
Iraqi Journal of Statistical Science (30) 2019

 pp[55-72]

Nature-inspired optimization algorithms in knapsack problem:

A review
Ghalya Tawfeeq Basheer

*
 Dr.Zakariya Yahya Algamal

**

ghalia.tawfeek@uomosul.edu.iq zakariya.algamal@uomosul.edu.iq

Abstract:

Meta-heuristic algorithms have become an arising field of research in

recent years. Some of these algorithms have proved to be efficient in

solving combinatorial optimization problems, particularly knapsack

problem. In this paper, four meta-heuristic algorithms are presented particle

swarm optimization, firefly algorithm, flower pollination algorithm and

monarch butterfly optimization in solving knapsack problem as example of

NP-hard combinational optimization problems. Based on twenty 0-1

knapsack problem instances, the computational results demonstrated that

the binary flower pollination algorithm has the ability to find the best

solutions in reasonable time.

Keywords: Combinatorial optimization problem; NP-hard problem; 0-1

knapsack problem; Meta-heuristic algorithms.

This is an open access article under the CC BY 4.0 license

http://creativecommons.org/licenses/by/4.0/).

 خوارزمياث الأمَثليت المستوحاة من الطبيعت لحل مسألت حقيبت الظهر: مراجعت مقال

 الملخص:
أصبحت الخوارزميات المستوحاة من الطبيعة لها مجالٌ واسعٌ لمبحث في السنوات الاخيرة.
وبعض هذه الخوارزميات اثبتت كفاءتها في حل مسائل الامثمية التوافقية خاصة مسألة حقيبة

 particle swarmالظهر وفي هذا البحث استعرضنا مفاهيم أربع خوارزميات هي :

optimization, firefly algorithm, flower pollination algorithm and monarch

butterfly optimization .

. NP-hard problemلحل مسألة حقيبة الظهر كمثال عمى مسائل الأمثمية التوافقية الصعبة

حالة من مسألة حقيبة الظهر وبأحجام مختلفة أظهرت النتائج الحسابية ان 20وبالاستناد الى

لديها القدرة عمى إيجاد أفضل الحمول في binary flower pollination algorithmخىارزمية
 وقت معقول مقارنة بالخوارزميات المستخدمة الأخرى.

*Department of operations research and intelligent techniques, University of Mosul, Mosul, Iraq.

**Department of Statistics and Informatics, University of Mosul, Mosul, Iraq

Received date: 2 /4 /2019 Accepted date: 91 /5 / 2019 Published data 1 /92/ 2019

 Iraqi Journal of Statistical Sciences (03) 2019 [56]

1. Introduction

Combinatorial optimization “problem is a mathematical study of finding

optimal solution from a finite set of objects. The popularity of

combinatorial optimization problems comes from the fact that the objective

function and constraints in many real-world problems have a different

nature (nonlinear, nonanalytic, etc.), while the search space is finite. In

such problems, exact methods are impractical in finding an optimal

solution because the run time is increasing exponentially with the problem

size. Therefore, interest in the application of the meta-heuristic algorithms

has become a necessary to solve these problems and obtain the results” in

a reasonable time [El-Ghazali 2009, Beheshti et al. 2012].

In recent years, the “nature inspired meta-heuristic algorithms have been

used successfully for solving hard and complex problems in real-world

problems. The meta-heuristic algorithms are stochastic algorithms inspired

by the behavior of different species in nature Pirlot (1992) and Osman

(1995) define meta-heuristic as follows "A meta-heuristic is an iterative

generation process which guides a subordinate heuristic by combining

intelligently different concepts for exploring and exploiting the search

space using learning strategies to structure information in order to find

efficiently near-optimal solutions" [Osman and Kelly 1996]. The meta-

heuristic algorithms use search strategies and concepts inspired from nature

to explore several regions of the search space more effectively and focusing

on some likely regions of the search space. Every meta-heuristic algorithm

consists of a set of initial population or initial solutions, the sequence of

solutions is then examined step by step based on randomization and some

specified rules to reach the optimal solution. These algorithms have the

ability to deal with many of optimization problems because of its simplicity

and flexibility” [Yang 2014a, Yang 2014b, Siddique and Adeli 2015, Bhattacharjee

and Sarmah 2016, Faris et al. 2017, Lazim et al. 2017].

The aim of this paper is to investigate the effectiveness of the nature

inspired meta-heuristic algorithms when dealing with a combinatorial

optimization problem such as 0-1 knapsack problem.

