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Re-sampling Techniques in Count Data Regression Models
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Abstract

Modeling count variables is a common task in many application
areas such as economics, social sciences, and medicine. The classical
Poisson regression model for count data is often used and it is limited in
these disciplines since count data sets typically exhibit overdispersion, so
negative binomial regression can be used. We use a jackknife- after-
bootstrap procedure to assess the error in the bootstrap estimated
parameters. The method is illustrated through two real examples. The
results suggest that the jackknife- after- bootstrap method provides a
reliable alternative to traditional methods particularly in small to

moderate samples.
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1- Introduction

Researchers spend much of their time counting things, numbers of
symptoms, placements, and so on. Count variables indicate the number of
times a particular event occurs to each case such as number of hospital
visits per year , number of divorces per city (Orme & Combs-Orme,
2009). Count variable is an integer and can range from 0 through + o .
Two common distributions are used often to model the count variable;
they are Poisson and negative binomial distributions.

When the response variable (y) is a count variable and we fit the
linear regression model using ordinary least squares (OLS) method, then
we may have several problems. First, the usual assumption that the errors
are normally distributed fails, since (y) is typically non normal. Second,
OLS estimators also assume a homoscedastic error structure, this is
problematic if (y) is a count variable. Third, if the errors are really
hetroscedastic, the standard error estimates produced by OLS are biased
(Demairs, 2004). Jackknife and bootstrap re-sampling techniques are
designed to estimate standard errors, bias, confidence intervals, and
prediction error. The bootstrap is a re-sampling method that draws a large
collection of samples from the original data. It is used to select the
observation randomly with replacement from the original data sample,
and jackknife is generated by sequentially deleting single datum from the
original sample (Efron and Tibshirani, 1993). We use a jackknife- after-
bootstrap procedure to assess the error in the bootstrap estimated

parameters. The method is illustrated through two real examples. In
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sections 2, 3, and 4 we described the Poisson regression model,
negative binomial regression model, and overdispersion, respectively. In
section 5, the use of the jackknife-after-bootstrap was discussed. The
analytical examples are given in section 6 where two real data sets were
used. Finally, section 7 shows the conclusions.
2- Poisson Regression Model

Poisson Regression Model (PRM) is a technique which allows to
model response variable that describs count data. It is often applied to
study the occurrence of small number of counts as a function of a set of
explanatory variables (Cameron & Trivedi, 1998). The PRM relates the
probability function of a response variable (y) to a vector of explanatory
variables (x) (Winkelmann , 2008) , more formally , the PRM assumes
that the response variable (y) drawn from a Poisson distribution with

mean and variance (p) . The p.d.fof (y) is :

e My Vi
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The Poisson distribution is unimodal and skewed to the right over the
possible values 0,1,2,... . It has a single parameter u>0 , which is both
its mean and its variance , that is (known as equidispersion )
(Agersti,2000) :

E(yi [0 =Var(yj[\)=p ...(2)
or E(y) = Var(y) =p

With PRM the mean p is explained in terms of explanatory variables (x)
via an appropriate link function. The popular choice for the link function
is the log link, that is:

p=E(yj [x)=Exp(xX'B) ..(3)

Where (B) is a (k*1) vector of parameters, and (x) is a (k*1) vector of
explanatory variables. Taking the exponential of (xp) forces (n) to be

positive which is necessary since count only (gg=0) or positive (Long &
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Freese, 2001) (De Jong & Heller, 2008). So, the multiple PRM can be
written as:

fi=Exp(Bo +B1x1+B2 X2+ .+ B XKk) -(4)

or equivalently:

INfL=PBg +B1 X1 +B2 X2 + ...+ B Xk -..(5)

The parameters (B) can be estimated by using the maximum likelihood

method (m.l.). The standard error of the estimated parameters is:

~ n n
seBprM) =161 X Exp(xB)xixi T 11/ 2 ..(6)
i=1

3- Overdispersion and Underdispersion

The key assumption of the PRM is that the conditional mean equals
the conditional variance i.e. E(yj|x)=Var(yj|x).In many applications this
assumption has not met. If Egyj|x)<Var(yj|x) , respectively
E(yj | x)> Var(yj |x) ,then we speak about overdispersion, respectively

underdispersion. The PRM does not allow for overdispersion

(Cameron & Trivedi , 1998)

