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Property for Unconstrained Optimization
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Abstract:
In this paper, a modified formula for DL  (Dai-Liao) is proposed

for conjugate gradient method of solving unconstrained optimization
problem. The new method  has sufficient descent and global convergence
properties. Numerical results show that this new method is very efficient
compared with other similar methods in the same filed.

:
DL

(Dai-Liao) .

 .

    .

1- Introduction

The conjugate gradient method presents a major contribution to the

panoply of methods for solving large-scale unconstrained optimization

problems. They are characterized by low memory requirements and have

strong local and global convergence properties. For general unconstrained

optimization problems.

)x(fminimize (1)

Where f: Rn  R is a continuously differentiable function, bounded

from below, starting.  From an initial guess, a nonlinear conjugate
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gradient algorithm generates a sequence of points ( kx ),  according to the
following recurrence formula:

kkk1k dxx (2)

Where k  is the step length, usually obtained by the Wolfe line

search:

k
T
kkkkkk dg)x(f)dx(f

(3) k
T
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T
kkk dgd)dx(g

(4)

where 10 ,which known as weak Wolfe condition (W.W.C.)  and

for strong Wolfe condition (S.W.C.) is defined by:

k
T
kkkkkk dg)x(f)dx(f (5)

k
T
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T
kkk dgd)dx(g (6)

See (Nocedal and Wright, 1999).

Dai and Yuan (Dai and Yuan, 1996) showed that the conjugate

gradient method are globally convergent when they generalized, the

absolute value in (6) is replaced by pair of inequalities.

k
T
k2k

T
kkkk

T
k1 dgd)dx(gdg (7)

where 11,01,0 2121

The special case 21 corresponds to the S.W.C (Hager and Zhan,

2006)  the direction 1kd are commented as:

0kforg
1kfordgd 1k

kk1k
1k                                   (8)

where k is a scalar  and ,  since 1952, there have been

many formulas for the scalar, for example:
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(Fletcher and Reeves, 1964), (9)

2
k

k
T

1kPR
k

g
yg

(Polak and Ribirer, 1969),          (10)
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1kHS
k yd

yg     (Hestenes and Stiefel, 1952),          (11)

k
T
k

k
T

1kLS
k gd

yg
 (Liu and Story, 1991),         (12)

where k1kk ggy and  stands for the Euclidean norm.
The method (2) and (8) is called the linear conjugate methods,

within the framework of linear conjugate gradient methods, the conjugate

condition is defined by: , where is

symmetric positive definite matrix.

On the other hand, the method (2) and (8) is called the nonlinear

conjugate gradient method for several unconstrained optimization

problem. The conjugate condition is replaced by:

0yd k
T

1k (13)

holds for strictly convex quadratic objective function. The extension of

the conjugacy condition was studied by Perry (Perry,1978), he tried to

accelerate the conjugate gradient method by incorporating the second-

order information into it. Specifically, he used the quasi-Newton (QN)

method the search direction dk can be calceolate in the form:

1k1k1k gHd (14)

where 1kH is an approximation to inverse Hessian, with quasi-Newton

condition which is defined by:

kk1k syH (15)
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where kkk1kk dxxs , by (14) and (15) we have

                                          (16)

Eq (16) is called Perry's condition, which implies (13) hold if line search

is exact, since in this case .

2. New formula for Beta and Algorithm

An idea is multiplying of 1kH by scaling k before the update taking

place. i.e. for every k 1 the scalar Newton direction, is defined by:

(17)

Where is an approximation to inverse Hessian, and  is

scalar, this scalar is added to make the sequence and efficiency as

problem dimension increase. The poor-scaling is an imbalance between

the values of the function and change in x. the function value  may be

change very little even though x is changing by good scaling factor for

the updating H and the favorable in some asses especially when the

number variable are large (Scales, 1985).