2. Related work

Knapsack problem is “a combinatorial optimization problem and NP-

hard problem. In such problems, there is no effective algorithm to solve all

their instances. These problems need alternative methods because exact

methods usually cannot deal with the large size of these problems [Yang

2014a, Yang 2015]. There are many meta-heuristic algorithms applied in

solving a knapsack problem such as genetic algorithm (GA), particle

 Iraqi Journal of Statistical Sciences (03) 2019 [57]

swarm optimization (PSO), ant colony optimization (ACO), harmony

search (HS),and whale optimization algorithm ,and so on.

Particle swarm optimization is one of the meta-heuristic algorithms that

has been applied to many combinatorial optimization problems, namely

knapsack problem. Bansal and Deep [2012] proposed a new modified

binary particle swarm optimization for solving 0-1 knapsack problem and

multidimensional knapsack problem, and introduced a new probability

function which maintains the diversity in the particle swarm.

The meta-heuristic firefly algorithm was developed by Yang [2008].

Firefly algorithm mimics the behavior of fireflies which is based on

flashing and attraction properties of fireflies. Zouache et al. [2015]
proposed a new hybrid algorithm that combines firefly algorithm and

particle swarm optimization and use the basic concepts of quantum

computing to ensure a better solution diversity. The proposed algorithm has

been tested on 0-1 knapsack problem and multidimensional knapsack

problem. Feng et al. [2017] proposed a novel global firefly algorithm for

tackling randomized time-varying knapsack problem .

The flower pollination algorithm is a meta-heuristic algorithm which

mimic the pollination characteristics of flowers in plant. Flower pollination

algorithm was proposed by Yang [2012] for solving single objective

optimization problems. Yang et al. [2014] extended flower pollination

algorithm for solving multi-objective optimization problems. Abdel-Basset

et al. [2018] proposed a binary version of flower pollination algorithm for

solving both small and large scale knapsack problem and the sigmoid

function is used to convert continuous values into binary.

The monarch butterfly optimization algorithm is a new meta-heuristic

algorithm developed by Wang et al. [2015] for solving continuous

optimization problems. It mimics the migration behavior of monarch

butterflies in nature . Feng et al. [2015] introduced a novel binary monarch

butterfly optimization for solving knapsack problem, where the repair

operator is based on greedy optimization algorithm.

Rizk-Allah and Hassanien [2017] considered a novel binary bat

algorithm for tackling 0-1 knapsack problem with two phases : binary bat

algorithm and local search scheme. The V-shaped transfer function is used

to convert continuous values into binary values. Zhou et al. [2016]

developed a binary monkey algorithm to deal with 0-1 knapsack problem.

The greedy algorithm is considered to correct the infeasible solutions and

to improve the feasible solutions. Changdar et al. [2013] introduced a novel

ant colony optimization algorithm in fuzzy environment for tackling a

knapsack problem, where the profit and weight are considered fuzzy and

take as trapezoidal fuzzy number.

 Iraqi Journal of Statistical Sciences (03) 2019 [58]

3. Knapsack problem

Knapsack problem is “one of the NP-hard combinatorial optimization

problems which has been widely studied in operation research. Knapsack

problem consists of a set of n items, each item i has a profit ic , weight iw

and maximum weight capacity M . The objective is to maximize the total

profit of the selected items in the knapsack such that the total weights of

these items are achieved” ([Abdel-Basset et al. 2017b, Cao et al. 2017]) Eq.(2).

Mathematically, the knapsack problem can be written as:

 
1

n

i i

i

f x c x


 (1)

1

s.t.

n

i i

i

w x M


 (2)

where
1 if item i is selected

0 otherwise
ix


 


the penalty function is used to deal with the knapsack problem according to

the following equation:

     0,Min x f x Max h   
 (3)

where
1

n

i i

i

h w x M


  and  represent the penalty coefficient. In this

paper is set to 10
10

 for all tests. The penalty function can be described in

Algorithm 1.

Algorithm 1: Penalty function

A repair operator treats “the infeasible solutions which violates the

constraint in Eq. (2) by converting them into feasible solutions and also

improve the feasible solutions. The repair operator algorithm can be

 Iraqi Journal of Statistical Sciences (03) 2019 [59]

applied by two stage. The first stage is to convert the infeasible solution

into feasible by taking out the items of the lower /i ic w ratio so as the

constraint in Eq. (2) is not to exceed the knapsack capacity. The second

stage is to improve the feasible solution by adding the items of the high

/i ic w ratio to the knapsack with keeping” of the constraint.

