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Abstract: 

Meta-heuristic algorithms have become an arising field of research in 

recent years. Some of these algorithms have proved to be efficient in 

solving combinatorial optimization problems, particularly knapsack 

problem. In this paper, four meta-heuristic algorithms are presented particle 

swarm optimization, firefly algorithm, flower pollination algorithm and 

monarch butterfly optimization in solving knapsack problem as example of 

NP-hard combinational optimization problems. Based on twenty 0-1 

knapsack problem instances, the computational results demonstrated that 

the binary flower pollination algorithm has the ability to find the best 

solutions in reasonable time. 

Keywords: Combinatorial optimization problem; NP-hard problem; 0-1 

knapsack problem; Meta-heuristic algorithms. 
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 خوارزمياث الأمَثليت المستوحاة من الطبيعت لحل مسألت حقيبت الظهر: مراجعت مقال

 الملخص:
أصبحت الخوارزميات المستوحاة من الطبيعة لها مجالٌ واسعٌ لمبحث في السنوات الاخيرة. 
وبعض هذه الخوارزميات اثبتت كفاءتها في حل مسائل الامثمية التوافقية خاصة مسألة حقيبة 

 particle swarmالظهر وفي هذا البحث استعرضنا مفاهيم أربع خوارزميات هي : 

optimization, firefly algorithm, flower pollination algorithm and monarch 

butterfly optimization . 

.  NP-hard problemلحل مسألة حقيبة الظهر كمثال عمى مسائل الأمثمية التوافقية الصعبة

حالة من مسألة حقيبة الظهر وبأحجام مختلفة أظهرت النتائج الحسابية ان  20وبالاستناد الى 

لديها القدرة عمى إيجاد أفضل الحمول في  binary flower pollination algorithmخىارزمية 
 وقت معقول مقارنة بالخوارزميات المستخدمة الأخرى.
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1. Introduction 

Combinatorial optimization “problem is a mathematical study of finding  

optimal solution from a finite set of objects. The popularity of 

combinatorial optimization problems comes from the fact that the objective 

function and constraints in many real-world problems have a different 

nature (nonlinear, nonanalytic, etc.), while the search space is finite. In 

such problems, exact methods are impractical in finding an optimal 

solution because the run time is increasing exponentially with the problem 

size. Therefore, interest in the application of the meta-heuristic algorithms 

has become a necessary  to solve these problems and obtain the results” in 

a reasonable time [El-Ghazali 2009, Beheshti et al. 2012].  

In recent years, the “nature inspired meta-heuristic algorithms have been 

used successfully for solving hard and complex problems in real-world 

problems. The meta-heuristic algorithms are stochastic algorithms inspired 

by the behavior of different species in nature Pirlot (1992) and Osman 

(1995) define meta-heuristic as follows "A meta-heuristic is an iterative 

generation process which guides a subordinate heuristic by combining 

intelligently different concepts for exploring and exploiting the search 

space using learning strategies to structure information in order to find 

efficiently near-optimal solutions" [Osman and Kelly 1996]. The meta-

heuristic algorithms use search strategies and concepts inspired from nature 

to explore several regions of the search space more effectively and focusing 

on some likely regions of the search space. Every meta-heuristic algorithm 

consists of a set of initial population or initial solutions, the sequence of 

solutions is then examined step by step based on randomization and some 

specified rules to reach the optimal solution. These algorithms have the 

ability to deal with many of optimization problems because of its simplicity 

and flexibility” [Yang 2014a, Yang 2014b, Siddique and Adeli 2015, Bhattacharjee 

and Sarmah 2016, Faris et al. 2017, Lazim et al. 2017].  

The aim of this paper is to investigate the effectiveness of the nature 

inspired meta-heuristic algorithms when dealing with a combinatorial 

optimization problem such as 0-1 knapsack problem. 

2. Related work 

Knapsack problem is “a combinatorial optimization problem and NP-

hard problem. In such problems, there is no effective algorithm to solve all 

their instances. These problems need alternative methods because exact 

methods usually cannot deal with the large size of these problems [Yang 

2014a, Yang 2015]. There are many meta-heuristic algorithms applied in 

solving a knapsack problem such as genetic algorithm (GA), particle 
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swarm optimization (PSO), ant colony optimization (ACO), harmony 

search (HS),and whale optimization algorithm ,and so on. 

