits very well to this response variable. That is, the following model is set

15
=1

Second, to check whether there is a relationship among the explanatory variables or not, Figure 1 displays the correlation
matrix among the 15 explanatory variables. It is obviously seen that there are correlations greater than 0.90 among MW,
SpMaxA D, and ATS8v (r =0.96), between SpMax3_Bh(s) and ATS8v (r =0.92), and between Mor21lv with
Mor21e (r =0.93).

Third, to test the existence of multicollinearity after fitting the inverse Gaussian regression model using log link function

and the estimated dispersion parameter is 0.00103, the eigenvalues of the matrix X" WX are obtained as 1.884x10°,
3.445x10°, 2.163x10°, 2.388x10*, 1.290x10°, 9.120x107 , 4.431x10?, 1.839x10?, 1.056x10”
5525, 3231, 2631, 1654, 1008, and 1.115. The determined condition number CN = /4 . / A, of the data is

40383.035 indicating that the severe multicollinearity issue is exist.

The estimated inverse Gaussian regression coefficients and the estimated theoretical MSE values for the MLE, and the
used estimators are listed in Table 1”. According to Table 1, it is clearly seen that the IGTP has MSE values less than the
MSE of the IGRM, in general. Moreover, the MSE of the IGTP estimator is the lowest among all estimators. Specifically,
it can be seen that the MSE of IGTP estimator was about 44.24%, 39.17%, 32.62%, and 12.11% lower than that of IGRM,
IGRR, IGLE, and IGLT, respectively.
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Figure 1. Correlation matrix among the 15 explanatory variables of the real data.

Table 1: The estimated coefficients and MSE values of the used estimators

Methods

B IGRM IGRR IGLE IGLT IGTP
MW 1.002 0.744 0.835 0.731 0.841
IC3 1.237 0.977 1.087 0.969 2.005
SpMaxA_  -1.102 -1.363  -1.269 -0.905 -1.304
D

ATS8v -1.379 -1.67 -1.846  -1.126  -1.101
MATS7v  -1.219 -1.48 -1.386  -1.019 -1.421
MATS2s -1.215 -1.476  -1.382 -1.015 -1.417

GATS4p  -1.237 -1498 -2405 -1.037 -1.439
SpMax8_  2.506 2.145 2.309 2.707 2.304
Bh.p.
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SpMax3_  2.069 1.808 1902 2269  1.867

Bh.s.

P VSA e 2001 1.739 1.833 2.2 1.798
3

TDB08mM -2.103 -2.365  -2.27 -1.903  -2.305
RDF100m 1.571 1.309 1.403 1.77 1.368

Mor21v -2.434 -2.695 -2.601 -2.235 -2.636
Mor21e -2.352 -2.613  -2519  -2.152  -2.554
HATS6v 2.211 1.95 2.044 2411 2.009
MSE 3.295 2.258 1.823 1.658 1.215

7. Conclusions

In this paper, we presented a thorough review of literature regarding the biased estimators in inverse Gaussian regression
model when the multicollinearity is existing. According to real data application, the two-parameter estimator has better
performance than IGRM, IGRR, IGLE, and IGLT, in terms of MSE. In conclusion, the use of the two-parameter estimator
is recommended when multicollinearity is present in the inverse Gaussians regression model.
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