4. Particle Swarm Optimization (PSO)

Particle swarm optimization is one of the meta-heuristic algorithms which was

proposed by Kennedy and Eberhart [1995] for “solving continuous optimization

problem. Particle swarm optimization is inspired by swarm behavior in nature like birds

and fish schooling. The particle swarm optimization algorithm started with number of

particles N which fly in the search space to search the best solution. Each particle i

has a position  1 2, ,.......,i i i iDx x x x and velocity  1 2, ,.......,i i i iDv v v v in D-

dimensional search space where 1,2,.....,i N . Each particle is updated through each

iteration based on two values: the first value is the best solution  pbest which has

been obtained by the particle, and the second value is the current best value  Gbest

which has been obtained in the swarm ” ([Mirjalili and Lewis 2013, Chih et al. 2014, Haddar

et al. 2015]). The new velocity and position vectors in each iteration are updated

according to the following equations :

   1

1 1 2 2.t t t t t t

i i i i iv W v c r Pbest x c r Gbest x      (4)

1 1t t t

i i ix x v   (5)

where t is the current iteration in the algorithm, w refers to the inertia weight. 1c , 2c

refer to the accelerated variables or learning factors and 1r
, 2r are the random

numbers  0,1 obtained from uniform distribution. The pseudo code

of the particle swarm optimization can be shown in Algorithm 2.

Algorithm 2: The pseudo code of the particle swarm optimization algorithm

Particle swarm optimization has been firstly “proposed for continuous

optimization problems where velocity and position are real values.

Therefore, it is not able to tackle a binary optimization problem such as

knapsack problem. Kennedy and Eberhart [1997] developed a new version

of particle swarm optimization, called binary particle swarm optimization

 Iraqi Journal of Statistical Sciences (03) 2019 [60]

(BPSO) to deal with problems with binary search space. In BPSO the

position of particles takes the values 0 or 1. The velocity updating remains

as defined in Eq. (4), then sigmoid function is used to transform the real

values to the binary values according to the following equations [Haddar et

al. 2016]:

 1

0 .

t

it

i

if S v r
x

OW

 
 


 (6)

 
1

1
t
i

t

i v
S v

e



 (7)

Where r is a random number  0,1 ,  S v is the sigmoid function.

5. Firefly Algorithm (FA)

Firefly algorithm is a meta-heuristic algorithm “developed originally by

Yang [2008] for solving continuous optimization problems. Firefly

algorithm is a simulated behavior of fireflies which based on flashing and

attraction properties of fireflies. There are two main points in firefly

algorithm: variation of light intensity and formulation of attractiveness. The

brightness of firefly depends on the objective function. The attractiveness

of firefly is proportional to brightness. Thus, for any two flashing fireflies

the less bright one moves towards brighter one, while it will move

randomly when there is no brighter one than a specific firefly”. The

attractiveness  of a firefly with the distance r can be defined as:
2

0

re   
 (8)

where r is the distance between two fireflies,  is a light absorption

coefficient and 0 is the attractiveness at 0r  .

The distance between two fireflies i and j is computed using the

Euclidean distance:

 
2

, ,

1

d

ij i j i k j k

k

r x x x x


   
 (9)

where ,i kx is the k
th
 component of the i

th
 firefly. The movement of a firefly

i attracted by another firefly j that is brighter is computed as:

   
2

1

0 0.5ijrt t t t

i i j ix x e x x rand


 
     

 (10)

where  is a parameter which controls the step and rand is a random

number  0,1 . The pseudo code of the firefly algorithm can be expressed

in Algorithm 3.

 Iraqi Journal of Statistical Sciences (03) 2019 [61]

\

Algorithm 3: The pseudo code of the firefly algorithm

In binary firefly algorithm we use the sigmoid function to convert the

continuous values of position into binary values :

 1

0 .

t

it

i

if S x r
x

OW

 
 


 (11)

Where r is a random number  0,1 ,  S x is the sigmoid function.

 
1

1
t
i

t

i x
S x

e



 (12)

6. Flower Pollination Algorithm (FPA)

Yang [2012] proposed “a new algorithm for global optimization called

flower pollination algorithm. It is a meta-heuristic algorithm that mimics

the nature, inspired of the pollination process in flowers.

The pollination in flowers can be take two forms: biotic pollination and

abiotic pollination. In the first type, the pollen is transferred by a

pollination like insects and animals. While the second form is based on

wind and diffusion in the water.

Pollination in flowers can be divided into self-pollination and cross-

pollination. Self-pollination is transferring the pollens from one flower to

the same flower or different flowers in the same plant. Cross-pollination is

transferring the pollens from one flower to another flower of a different

plant. A flower and its pollen represent a solution of the optimization

problem. In the flower pollination algorithm four basic rules are used [Yang

2012, Abdel-Basset et al. 2017a, Bozorg-Haddad 2018]:

1. The global pollination includes biotic and cross-pollination, the

pollinators move in a way which follows a lévy flight distribution.