Particle swarm optimization is one of the meta-heuristic algorithms that  

has been applied to many combinatorial optimization problems, namely 

knapsack problem. Bansal and Deep [2012] proposed a new modified 

binary particle swarm optimization for solving 0-1 knapsack problem and 

multidimensional knapsack problem, and introduced a new probability 

function which maintains the diversity in the particle swarm.  

The meta-heuristic firefly algorithm was developed by Yang [2008]. 

Firefly algorithm  mimics the behavior of fireflies which is  based on 

flashing and attraction properties of fireflies. Zouache et al. [2015]  
proposed a new hybrid algorithm that combines firefly algorithm and 

particle swarm optimization and use the basic concepts of quantum 

computing to ensure a better solution diversity. The proposed algorithm has 

been tested on 0-1 knapsack problem and multidimensional knapsack 

problem. Feng et al. [2017] proposed a novel global firefly algorithm for 

tackling randomized time-varying knapsack problem . 

The flower pollination algorithm is a meta-heuristic algorithm which 

mimic the pollination characteristics of flowers in plant. Flower pollination 

algorithm was  proposed by Yang [2012] for solving single objective 

optimization problems. Yang et al. [2014] extended flower pollination 

algorithm for solving multi-objective optimization problems. Abdel-Basset 

et al. [2018] proposed a binary version of flower pollination algorithm for 

solving both small and large scale knapsack problem and the sigmoid 

function is used to convert continuous values into binary.  

The monarch butterfly optimization algorithm is a new meta-heuristic 

algorithm developed by Wang et al. [2015] for solving continuous 

optimization problems. It mimics the migration behavior of monarch 

butterflies in nature . Feng et al. [2015] introduced a novel binary monarch 

butterfly optimization for solving knapsack problem, where the repair 

operator is based on greedy optimization algorithm.  

Rizk-Allah and Hassanien [2017] considered a novel binary bat 

algorithm for tackling 0-1 knapsack problem with two phases : binary bat 

algorithm and local search scheme. The V-shaped transfer function is used 

to convert continuous values into binary values. Zhou et al. [2016] 

developed a binary monkey algorithm to deal with 0-1 knapsack problem. 

The greedy algorithm is considered to correct the infeasible solutions and 

to improve the feasible solutions. Changdar et al. [2013] introduced a novel 

ant colony optimization algorithm in fuzzy environment for tackling a 

knapsack problem, where the profit and weight are considered fuzzy and 

take as trapezoidal fuzzy number.  
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3. Knapsack problem 

Knapsack problem is “one of the NP-hard combinatorial optimization 

problems which has been widely studied in operation research. Knapsack 

problem consists of a set of n items, each item i has a profit ic , weight iw

and maximum weight capacity M . The objective is to maximize the total 

profit of the selected items in the knapsack such that the total weights of 

these items are achieved” ([Abdel-Basset et al. 2017b, Cao et al. 2017]) Eq.(2). 

Mathematically, the knapsack problem can be written as: 

 
1

n

i i

i

f x c x


      (1)   

1

s.t.

n

i i

i

w x M


   (2) 

where  
1 if item i is selected

0 otherwise
ix


 


 

the penalty function is used to deal with the knapsack problem according to 

the following equation:  

     0,Min x f x Max h   
  (3) 

where 
1

n

i i

i

h w x M


   and   represent  the penalty coefficient. In this 

paper  is set to 10
10

  for all tests. The penalty function can be described in 

Algorithm 1. 

 
Algorithm 1: Penalty function 

A repair operator treats “the infeasible solutions which violates the 

constraint in Eq. (2) by converting them into feasible solutions and also 

improve the feasible solutions. The repair operator algorithm can be 
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applied by two stage. The first stage is to convert the infeasible solution 

into feasible by taking out the items of the lower /i ic w  ratio so as the 

constraint in Eq. (2) is not to exceed the knapsack capacity. The second 

stage is to improve the feasible solution by adding the items of the high 

/i ic w   ratio to the knapsack with keeping” of the constraint. 