In this paper we use the scalar by Al-Assady (Al-Assady,1997)

which defined by:

)ff(6gs2
ys

k1kk
T
k

k
T
k

k                                                              (18)

Now to drive the new methods using (8)

(19)

and from (17) we get
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Since , (QN- condition), then we get:

(20)

using (20) in (19) we get:

k
T
k
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1kkk
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1k
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sgyg
(21)

Where k is defined in (18), i.e.:
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                                 (22)

Observing that this new formula contains not only gradient value

information, but also function value information at the present and

previous step. If the function is quadratic and the line search is exact the

new formula is equal to HS
k

. However, we consider general nonlinear

function and inexact line search.:

If we compare the new version new
k

with Dai and Liao (Dai-Liao,

2001) computational scheme:

DL
k

 – t (23)

where t  is constant and [0<t<1] in this paper we replace this parameter by

the scalar , which can be viewed as adaptive of Dai-Liao computational

schemes, corresponding to t.

2.1 Algorithm of New Methods:
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Step (1): Choose an initial point 1x Rn, set k=1, .

Step (2): Compute k  satisfying (S.W.C) by (5) and (6).

Step (3): Let kkk1k dxx and if 5
1k 10x1g  then stop, otherwise

continue.

Step (4): Compute
k
 by (22) and the direction dk+1 by (8).

Step (5): if  k = n or  0.2  is satisfy, go to step (1), else

k= k+1 and go to step (2).

The following assumptions are often used in the studies of the

conjugate gradient methods.

Assumption (1)

i) The level set  is bounded, and f(x) is

bounded below in .

ii) In some neighborhood N of , f(x) is continuously differentiable and

its gradient is Lipchitz continuous namely, there exists a constant

such that:

(24)

It follows directly from Assumption (1) that there exists two

positive constants D and  such that

(25)

3. Convergence Analysis of the New Method:

Since the conjugate gradient methods belong to the descent

methods for solving unconstrained optimization problems, the new k

should be chosen such that 0 if the line search is used.

Furthermore, due to the sufficient descant condition
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(26)

3.1 Theorem:

Suppose that Assumption (1) holds and k   satisfies the strong

Wolfe condition (5) and (6),then the search direction (8) where 1k is

defined by (22) is satisfy the sufficient descent condition.

proof:

For initial direction (k=1), we have

, which satisfies (26).

Now we suppose that

multiplying (8) by , we get:

(27)

Since

(28)	

Also from (6)
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(29)

Substitute (28) and (29) in (27)we get:

from (5) we get:

Since 0  and 0  this means ( 0)

Since
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Since

Where .

3.2 Global Convergence Property for Convex Functions

If  f is a uniformly convex function, there exists a constant >0 such

that:

,                     (30)

We can rewrite (30) in the following manner:

                                                                             (31)

Eq(31) with (24)implies that:

                                                            (32)

i.e. (Yabe and Sataiwa,2005)

Dai et al (Dai et al, 1999) proved that for any conjugate gradient

method with strong Wolfe condition the followings results holds.

3.3 Lemma:
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Suppose that Assumption (1) hold and consider any CG-methods

(2), where d is a descent direction and   is obtained by the strong Wolfe

condition if

Then

3.3 Theorem:

Suppose that Assumption (1) hold and that f is a uniformly convex

function.  the  new  algorithm  of   the  form  (2)  (8)  and  (22)  where  dk

satisfies the descent condition and k  is  obtained  by  the  strong  Wolfe

condition  (5)  and  (6)  satisfies  the  global  convergence  (i.e.

0ginfLim 1kk

Proof :

Since:-
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, where =

Since:-

1k
1 .

Therefore, from Lemma 3.3 we have 0ginfLim 1kk
which for

uniformly convex function equivalent to 0gLim 1kk
.

3.4 Global Convergence for General Nonlinear Functions

         For general nonlinear functions, we need to prove that the gradient

of the new method cannot be bounded away from  zero, we establish a

bounded for the change ( ) in the normalized direction wk =

dk/ , (Nocedal and Gillbert, 1992)

Also, we assume that there exists a positive constant > 0 such

                                                                 (33)

3.5 Lemma
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Suppose that assumption (1) hold, consider the method (2), (8) and

(22) where the direction satisfies the sufficient condition and k  is

obtained by the strong Wolfe  condition (5) and (6), if (33) holds,  then

dk+1  0 and

                                                             (34)

Where wk = dk/

Proof:

We can rewrite it by

, where

Let

Therefore we have                                       (36)

Since , then from (36) we obtain:

(37)

, where A=

.
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Then from (37)and (35) we get

By taking the summation of the both sides and square of (37) , we obtain

i.e. (34) hold.