4- Negative Binomial Regression Model

The negative binomial regression model (NBRM) is the most
commonly used alternative to the (PRM) when it has overdispersion
problem (Winkelmann, 2008).
Under the Poisson distribution, the mean, p, , is assumed to be constant
or homogeneous within the class . By assuming the specific distribution

for (ui) to be a gamma with mean E(uj)=6; and variance Var(uj)=02vi! ,

and yj|uj to be a poisson with conditional mean E(yj|pj)=pj , it can be
shown that the marginal distribution of y; follows a negative binomial

distribution with p.d.f:
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where the mean is E(y;)=0 and the variance is Var(yj)=6j+6Zv;®, This is

called the negative binomial I .
From regression analysis of count data the most common implementation

of the negative binomial is called negative binomial II model (NB,). By
letting vj=6ja~!, this time with mean E(j)=6; and variance
Var(yj)=0j(1+a) . If a equals zero , then the mean and variance will be equal
, resulting the distribution to be a poisson . If (a>0) , the variance will

exceed the mean and the distribution allows for overdispersion as well .

So, the p.d.f. 1s:
1

F(yi+6ia_1) (a_

-1 .
=) — )ela (#)yl ..(8)
I'yj+1) I'(eja ~) 1+a

fyi)=
l+a_1

1

or

. a1 -1 .
flyp) = — A0 ) LggiaT L oyi (g
I(yj+1) [(eja~") a+l 1+a

where 6; = Exp(x; B) (Cameron & Trivedi, 1998),(Greene, 2008).

5- Jackknife after Bootstrap Procedure

The use of the bootstrap and the jackknife re-sampling methods is
gradually increasing nowadays, due to increasing computer power. The
basic idea of bootstrapping is to generate a large number of samples by
randomly drawing observations with replacement from the original data
set , and to recalculate a statistic for each bootstrap sample , whereas the
jackknife is generated by sequentially deleting single datum from the
original sample (Efron & Tibshirani, 1993) .
Jackknife After Bootstrap (JAB) method was proposed by ( Efron,1992)
to investigate the effect of a single observation in bootstrap, where Efron

pointed out that the bootstrap estimates have two distinct sources of
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variance, they are: sampling variability, due to the fact that we have only
a sample of size n rather than the entire population, and bootstrap
resampling variability, due to the fact that we take only B bootstrap
samples rather than an infinite number. Suppose we have drawn (B)
bootstrap samples and calculate the standard error of the regression
parameter , seg(8) , we would like to have a measure of the uncertainty in
seg(8) . The JAB method provides a way of estimating the standard error
of Seg(®) , Sejag(Seg(B)) , using only information in our B bootstrap
samples . The jackknife estimate of standard error of seg(d) involves two
steps :

For i=12...n , leave out data point i and re-compute seg(d) and called the

results Seg(i)(®) .

Define

- -1 h N N
segaB (Sea () =" T (Sea(i)(®)-Sea() BN/ 2 ...10)
i=1

n R
2. Seg(i)(B)
Where  Seg()(8) ='=1T (Efron & Tibshirani , 1993)

In each 1, there are some bootstrap samples in which that the data point ,

say X; , does not appear , and we can use those samples to estimate

seg(i)(). Let cj denote the indices of the bootstrap samples that don’t

contain data points X; , and there are Bj such samples , then :

> (g - BB)°
SeB(i)(ﬁ)=[B€C'B—i]1/2 (D)

> BB
=~ BeCj
BB =g
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6- Analytical Examples

In order to use the PRM and NBRM we deal with two real data sets . All
the results done using S-plus 6.1 program.

6-1- Example 1

In this example we fit the PRM. The response variable represents the
number of dead cocks. Three explanatory variables are considered , they
are : age of the cocks in days , the quantity of the feed in kilogram (kg)
and the temperature (AL-Suliaman, 1995). The sample size was (62), the

results are shown in table (1).

Table(1):The results of PRM of the number of dead cocks .

parameters

0.84865017

0.8317

-0.0325 0.01139
0.4558 0.133
0.0236 0.0236

The fitted PRM is :

¥i = Exp[0.848 —0.032 (age)+0.455 (feed) +0.032 (temp)]

The bootstrap (B) and the jackknife-after-bootstrap (JAB) results are

shown in table (2).