4. Particle Swarm Optimization (PSO) 

Particle swarm optimization is one of the meta-heuristic algorithms which was 

proposed by Kennedy and Eberhart [1995] for “solving continuous optimization 

problem. Particle swarm optimization is inspired by swarm behavior in nature like birds 

and fish schooling. The particle swarm optimization algorithm started with number of 

particles N  which fly in the search space to search the best solution. Each particle i  

has a position  1 2, ,.......,i i i iDx x x x  and velocity  1 2, ,.......,i i i iDv v v v  in D-

dimensional search space where 1,2,.....,i N . Each particle is updated through each 

iteration based on two values: the first value is the  best solution  pbest  which has 

been obtained by the particle, and the second value is the current best value  Gbest  

which has been obtained in the swarm ” ([Mirjalili and Lewis 2013, Chih et al. 2014, Haddar 

et al. 2015]). The new velocity and position vectors  in each iteration are updated 

according to the following equations : 

   1

1 1 2 2. . . ..t t t t t t

i i i i iv W v c r Pbest x c r Gbest x        (4) 

1 1t t t

i i ix x v     (5) 

where t  is the current iteration in the algorithm, w  refers to the inertia weight. 1c  , 2c

refer to the  accelerated variables or learning factors  and 1r  
, 2r  are the random 

numbers  0,1  obtained from uniform distribution. The pseudo code 

of the particle swarm optimization can be shown in Algorithm 2. 

 

 

 

 

 

 

 

 
 

Algorithm 2: The pseudo code of the particle swarm optimization algorithm 

 

Particle swarm optimization has been firstly “proposed for continuous 

optimization problems where velocity and position are real values. 

Therefore, it is not able to tackle  a binary optimization problem such as 

knapsack problem. Kennedy and Eberhart [1997] developed a new version 

of particle swarm optimization, called binary particle swarm optimization 
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(BPSO) to deal with problems with binary search space. In BPSO the 

position of particles takes the values 0 or 1. The velocity updating remains 

as defined in Eq. (4), then sigmoid function is used to transform the real  

values to the binary values according to the following equations [Haddar et 

al. 2016]: 
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Where r  is a random number  0,1 ,  S v is the sigmoid function. 

5. Firefly Algorithm (FA) 

Firefly algorithm is a meta-heuristic algorithm “developed originally by 

Yang [2008] for solving continuous optimization problems. Firefly 

algorithm is a simulated behavior of fireflies which based on flashing and 

attraction properties of fireflies. There are two main points in firefly 

algorithm: variation of light intensity and formulation of attractiveness. The 

brightness of firefly depends on the objective function. The attractiveness 

of firefly is proportional to brightness. Thus, for any two flashing fireflies 

the less bright one moves towards brighter one, while it will move 

randomly when there is no brighter one than a specific firefly”. The 

attractiveness   of a firefly with the distance r  can be defined as: 
2

0

re   
 (8) 

where r  is the distance between two fireflies,   is a light absorption 

coefficient and 0 is the attractiveness at 0r  . 

The distance between two fireflies i and j  is computed using the 

Euclidean distance: 

 
2

, ,

1

d

ij i j i k j k

k

r x x x x


   
  (9) 

where ,i kx  is the k
th
 component of the i

th
 firefly. The movement of a firefly 

i  attracted by another firefly j  that is brighter is computed as: 

   
2

1

0 0.5ijrt t t t

i i j ix x e x x rand


 
     

  (10) 

where  is a parameter which controls the step and rand is a random 

number  0,1 . The pseudo code of the firefly algorithm can be expressed 

in Algorithm 3. 
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Algorithm 3: The pseudo code of the firefly algorithm 

 

In binary firefly algorithm we use the sigmoid function to convert the 

continuous values of position into binary values : 
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Where r  is a random number  0,1 ,  S x is the sigmoid function. 
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6. Flower Pollination Algorithm (FPA) 

Yang [2012] proposed “a new algorithm for global optimization called 

flower pollination algorithm. It is a meta-heuristic algorithm that mimics 

the nature, inspired of the pollination process in flowers.  

The pollination in flowers can be take two forms: biotic pollination and 

abiotic pollination. In the first type, the pollen is transferred by a 

pollination like insects and animals. While the second form is based on 

wind and diffusion in the water. 