3.6 Lemma

Suppose that the assumption (1) hold, and consider the method (2),

(8) and (22) where the direction satisfies the sufficient condition and k

is obtained by the strong Wolfe  condition (5) and (6),  and ,

if (33) holds, then there exists the constant  and , s.t. for

all

and if                                           (38)

Proof :

We have from S.W.C.

(39)

Since
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(since

=                                                       (40)

Without lose of generality we can define  such that , let us define

                                                                  (41)

If , from (40) we have

.

The following theorem is similar to theorem (3.6) in (Dai and Liao,

2001) or to theorem (3.2) in (Hanger and Zhange, 2005), and the proof is

omitted hero.

3.7 Theorem



The 6th Scientific Conference of the College of Computer Sciences & Mathematics

]103[

Suppose that Assumption (1) hold, consider the CG method

(1),(8)and (22) where the direction dk+1satisfies the sufficient descent

condition and  is obtained by strong Wolfe condition, then we have

4. Numerical results

We tested the HS method, DL method and our new conjugate

gradient method (22). All results are obtained using Pentium 4

workstation and all programs are written in Fortran language. Our line

search subroutine computes k  such that the strong Wolfe condition (5)-

(6) hold with 001.0  and 1.0 . The initial value of k is always

compute by a cubic fitting procedure which was described in details by

Bunday (Bunday, 1982) used as a line search procedure. Although our

line search cannot always ensure the descent property of kd  for  all  three

methods, uphill search directions seldom occur in our numerical

experiments. In the case when an uphill search direction does occur, we

restart the algorithm by setting kk gd .  For  the  DL  method 1.0t  is

selectedsee (Dai and Liao, 2001).

We have test ten function with different dimension n= 100,

100,10000.  The numerical results are given in the form of NOF and NOI

where NOF denote the numbers of function evaluations, and NOI denote

the numbers of iterations. The stopping condition is

Comparing the new method with HS method, DL method we could

say that the new method is better than all especially for Powell function,

Wood function, Helical function, Powell3 function, Helical function,

edeger function and Resip function from the ten function test in this

section as we see from the Table (4.1), (4.2), (4.3).

Table (4.1)
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Numerical comparisons of the new CG method with n=100

HS method DL method New method

function NOF   NOI NOF   NOI NOF   NOI

Powell 180        60 143       49 123       40

Wood 103        49 103       49  71        25

Rosen  68         26   66       25  79        29

Cubic  47         17   47       17  59        19

Powell3  43         20   48       23  35        14

Helical 250      123 250     123   82        33

Edger   16          6   16         6  15          6

Recip   31        11   31       11  16          5

Shallow   17          6   17         6  26        10

Beal   18          8     18         8    28        11

Tolal 773        326 739      317  534     192

Table (4.2)

    Numerical comparisons of the new CG method with n=1000

HS method DL method New method

Function NOF   NOI NOF   NOI NOF   NOI

Powell 219        66 143        49 140       41

Wood 103        49 103        49  77        27

Rosen  68         26  69         26  79        29
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Cubic  47         17  47         17  59        19

Powell3  49         23  52         25  35        14

Helical 270      133 272      134  82        33

Edger  18           7  18           7  15          6

Recip  33         12  33         12  16          5

Shallow  17           6  17           6  26        10

Beal 18            8  18           8  28        11

Tolal 842      347 772       333 557    195

Table (4.3)

Numerical comparisons of the new CG method with n=10000

HS method DL method New method

Function NOF   NOI NOF   NOI NOF   NOI

Powell 253         72 178        57 186       47

Wood 105         50 105        50  77        27

Rosen  68          26  69         26  79        29

Cubic  47          17  47         17  59        19

Powell3  51          24  52         25  35        14

Helical 249       145 294       145  82        33

Edger  18            7  18           7  15          6

Recip  33          12  33         12  16          5
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Shallow  20           7  17           6  26        10

Beal 18            8  18           8  28        11

Tolal 862      368 831      353 603     201
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