2. The local pollination includes abiotic and self-pollination.

 Iraqi Journal of Statistical Sciences (03) 2019 [62]

3. Flower constancy can be considered as the reproduction probability

that is proportional to the similarity of two flowers involved.

4. The interaction or switching of local pollination and global

pollination can be controlled by a switch probability  0,1p .

Rules 1 and 3 can be expressed mathematically as:

  1 *t t t

i i ix x L x g    
 (13)

where t

ix is the solution vector or the pollen i at iteration t , *g is the

current best solution that is found at the current iteration,  is a scaling

factor to control the step size,  L  is the step size “in the lévy flights

which is representing the strength of the pollination. Since pollinators move

over a long distance with various distance steps, a lévy flight can be used to

mimic this behavior. That is, 0L  from a lévy distribution as

 
 01

sin
12

~ 0L S S
S 


 

 

 
  

     
  (14)

Yang [2012] proposed that   is the standard gamma function and 1.5  . This

distribution is valid for large steps 0S  . In (1994) Mantegna used the Gaussian

distribution for generating the step size S by generating two random numbers U and

V ” as follows [Abdel-Basset et al. 2017a]:

   2

1/
~ 0, , ~ 0,1

U
S U N V N

V




(15)

 

 

 
1/

2

1

2

1 sin / 2
*

1 / 2
2





 


 


  
 
     

 (16)

For local pollination, rules 2 and 3 can be expressed as:

 1t t t t

i i j kx x k x x   
 (17)

where jx and kx are the pollens (solution vectors) from different flowers of the same

plant. k is the parameter drawn from uniform distribution in  0,1 . To switch between

common global pollination to intensive local pollination we used rule 4 [Yang ,2012]

suggested that the switch probability or proximity probability is equal to 0.8p  for

most applications. The pseudo code of the flower pollination algorithm can be

presented” in Algorithm 4.

 Iraqi Journal of Statistical Sciences (03) 2019 [63]

Algorithm 4: The pseudo code of the flower pollination algorithm

In binary flower pollination algorithm, “the transfer function is used to

convert the continuous values into binary values. In order to build this

binary vector a transfer function in Eq. (18) can be used after Eq. (17), in

which the new solution is constrained to only binary values:

 1

0 .

t

it

i

if S x r
x

OW

 
 


 (18)

Where r is a random number  0,1 ,  S x is the sigmoid” function.

 
1

1
t
i

t

i x
S x

e



 (19)

7. Monarch Butterfly optimization (MBO)

Wang Deb et al. [2015] proposed a new meta-heuristic “algorithm for

continuous optimization problems called monarch butterfly optimization. It

is inspired by simulating the migration behavior of the monarch butterflies

from northern USA and southern Canada to Mexico every summer.

In MBO algorithm the entire population can be divided into two

subpopulations, subpopulation 1 and subpopulation 2 which lived in land 1

and land 2 respectively. The number of monarch butterflies in land 1 and

land 2 are (NP1=NP*p) and (NP2=NP-NP1) respectively, where NP is the

size of the entire population and p is the proportion of monarch butterflies

in subpopulation 1. The monarch butterfly optimization algorithm has two

main operators: the migration operator and the butterfly adjusting operator”

[Wang et al. 2015, Ghanem and Jantan 2016]:

7.1 Migration Operator

The migration process can be described as follows:

1

1

, ,

t t

i k r kx x 
 (20)

 Iraqi Journal of Statistical Sciences (03) 2019 [64]

where 1

,

t

i kx  is the k
th
 element of ix at generation 1t  , which “represents the

position of the monarch butterfly i .
1 ,

t

r kx is the k
th

 element of
1r

x at

generation t , which represents the position of the monarch butterfly
1r .

Monarch butterfly 1r is randomly selected from subpopulation 1. If r p ,

the element k in the newly generated monarch butterfly is generated by

Eq.(20) else if r p the element k the newly generated monarch butterfly is

generated by the following equation:

2

1

, ,

t t

i k r kx x 
 (21)

where
2 ,

t

r kx is the k
th
 element of

2r
x at generation t , that is the newly

generated position of the monarch butterfly 2r . Monarch butterfly 2r is

randomly selected from subpopulation 2, where r can be computed as

follows:
*r rand peri

 (22)

where peri represents the migration period and rand is a random number in

 0,1 . Based on the above analyses, the migration operator can be expressed

in” Algorithm 5 [Wang et al. 2015, Wang et al. 2016].