Pollination in flowers can be divided into self-pollination and cross-

pollination. Self-pollination is transferring the pollens from one flower to 

the same flower or different flowers in the same plant. Cross-pollination is 

transferring the pollens from one flower to another flower of a different 

plant. A flower and its pollen represent a solution of the optimization 

problem. In the flower pollination algorithm four basic rules are used [Yang 

2012, Abdel-Basset et al. 2017a, Bozorg-Haddad 2018]: 

1. The global pollination includes biotic and cross-pollination, the 

pollinators move in a way which follows a lévy  flight distribution. 

2. The local pollination includes abiotic and self-pollination. 
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3. Flower constancy can be considered as the reproduction probability 

that is proportional to the similarity of two flowers involved. 

4. The interaction or switching of local pollination and global 

pollination can be controlled by a switch probability  0,1p .  

Rules 1 and 3 can be expressed mathematically as: 

  1 *t t t

i i ix x L x g    
 (13) 

where t

ix is the solution vector or the pollen i at iteration t , *g  is the 

current best solution that is found at the current iteration,  is a scaling 

factor to control the step size,  L  is the step size “in the lévy flights 

which is representing the strength of the pollination. Since pollinators move 

over a long distance with various distance steps, a lévy flight can be used to 

mimic this behavior. That is, 0L  from a lévy distribution as 

 
 01

sin
12

~ 0L S S
S 


 

 

 
  

     
   (14) 

Yang [2012] proposed that   is the standard gamma function and 1.5  . This 

distribution is valid for large steps 0S  . In (1994) Mantegna used the Gaussian 

distribution for generating the step size S by generating two random numbers U  and 

V ” as follows [Abdel-Basset et al. 2017a]: 

   2

1/
~ 0, , ~ 0,1

U
S U N V N

V




               

(15) 

 

 

 
1/

2

1

2

1 sin / 2
*

1 / 2
2





 


 


  
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         (16) 

For local pollination, rules 2 and 3 can be expressed as: 

 1t t t t

i i j kx x k x x   
 (17) 

where jx and kx are the pollens (solution vectors) from different flowers of the same 

plant. k is the parameter drawn from uniform distribution in  0,1 . To switch between 

common global pollination to intensive local pollination we used rule 4 [Yang ,2012] 

suggested that the switch probability or proximity probability is equal to 0.8p  for 

most applications. The pseudo code of the flower pollination algorithm can be 

presented” in Algorithm 4. 
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Algorithm 4: The pseudo code of the flower pollination algorithm 

 

In binary flower pollination algorithm, “the transfer function is used to 

convert the continuous values into binary values. In order to build this 

binary vector a transfer function in Eq. (18) can be used after Eq. (17), in 

which the new solution is constrained to only binary values: 
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Where r  is a random number  0,1 ,  S x is the sigmoid” function. 
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7. Monarch Butterfly optimization (MBO) 

Wang Deb et al. [2015] proposed a new meta-heuristic “algorithm for 

continuous optimization problems called monarch butterfly optimization. It 

is inspired by simulating the migration behavior of the monarch butterflies 

from northern USA and southern Canada to Mexico every summer.  

In MBO algorithm the entire population can be divided into two 

subpopulations, subpopulation 1 and subpopulation 2 which lived in land 1 

and land 2 respectively. The number of monarch butterflies in land 1 and 

land 2 are (NP1=NP*p) and (NP2=NP-NP1) respectively, where NP is the 

size of the entire population and p is the proportion of monarch butterflies 

in subpopulation 1. The monarch butterfly optimization algorithm has two 

main operators: the migration operator and the butterfly adjusting operator” 

[Wang et al. 2015, Ghanem and Jantan 2016]: 

7.1 Migration Operator 

The migration process can be described as follows: 

1

1

, ,

t t

i k r kx x 
  (20) 
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where 1

,

t

i kx   is the k
th
  element of ix  at generation 1t  , which “represents the 

position of the monarch butterfly i . 
1 ,

t

r kx is the k
th

 element of 
1r

x  at 

generation t , which represents the position of the monarch butterfly 
1r . 