Table (2): The Bootstrap and JAB results of example (1) (B=10,000)

Parameters

0.69375

-0.1549

1.09784

0.4005

-0.0311 0.00137 0.01352 0.00498
0.4459 -0.0099 0.13276 0.0499
0.03624 0.0039 0.03021 0.01089
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Figure (1) shows the observations with large influence on s.e(ﬁ(B)), where

observations (17 and 25) have large influence on the intercept ,
observations (35 , 47) on Bj(age)=X;, observations (47 , 62) on

Ba(feed) = X, and observations (17 , 25) on B3(temp) = X3

(Intercept) x1
o o
o o a7
2 2
El w E
E Qb e E Qe RO .
Q Q
2 2
et o 1
€ o € o
L 4 [
2 =
8 7 ‘ ‘ ‘ 8 | ‘ ‘
Qo Qo
< <
o LMl Il gm“\‘ LA I o
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Observation Observation
X2 x3
o o
o™ [32)
8 ¥ 3
c o
E 6 2 1y
O T T e N
- N - N
Q Q
2 2
et o 1
€ o € o
L 4 JCR
2 =
Qo Qo
< <
O o I A
o T T T T T T T o T T T T T T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Observation Observation

Figure (1): JAB influence of the number of dead cocks parameters.

6-2- Example 2

In this example we use gala data from faraway package (Faraway , 2006)
The data describe the relationship between the number of plant species
and several geographic variables is of interest, where n is 30. Species:
The number of plant species found on the island, Endemics: The number
of endemic species, Area: The area of the island (km $" 2$), Elevation:
The highest elevation of the island (m), Nearest: The distance from the
nearest island (km), Scrnz: The distance from Santa Cruz island (km), and

Adjacent: The area of the adjacent island (km®). In this example we can’t
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fit the PRM because we have overdispersion problem. So the best
alternative model is NBRM, table (3) shows the results of NBRM.

Table (3): The results of NBRM of the Gala example

parameters

2.5093 0.2058
0.0475 0.01
-0.0003 0.00023
0.00022 0.00099
-0.00312 0.0087
0.00063 0.002
0.0000022 0.0002

The fitted NBRM is:

Yi = Exp[2.509 + 0.0475 (Endemics)—0.0003 (Area) + 0.00022 (Elevation)
—0.00312(Nearest)+0.00063(Scrnz) + 0.0000022( Adjacent) ]

The bootstrap (B) and the jackknife-after-bootstrap (JAB) results are
shown in table (4).

Table (4): The Bootstrap and JAB results of example (2) (B=10,000)

parameters

2.4024 -0.106 0.3206 0.111
0.05762 0.01 0.0204 0.0084
-0.0011 -0.00083 0.0015 0.0024

0.00002273 -0.00019 0.00126 0.00045
-0.0027 0.000357 0.013 0.0047

0.00077 0.00013 0.003129 0.0015

0.000018 -0.000003 0.001321 0.00175




[24] Re-sampling Techniquesiin................

Figure (2) shows the cases with large influence on se(Bg)), where cases

(18 and 27) have large influence on the intercept , case (27) has large
influence on Bi(Endemics), P3(Elevation), PBa(Nearesty , and Bs(Scruz) are

influenced by cases (19), (15), and (30) , respectively .
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Figure (2): JAB influence of the Gala example parameters.

7- Conclusion

As a result, we conclude that the Se(B,,,) is less than the Se(B )

for all PRM and NBRM parameters. The results suggest that the bootstrap
re-sampling provides a reliable alternative to traditional methods and JAB
procedure provides a good measure of diagnosis for bootstrap. We see
that from figure (1) that cases (17 and 25) have large influence on both
intercept and temp., whereas the case (47) has large influence on the age
and feed. The cases (35) and (62) have large influence on age and feed
respectively. From figure (2), no case has large influence on the Area and

Adjacent. One case has influence, 27, 19, 15, and 30 on the Endemics,
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Elevation, Nearest, and Scruz, respectively. Finally, the cases (27 and 18)

have influence on the intercept.
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