Algorithm 5: Migration Operator

7.2 Butterfly Adjusting Operator

In butterfly adjusting process, “the position of the monarch butterflies

in subpopulation 2 is updated by updating all the elements in monarch

butterfly j . If rand p where rand is a random value in  0,1 then it can be

updated as:
1

, ,

t t

j k best kx x 
 (23)

where 1

,

t

j kx  is the k
th
 element of jx at generation 1t  , which represents the

position of the monarch butterfly j . ,

t

best kx is the k
th
 element of bestx at

generation t , that is the best monarch butterfly in land 1 and land 2. On the

other hand if the random value rand p , it can be updated as:

 Iraqi Journal of Statistical Sciences (03) 2019 [65]

3

1

, ,

t t

j k r kx x 
 (24)

where
3 ,

t

r kx is the k
th

 element of
3r

x that is randomly selected in

subpopulation 2. In addition to this condition, if rand BAR it can be

updated as:

 1 1

, , 0.5t t

j k j k kx x dx   
 (25)

where BAR is the butterfly adjusting rate. dx is the walk step of the

monarch butterfly j that can be calculated by performing Levy flight :

 t

jdx Levy x
 (26)

 is the weighting factor that can be calculated by following equation:
2

maxS t 
 (27)

where maxS is the max walk step that a monarch butterfly individual can

move in one step and t is the current generation. The butterfly adjusting

operator” can be described in Algorithm 6 [Wang et al. 2015, Wang et al. 2016].

Algorithm 6: Butterfly Adjusting Operator

Based on the migration operator and the butterfly adjusting operator, the

 main steps of MBO algorithm can be described in Algorithm 7 [Wang et al.

2015, Wang et al. 2016].

Algorithm 7: The pseudo code of the Monarch Butterfly Optimization Algorithm

 Iraqi Journal of Statistical Sciences (03) 2019 [66]

The standard monarch butterfly optimization algorithm was proposed to

“handle a continuous optimization problem. In discrete optimization

problems the standard method cannot be applied directly to deal with such

a problem. Therefore, the sigmoid function is used to convert the

continuous values into binary:

 1

0 .

t

it

i

if S x r
x

OW

 
 


 (28)

Where r is a random number  0,1 ,  S x is the sigmoid” function.

 
1

1
t
i

t

i x
S x

e



 (29)

8. Computational results

In this section twenty 0-1 knapsack problem (KP) instances (kp-1 to

kp-20) “taken from [Rizk-Allah and Hassanien 2017, Abdel-Basset et al. 2018] to

investigate the performance of the meta-heuristic algorithms (PSO, FA,

FPA and MBO) are tested. The four meta-heuristic algorithms (PSO, FA,

FPA and MBO) are run 25 independent times for each instance. Table (1)

shows the comparison results among four meta-heuristic algorithms” (PSO,

FA, FPA and MBO) .
Table 1: Results of 0–1 KP instances

Instance dimension Methods
Total

profit

Total

weight
Best

Mean

iterations
Time solution vector

kp-1 4

BPSO 35 18 35 1 0.006 1101

BFA 35 18 35 1 0.005 1101

BFPA 35 18 35 1 0.005 1101

BMBO 35 18 35 1 0.005 1101

kp-2 4

BPSO 23 11 23 1 0.004 0101

BFA 23 11 23 1 0.003 0101

BFPA 23 11 23 1 0.004 0101

BMBO 23 11 23 1 0.004 0101

kp-3 5

BPSO 130 60 130 1 0.01 11110

BFA 130 60 130 1 0.009 11110

BFPA 130 60 130 1 0.008 11110

BMBO 130 60 130 1 0.008 11110

kp-4 7

BPSO 107 50 107 1.5 0.031 1001000

BFA 107 50 107 2.01 0.035 1001000

BFPA 107 50 107 1.08 0.022 1001000

BMBO 107 50 107 2.15 0.029 1001000

kp-5 10

BPSO 295 269 295 2 0.055 0111000111

BFA 295 269 295 3.41 0.052 0111000111

BFPA 295 269 295 1.92 0.051 0111000111

BMBO 295 269 295 3.26 0.051 0111000111

kp-6 10

BPSO 52 60 52 1 0.058 0011101000

BFA 52 60 52 1.6 0.050 0011101000

BFPA 52 60 52 1 0.044 0011101000

BMBO 52 60 52 1.12 0.046 0011101000

 Iraqi Journal of Statistical Sciences (03) 2019 [67]