Monarch butterfly 1r  is randomly selected from subpopulation 1. If r p , 

the element k in the newly generated monarch butterfly is generated by 

Eq.(20) else if r p the element k the newly generated monarch butterfly is 

generated by the following equation: 

2

1

, ,

t t

i k r kx x 
  (21) 

where 
2 ,

t

r kx  is the k
th
  element of 

2r
x  at generation t , that is the newly 

generated position of the monarch butterfly 2r . Monarch butterfly 2r  is 

randomly selected from subpopulation 2, where r can be computed as 

follows: 
*r rand peri

  (22) 

where peri  represents the migration period and rand is a random number in

 0,1 . Based on the above analyses, the migration operator can be expressed 

in” Algorithm 5 [Wang et al. 2015, Wang et al. 2016]. 
 

 

 

 

 

 

 

 

 

 

 

Algorithm 5: Migration Operator 
 

7.2 Butterfly Adjusting Operator 

In butterfly adjusting process, “the position of the monarch butterflies 

in subpopulation 2 is updated by updating all the elements in monarch 

butterfly j . If rand p  where rand  is a random value in  0,1  then it can be 

updated as: 
1

, ,

t t

j k best kx x 
  (23) 

where 1

,

t

j kx   is the k
th
  element of jx  at generation 1t  , which represents the 

position of the monarch butterfly j . ,

t

best kx is the k
th
 element of bestx  at 

generation t , that is the best monarch butterfly in land 1 and land 2. On the 

other hand if the random value rand p , it can be updated as: 



                        Iraqi Journal of Statistical Sciences (03) 2019                                       [65] 
 

 

3

1

, ,

t t

j k r kx x 
  (24) 

where 
3 ,

t

r kx is the k
th

 element of 
3r

x that is randomly selected in 

subpopulation 2. In addition to this condition, if rand BAR it can be 

updated as: 

 1 1

, , 0.5t t

j k j k kx x dx   
  (25) 

where BAR is the butterfly adjusting rate. dx is the walk step of the 

monarch butterfly j  that can be calculated by performing Levy flight : 

 t

jdx Levy x
  (26) 

  is the weighting factor that can be calculated by following equation: 
2

maxS t 
  (27) 

where maxS  is the max walk step that a monarch butterfly individual can 

move in one step and t  is the current generation. The butterfly adjusting 

operator” can be described in Algorithm 6 [Wang et al. 2015, Wang et al. 2016]. 
 

 

 

 

 

 

 

 

 

 

 

Algorithm 6: Butterfly Adjusting Operator 
 

Based on the migration operator and the butterfly adjusting operator, the 

 

 main steps of MBO algorithm can be described in Algorithm 7 [Wang et al. 

2015, Wang et al. 2016]. 
 

 

 

 

 

 

 

 

 

 

 

 
Algorithm 7: The pseudo code of the Monarch Butterfly Optimization Algorithm 
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The standard monarch butterfly optimization algorithm was proposed to 

“handle a continuous optimization problem. In discrete optimization 

problems the standard method cannot be applied directly to deal with such 

a problem. Therefore, the sigmoid function is used to convert the 

continuous values into binary: 
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Where r  is a random number  0,1 ,  S x is the sigmoid” function. 
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8. Computational results 

In this section twenty 0-1 knapsack problem (KP) instances (kp-1 to 

kp-20) “taken from [Rizk-Allah and Hassanien 2017, Abdel-Basset et al. 2018] to 

investigate the performance of the meta-heuristic algorithms (PSO, FA, 

FPA and MBO) are tested. The four meta-heuristic algorithms (PSO, FA, 

FPA and MBO)  are run 25 independent times for each instance. Table (1) 

