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New Projection Matrix for the Stander Conjugate Gradient Method
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Abstract:
     In this paper, we have derived anew  proposed algorithm for conjugate
gradient method  based on a projection matrix. This Algorithm satisfies the
sufficient descent condition and the  globally converges . Numerical
comparisons with  a standard conjugate gradient algorithm  show that this
algorithm very effective depending on the number of iterations and the
number of functions evaluation.
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1-Introduction:

    Let us consider the nonlinear unconstrained optimization problem

}:)(min{ nRxxf   ……………………………………….…….(1)

   Where f is smooth and its gradient g is available.
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 Conjugate gradient methods are efficient for solving (1), especially when

the dimension n is large. The iterates of conjugate gradient methods for

solving (1) are obtained by

kkkk dxx 1 …………………………………………………..(2)

where k  is a steplength, which is computed by carrying out some line

search, and kd  is the search direction defined by

1
1

11
kdgd

kgd

kkk

kk

k
…………………………….(3)

where k  is a scalar. Some well-known conjugate gradient methods include

the Hestenes–Stiefel (HS) method , Fletcher–Reeves (FR) method , the

Polak–Ribière–Polyak (PRP) method, and the Dai–Yuan (DY) method

and  Al-Bayati & Al-Assady . The parameters k of these methods are

specified as follows
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  The stepsize k is usually chosen to satisfy certain line search conditions.

Among them, the so-called strong Wolfe line search conditions require

that,The weak Wolfe-conditions:

k
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kkkkkk dgxfdxf )()(   ….(4)

k
T
kk

T
kkk dgddxg )(                           …….(5)

the strong Wolfe-conditions:
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where 1(0, )
2

 and 1,0

Beale’s three-term restart conjugate gradient method  is a well-known three-

term conjugate gradient method in which

lkkkkk ddgd 11 …………………………………..….(8)

where 1 l < k, l
T
ll

T
kk ydyg / Another well-known method is

Nazareth’s three-term recurrence , where
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Zhang, Li , Zhou ,Weijun,(2007) and Zhang, L.,Weijun Zhou, (2007)

proposed a three-term PRP conjugate gradient method (TTPRP) and a

three-term FR conjugate gradient method (TTFR), respectively, that is,
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2.New proposed method

in this paper we  will get new projection matrix from three-term CG-

algorithm as follows:
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If we use the exact line search and, then our method (12) becomes the

nonlinear conjugate gradient method (3)
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 Where the matrix 1
T

k k
T
k k

y gI
d y

 is also a projection matrix into the

orthogonal complement of Span 1kg

3. The  New  Algorithm :
Step 1 : For the initial point 0  , nRx1 , , Set 11 gd  ,k = 1 , if 1g ,
then
            stop.
Step 2: Set kk gd
Step 3 : Find 0k satisfying the  strong wolf conditions.

Step 4: Let kkkk dxx 1  and If 1kg  then stop .

Step 5 :  compute the search direction 1kd by (13)
.

Step 6 : If 2.02
1

1

k

k
T
k

g

gg
ornk ,then go to step 2.

Step 7:  Set k: = k+1, go to Step 3.

4. Global Convergence Properties for the new Suggestion algorithm:
     In this section we will study the convergence of the new proposed
method depending by the following assumption
Assumption(A) :
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(i) The level set )}()(;[ 0xfxfRxS n  is bounded.
(ii) In a neighborhood N of S, the function f is continuously

differentiable and its gradient is Lipschitz continuous, i.e there
exists a constant 0L  such that

yxLyfxf )()(            for all Nyx, ..(14)

      We can get from assumption (A) that there exists positive constant
0 , such that:

)(xg Sx                                  ….(15)

Lemma (1). Suppose that the assumption (A) hold and consider any
conjugate gradient method (2) and (3), where is a descent direction kd  and

k is obtained by the strong Wolfe line search

If
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…………….….(16)

Then

0inflim kk
g ………………………...(17)

 (Dai, Y.H., et al, 1999)

Lemma:
   Suppose the assumption (A) hold , let the sequence { kx } generated by (2)
and the step length k satisfies wolf conditions,  then the direction which is
define in (13)is satisfied sufficient condition
Proof :

 By multiply both side of (13)  by T
1kg  and dividing by

2
1

T
kg  we get :
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By using strong wolf condition we get:
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Since 1 1
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where c is small positive constant
2

1 1 1(1 )T
k k kg d c g

the proof is complete.

Theorem (2):
   (Global convergence for new proposed method ):

Consider the iteration method which is define in (2) where kd  defined
by,(13) and suppose the assumption A holds.  Then the new algorithm
either stops at stationary point i.e. 0kg  or 0inf kk

gLim

Proof:
Form (12),we get
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5:Numerical experiments
    In this section, we will test the feasibility and effectiveness of the
Algorithm 2.1. The algorithm is implemented in Fortran77 code using
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double precision arithmetic and Comparison our new algorithm with
standard three term CG-algorithm in Table (1)

overall the calculation and for different dimension for ( 5000n100 ), all the
algorithms in this paper use the same ILS strategy.
 .
All the results are obtained using (Pentium 4 computer). All programs are
written in FORTRAN 90 language and for all cases the stopping criterion
taken to be:

5
1 10kg

The comparative performance for all of these algorithms is evaluated by
considering number of function Evaluations NOF  and number of
iterations NOI .

 Table (1) Comparison of our new algorithm with standard FR  CG-
algorithm.

New

Algorithm

FR.

Algorithm
Dim.Test fun.

NOFNOINOFNOI

1094013650100Powell
2343022233100           Central
156156100            Edger
46164416100Cubic
93469949100Wolfe
69146412100Sum
69306729100Wood
1444514646100Miele
55225522100Rosen
165165100Recip
10940164541000Powell
27833312401000           Central
1561561000             Edger
461644161000Cubic
10753129641000Wolfe
11423110211000Sum
693067291000Wood
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Appendix
1. Generalized Central Function:
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2. Extended Wood Function
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3. Generalized Powell Function:
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4. Sum of Quadritics (SUM) function:
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5. Wolfe Function:
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6. Rosenborck Function:
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7. Generalized Recip Function:
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8. Miele Function:
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9. Generalized Edger Function:
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10. Generalized Cubic Function:
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