kp-7 15

BPSO 481.0694 354.9608 481.07 1 0.09 001010110111011

BFA 481.0694 354.9608 481.07 1 0.081 001010110111011

BFPA 481.0694 354.9608 481.07 1 0.078 001010110111011

BMBO 481.0694 354.9608 481.07 1 0.080 001010110111011

kp-8 20

BPSO 1025 871 1025 2.1 0.253 11111111101111010111

BFA 1025 871 1025 3.7 0.198 11111111101111010111

BFPA 1025 871 1025 1.68 0.106 11111111101111010111

BMBO 1025 871 1025 2.64 0.134 11111111101111010111

kp-9 20

BPSO 1024 871 1024 2.7 0.463 11111111111110101011

BFA 1024 871 1024 3.93 0.388 11111111111110101011

BFPA 1024 871 1024 1.72 0.210 11111111111110101011

BMBO 1024 871 1024 2.86 0.242 11111111111110101011

kp-10 23

BPSO 9767 9768 9767 5.17 0.805
111111110100000

11000000

BFA 9767 9768 9767 4.91 0.719
111111110100000

11000000

BFPA 9767 9768 9767 4.44 0.632
111111110100000

11000000

BMBO 9767 9768 9767 5.31 0.698
111111110100000

11000000

kp-11 30

BPSO 1437 566 1437 9.78 0.498
11111011111100111

0110101111011

BFA 1437 566 1437 8.95 0.365
11111011111100111

0110101111011

BFPA 1437 566 1437 7.8 0.321
11111011111100111

0110101111011

BMBO 1437 566 1437 8.15 0.374
11111011111100111

0110101111011

kp-12 35

BPSO 1689 650 1689 10.94 0.730
110111111110101111111

01101110111111

BFA 1689 650 1689 12.1 0.605
110111111110101111111

01101110111111

BFPA 1689 650 1689 7.96 0.581
110111111110101111111

01101110111111

BMBO 1689 650 1689 9.51 0.600
110111111110101111111

01101110111111

kp-13 40

BPSO 1821 819 1821 45 0.793
0111110011111011111101

011111011110111110

BFA 1821 819 1821 50.02 0.806
0111110011111011111101

011111011110111110

BFPA 1821 819 1821 37.8 0.725
0111110011111011111101

011111011110111110

BMBO 1821 819 1821 41.08 0.764
0111110011111011111101

011111011110111110

kp-14 45

BPSO 2033 906 2033 35.4 1.006

111101001111110

111110111111111

111010111111001

BFA 2033 906 2033 38.16 0.925

111101001111110

111110111111111

111010111111001

BFPA 2033 906 2033 22 0.843

111101001111110

111110111111111

111010111111001

BMBO 2033 906 2033 29.57 0.901

111101001111110

111110111111111

111010111111001

kp-15 50 BPSO 2440 873 2440 40.08 2.380

1111100101111111011

0111111101011111111

011111111111

 Iraqi Journal of Statistical Sciences (03) 2019 [68]

BFA 2440 873 2440 42.5 2.152

1111100101111111011

0111111101011111111

011111111111

BFPA 2440 873 2440 29.4 1.056

1111100101111111011

0111111101011111111

011111111111

BMBO 2440 873 2440 35.19 1.809

1111100101111111011

0111111101011111111

011111111111

kp-16 55

BPSO 2651 1046 2651 867.1 4.237

1110011111011111011

1111010011111111110

01101101110101111

BFA 2651 1046 2651 894 4.690

1110011111011111011

1111010011111111110

01101101110101111

BFPA 2651 1046 2651 524.3 3.557

1110011111011111011

1111010011111111110

01101101110101111

BMBO 2651 1046 2651 698.4

3.901 1110011111011111011

1111010011111111110

01101101110101111

kp-17 60

BPSO 2917 1002 2917 208.6 3.816

11111010110111110110

01111111110111111111

01111011111111101111

BFA 2917 1002 2917 234.9 3.908

11111010110111110110

01111111110111111111

01111011111111101111

BFPA 2917 1002 2917 81.88 2.684

11111010110111110110

01111111110111111111

01111011111111101111

BMBO 2917 1002 2917 195.73 2.991

11111010110111110110

01111111110111111111

01111011111111101111

kp-18 65

BPSO 2818 1317 2818 945.3 4.865

111101011110111011111

0111111111111100101111

1100111011111111101010

BFA 2818 1317 2818 971.9 4.947

111101011110111011111

0111111111111100101111

1100111011111111101010

BFPA 2818 1317 2818 808.5 4.038

111101011110111011111

0111111111111100101111

1100111011111111101010

BMBO 2818 1317 2818 894.1 4.245

111101011110111011111

0111111111111100101111

1100111011111111101010

kp-19 70

BPSO 3223 1426 3223 897.6 3.726

111110111010110111011111

1101011101011111111100111

111111011011111111111

BFA 3223 1426 3223 854.4 3.451

111110111010110111011111

1101011101011111111100111

111111011011111111111

BFPA 3223 1426 3223 885.5 2.372

111110111010110111011111

1101011101011111111100111

111111011011111111111

BMBO 3223 1426 3223 784.5 2.905

111110111010110111011111

1101011101011111111100111

111111011011111111111

kp-20 75

BPSO 3614 1432 3614 702.2 6.937

01101111101100101111111111

10111111001111011111110111

11111001111111111101101

BFA 3614 1432 3614 785 7.110

01101111101100101111111111

10111111001111011111110111

11111001111111111101101

 Iraqi Journal of Statistical Sciences (03) 2019 [69]