shows the comparison results among four meta-heuristic algorithms” (PSO, 

FA, FPA and MBO)  . 
Table 1: Results of 0–1 KP instances 

Instance dimension Methods 
Total 

profit 

Total 

weight 
Best 

Mean 

iterations 
Time solution vector 

kp-1 4 

BPSO 35 18 35 1 0.006 1101 

BFA 35 18 35 1 0.005 1101 

BFPA 35 18 35 1 0.005 1101 

BMBO 35 18 35 1 0.005 1101 

kp-2 4 

BPSO 23 11 23 1 0.004 0101 

BFA 23 11 23 1 0.003 0101 

BFPA 23 11 23 1 0.004 0101 

BMBO 23 11 23 1 0.004 0101 

kp-3 5 

BPSO 130 60 130 1 0.01 11110 

BFA 130 60 130 1 0.009 11110 

BFPA 130 60 130 1 0.008 11110 

BMBO 130 60 130 1 0.008 11110 

kp-4 7 

BPSO 107 50 107 1.5 0.031 1001000 

BFA 107 50 107 2.01 0.035 1001000 

BFPA 107 50 107 1.08 0.022 1001000 

BMBO 107 50 107 2.15 0.029 1001000 

kp-5 10 

BPSO 295 269 295 2 0.055 0111000111 

BFA 295 269 295 3.41 0.052 0111000111 

BFPA 295 269 295 1.92 0.051 0111000111 

BMBO 295 269 295 3.26 0.051 0111000111 

kp-6 10 

BPSO 52 60 52 1 0.058 0011101000 

BFA 52 60 52 1.6 0.050 0011101000 

BFPA 52 60 52 1 0.044 0011101000 

BMBO 52 60 52 1.12 0.046 0011101000 
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kp-7 15 

BPSO 481.0694 354.9608 481.07 1 0.09 001010110111011 

BFA 481.0694 354.9608 481.07 1 0.081 001010110111011 

BFPA 481.0694 354.9608 481.07 1 0.078 001010110111011 

BMBO 481.0694 354.9608 481.07 1 0.080 001010110111011 

kp-8 20 

BPSO 1025 871 1025 2.1 0.253 11111111101111010111 

BFA 1025 871 1025 3.7 0.198 11111111101111010111 

BFPA 1025 871 1025 1.68 0.106 11111111101111010111 

BMBO 1025 871 1025 2.64 0.134 11111111101111010111 

kp-9 20 

BPSO 1024 871 1024 2.7 0.463 11111111111110101011 

BFA 1024 871 1024 3.93 0.388 11111111111110101011 

BFPA 1024 871 1024 1.72 0.210 11111111111110101011 

BMBO 1024 871 1024 2.86 0.242 11111111111110101011 

kp-10 23 

BPSO 9767 9768 9767 5.17 0.805 
111111110100000 

11000000 

BFA 9767 9768 9767 4.91 0.719 
111111110100000 

11000000 

BFPA 9767 9768 9767 4.44 0.632 
111111110100000 

11000000 

BMBO 9767 9768 9767 5.31 0.698 
111111110100000 

11000000 

kp-11 30 

BPSO 1437 566 1437 9.78 0.498 
11111011111100111 

0110101111011 

BFA 1437 566 1437 8.95 0.365 
11111011111100111 

0110101111011 

BFPA 1437 566 1437 7.8 0.321 
11111011111100111 

0110101111011 

BMBO 1437 566 1437 8.15 0.374 
11111011111100111 

0110101111011 

kp-12 35 

BPSO 1689 650 1689 10.94 0.730 
110111111110101111111 

01101110111111 

BFA 1689 650 1689 12.1 0.605 
110111111110101111111 

01101110111111 

BFPA 1689 650 1689 7.96 0.581 
110111111110101111111 

01101110111111 

BMBO 1689 650 1689 9.51 0.600 
110111111110101111111 

01101110111111 

kp-13 40 

BPSO 1821 819 1821 45 0.793 
0111110011111011111101 

011111011110111110 

BFA 1821 819 1821 50.02 0.806 
0111110011111011111101 

011111011110111110 

BFPA 1821 819 1821 37.8 0.725 
0111110011111011111101 

011111011110111110 

BMBO 1821 819 1821 41.08 0.764 
0111110011111011111101 

011111011110111110 

kp-14 45 

BPSO 2033 906 2033 35.4 1.006 

111101001111110 

111110111111111 

111010111111001 

BFA 2033 906 2033 38.16 0.925 

111101001111110 

111110111111111 

111010111111001 

BFPA 2033 906 2033 22 0.843 

111101001111110 

111110111111111 

111010111111001 

BMBO 2033 906 2033 29.57 0.901 

111101001111110 

111110111111111 

111010111111001 

kp-15 50 BPSO 2440 873 2440 40.08 2.380 

1111100101111111011 

0111111101011111111 

011111111111 
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BFA 2440 873 2440 42.5 2.152 