BFPA 3614 1432 3614 125.41 5.201

01101111101100101111111111

10111111001111011111110111

11111001111111111101101

BMBO 3614 1432 3614 589.7 6.372

01101111101100101111111111

10111111001111011111110111

11111001111111111101101

The computation results for the four algorithms are presented in Table 1.

The best solution, mean iteration (average number of iteration for obtaining

the optimal solution for all run times of the same instance) and average

executed times are used to measure the performance for these algorithms.

The average executed times for all algorithms (BPSO, FA, BFPA and

BMBO) are (1.53815, 1.52495, 1.1269 and 1.30795 respectively). In order

to analyze the results in Table 1 and based on mean iteration and average

executed times we can infer the order of the algorithms as follows: (BFPA,

BMBO, FA and BPSO). Therefore, the binary flower pollination algorithm

gives performance better than other algorithms (BPSO, BFA and BMBO)

for solving 0-1 knapsack problem instances. All algorithms (BPSO, BFA,

BFPA and BMBO) succeeded in finding the optimal solution for all 0-1 KP

instances but BFPA has the least mean iteration and least average executed

times compared to other algorithms”.

9. Conclusion

In this paper, four meta-heuristic algorithms for solving knapsack

problem have been reviewed. Table (1) shows that the BFPA has fast

convergence and stability better than other used algorithms. It may be

appropriate to suggest that the best algorithm for solving 0-1 knapsack

problem is BFPA. Future work includes using this algorithm for solving

other combinatorial optimization problems and hybridization with other

algorithms.

References
1. Abdel-Basset, M., D. El-Shahat and I. El-Henawy (2018). "Solving

0–1 knapsack problem by binary flower pollination algorithm."

Neural Computing and Applications.

2. Abdel-Basset, M., D. El-Shahat, I. El-Henawy and A. K. Sangaiah

(2017a). "A modified flower pollination algorithm for the

multidimensional knapsack problem_ human-centric decision

making." Soft Computing.

3. Abdel-Basset, M., D. El-Shahat and A. K. Sangaiah (2017b). "A

modified nature inspired meta-heuristic whale optimization

algorithm for solving 0–1 knapsack problem." International Journal

of Machine Learning and Cybernetics 10(3): 495-514.

 Iraqi Journal of Statistical Sciences (03) 2019 [70]

4. Bansal, J. C. and K. Deep (2012). "A Modified Binary Particle

Swarm Optimization for Knapsack Problems." Applied Mathematics

and Computation 218(22): 11042-11061.

5. Beheshti, Z., S. M. Shamsuddin and S. S. Yuhaniz (2012). "Binary

Accelerated Particle Swarm Algorithm (BAPSA) for discrete

optimization problems." Journal of Global Optimization 57(2): 549-

573.

6. Bhattacharjee, K. K. and S. P. Sarmah (2016). "Modified swarm

intelligence based techniques for the knapsack problem." Applied

Intelligence 46(1): 158-179.

7. Bozorg-Haddad, O. (2018). "Advanced Optimization by Nature-

Inspired Algorithms." Springer Nature Singapore Pte Ltd.

8. Cao, J., B. Yin, X. Lu, Y. Kang and X. Chen (2017). "A modified

artificial bee colony approach for the 0-1 knapsack problem."

Applied Intelligence 48(6): 1582-1595.

9. Changdar, C., G. S. Mahapatra and R. K. Pal (2013). "An Ant colony

optimization approach for binary knapsack problem under

fuzziness." Applied Mathematics and Computation 223: 243-253.

10. Chih, M., C.-J. Lin, M.-S. Chern and T.-Y. Ou (2014). "Particle

swarm optimization with time-varying acceleration coefficients for

the multidimensional knapsack problem." Applied Mathematical

Modelling 38(4): 1338-1350.

11. El-Ghazali, T. (2009). "METAHEURISTICSF ROM DESIGN TO

IMPLEMENTATION." John Wiley & Sons, Inc.

12. Faris, H., I. Aljarah and S. Mirjalili (2017). "Improved monarch

butterfly optimization for unconstrained global search and neural

network training." Applied Intelligence 48(2): 445-464.