1111100101111111011 

0111111101011111111 

011111111111 

BFPA 2440 873 2440 29.4 1.056 

1111100101111111011 

0111111101011111111 

011111111111 

BMBO 2440 873 2440 35.19 1.809 

1111100101111111011 

0111111101011111111 

011111111111 

kp-16 55 

BPSO 2651 1046 2651 867.1 4.237 

1110011111011111011 

1111010011111111110 

01101101110101111 

BFA 2651 1046 2651 894 4.690 

1110011111011111011 

1111010011111111110 

01101101110101111 

BFPA 2651 1046 2651 524.3 3.557 

1110011111011111011 

1111010011111111110 

01101101110101111 

BMBO 2651 1046 2651 698.4 

3.901 1110011111011111011 

1111010011111111110 

01101101110101111 

kp-17 60 

BPSO 2917 1002 2917 208.6 3.816 

11111010110111110110 

01111111110111111111 

01111011111111101111 

BFA 2917 1002 2917 234.9 3.908 

11111010110111110110 

01111111110111111111 

01111011111111101111 

BFPA 2917 1002 2917 81.88 2.684 

11111010110111110110 

01111111110111111111 

01111011111111101111 

BMBO 2917 1002 2917 195.73 2.991 

11111010110111110110 

01111111110111111111 

01111011111111101111 

kp-18 65 

BPSO 2818 1317 2818 945.3 4.865 

111101011110111011111 

0111111111111100101111 

1100111011111111101010 

BFA 2818 1317 2818 971.9 4.947 

111101011110111011111 

0111111111111100101111 

1100111011111111101010 

BFPA 2818 1317 2818 808.5 4.038 

111101011110111011111 

0111111111111100101111 

1100111011111111101010 

BMBO 2818 1317 2818 894.1 4.245 

111101011110111011111 

0111111111111100101111 

1100111011111111101010 

kp-19 70 

BPSO 3223 1426 3223 897.6 3.726 

111110111010110111011111 

1101011101011111111100111 

111111011011111111111 

BFA 3223 1426 3223 854.4 3.451 

111110111010110111011111 

1101011101011111111100111 

111111011011111111111 

BFPA 3223 1426 3223 885.5 2.372 

111110111010110111011111 

1101011101011111111100111 

111111011011111111111 

BMBO 3223 1426 3223 784.5 2.905 

111110111010110111011111 

1101011101011111111100111 

111111011011111111111 

kp-20 75 

BPSO 3614 1432 3614 702.2 6.937 

01101111101100101111111111 

10111111001111011111110111 

11111001111111111101101 

BFA 3614 1432 3614 785 7.110 

01101111101100101111111111 

10111111001111011111110111 

11111001111111111101101 
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BFPA 3614 1432 3614 125.41 5.201 

01101111101100101111111111 

10111111001111011111110111 

11111001111111111101101 

BMBO 3614 1432 3614 589.7 6.372 

01101111101100101111111111 

10111111001111011111110111 

11111001111111111101101 

 
The computation results for the four algorithms are presented in Table 1. 

The best solution, mean iteration (average number of iteration for obtaining 

the optimal solution for all run times of the same instance) and average 

executed times are used to measure the performance for these algorithms. 

The average executed times for all algorithms (BPSO, FA, BFPA and 

BMBO) are (1.53815, 1.52495, 1.1269 and 1.30795 respectively). In order 

to analyze the results in Table 1 and based on mean iteration and average 

executed times we can infer the order of the algorithms as follows: (BFPA, 

BMBO, FA and BPSO). Therefore, the binary flower pollination algorithm 

gives performance better than other algorithms (BPSO, BFA and BMBO) 

for solving 0-1 knapsack problem instances. All algorithms (BPSO, BFA, 

BFPA and BMBO) succeeded in finding the optimal solution for all 0-1 KP 

instances but BFPA has the least mean iteration and least average executed 

times compared to other algorithms”. 

 

9. Conclusion 

In this paper, four meta-heuristic algorithms for solving knapsack 

problem have been reviewed. Table (1) shows that the BFPA has fast 

convergence and stability better than other used algorithms. It may be 

appropriate to suggest that the best algorithm for solving 0-1 knapsack 

problem is BFPA. Future work includes using this algorithm for solving 

other combinatorial optimization problems and hybridization with other 

algorithms. 
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