13. Feng, Y., G.-G. Wang, S. Deb, M. Lu and X.-J. Zhao (2015).

"Solving 0–1 knapsack problem by a novel binary monarch butterfly

optimization." Neural Computing and Applications 28(7): 1619-

1634.

14. Feng, Y., G.-G. Wang and L. Wang (2017). "Solving randomized

time-varying knapsack problems by a novel global firefly

algorithm." Engineering with Computers 34(3): 621-635.

15. Ghanem, W. A. H. M. and A. Jantan (2016). "Hybridizing artificial

bee colony with monarch butterfly optimization for numerical

optimization problems." Neural Computing and Applications 30(1):

163-181.

16. Haddar, B., M. Khemakhem, S. Hanafi and C. Wilbaut (2015). "A

hybrid heuristic for the 0–1 Knapsack Sharing Problem." Expert

Systems with Applications 42(10): 4653-4666.

 Iraqi Journal of Statistical Sciences (03) 2019 [71]

17. Haddar, B., M. Khemakhem, S. Hanafi and C. Wilbaut (2016). "A

hybrid quantum particle swarm optimization for the

Multidimensional Knapsack Problem." Engineering Applications of

Artificial Intelligence 55: 1-13.

18. Kennedy, J. and R. Eberhart (1995). "Particle swarm optimization."

Proceedings of the IEEE International Conference on Neural

Network , Perth ,Australia.

19. Kennedy, J. and R. Eberhart (1997). "A discrete binary version of the

particle swarm algorithm." IEEE International Conferenceon

Computational Cybernetics and Simulation Vol.5: 4104–4108.

20. Lazim, D., A. M. Zain, M. Bahari and A. H. Omar (2017). "Review

of modified and hybrid flower pollination algorithms for solving

optimization problems." Artificial Intelligence Review.

21. Mantegna, R. N. (1994). "Fast, accurate algorithm for numerical

simulation of Levy stable stochastic processes". Phys Rev E

49(5):4677

22. Mirjalili, S. and A. Lewis (2013). "S-shaped versus V-shaped

transfer functions for binary Particle Swarm Optimization." Swarm

and Evolutionary Computation 9: 1-14.

23. Osman, I. H. and J. P. Kelly (1996). "Meta-heusirtics: theory and

applications." Kluwer Academic Publishers.

24. Osman, I. H. (1995). "An introduction to Meta-heuristics, in:

Operational Research Tutorial Papers Series", Annual Conference

OR37-Canterbury 1995, Eds. C. Wildson and M. Lawrence

(Operational Research Society Press, 1995).

25. Pirlot, M. (1992). "General local search heuristics in combinatorial

optimization: a tutorial", Belgian Journal of Operations, Statistics,

and Computer Science, 32, 7-67.

26. Rizk-Allah, R. M. and A. E. Hassanien (2017). "New binary bat

algorithm for solving 0–1 knapsack problem." Complex & Intelligent

Systems 4(1): 31-53.

27. Siddique, N. and H. Adeli (2015). "Nature Inspired Computing: An

Overview and Some Future Directions." Cognit Comput 7(6): 706-

714.

28. Wang, G.-G., S. Deb and Z. Cui (2015). "Monarch butterfly

optimization." Neural Computing and Applications.

29. Wang, G.-G., S. Deb, X. Zhao and Z. Cui (2016). "A new monarch

butterfly optimization with an improved crossover operator."

Operational Research 18(3): 731-755.

30. Yang, X.-S. (2008). "Nature-Inspired Metaheuristic Algorithms."

Luniver Press , UK.

 Iraqi Journal of Statistical Sciences (03) 2019 [72]

31. Yang, X.-S. (2012). "Flower pollination algorithm for global

optimization " International conference on unconventional

computting and natural computation. Springer. Berlin.

32. Yang, X.-S. (2014a). "Cuckoo Search and Firefly Algorithm_

Theory and Applications " Springer International Publishing

Switzerland.

33. Yang, X.-S. (2014b). "Nature-Inspired Optimization Algorithms."

Elsevier Inc.

34. Yang, X.-S. (2015). "Recent Advances in Swarm Intelligence and

Evolutionary Computation." Springer International Publishing

Switzerland.

35. Yang, X.-s., M. Karamanoglu and H. Xingshi (2014). "Flower

pollination algorithm: A noval approach for multiobjective

optimization." Engineering Optimization.

36. Zhou, Y., X. Chen and G. Zhou (2016). "An improved monkey

algorithm for a 0-1 knapsack problem." Applied Soft Computing 38:

817-830.

37. Zouache, D., F. Nouioua and A. Moussaoui (2015). "Quantum-

inspired firefly algorithm with particle swarm optimization for

discrete optimization problems." Soft Computing 20(7): 2781-2799.

