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Abstract:

In this paper, we have derived anew proposed algorithm for conjugate
gradient method based on a projection matrix. This Algorithm satisfies the
sufficient descent condition and the globally converges . Numerical
comparisons with a standard conjugate gradient algorithm show that this
algorithm very effective depending on the number of iterations and the
number of functions evaluation.
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1-Introduction:

Let us consider the nonlinear unconstrained optimization problem
MINF(X) i X € R}ttt i e e (1)

Where f is smooth and its gradient g is available.
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Conjugate gradient methods are efficient for solving (1), especially when
the dimension n is large. The iterates of conjugate gradient methods for
solving (1) are obtained by
X1 = X F A e e (2)
where 2, is a steplength, which is computed by carrying out some line
search, and d, is the search direction defined by

d, =—0, k=1

dy,, =—9ia + B, k>1
where g, is a scalar. Some well-known conjugate gradient methods include
the Hestenes—Stiefel (HS) method , Fletcher—Reeves (FR) method , the
Polak—Ribiere-Polyak (PRP) method, and the Dai-Yuan (DY) method
and Al-Bayati & Al-Assady . The parameters g, of these methods are
specified as follows

ﬁkHS _ QI+1 Yk

T (Hestenes-Stiefel, 1952 )
di Yk

T
ﬁkFR _ Ok19k+1

(Fletcher-Reeves (FR),1969)
=
Ok 9k

_ 9kanVi

Br
glgk

(Polak- Ribiére (PR))

:—YEYk
dggk

A ( Al-Bayati & Al-Assady,1986 )

)
BoY - % (Dai-Yuan (DY),1999)
k Yk
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The stepsize 2, is usually chosen to satisfy certain line search conditions.

Among them, the so-called strong Wolfe line search conditions require

that, The weak Wolfe-conditions:
f(x, +4,d) - F(x)<4 0, d, ....(4)

g(x +4d)"d, 200¢d, ..l (5)

the strong Wolfe-conditions:

fX +A4d)— () SOA0Td,  eerreriiiinnen, (6)
g% +4d)Td|<-ogid, (7)
where § e (o,%) ando <(01)
Beale’s three-term restart conjugate gradient method is a well-known three-
term conjugate gradient method in which
Qe ==0ua B8 70 (8)
wherel< [T < k y, =g vy, /d;y,Another well-known method is

Nazareth’s three-term recurrence , where

YE—1 Yia
YE—1d k-1

Zhang, Li, Zhou ,Weijun,(2007) and Zhang, L.,Weijun Zhou, (2007)
proposed a three-term PRP conjugate gradient method (TTPRP) and a

dk+1:_yk+ dk_l+ﬁ k(g)

three-term FR conjugate gradient method (TTFR), respectively, that is,

AR = g+ B, =00y, e (10)
s B s B o (11)
T T
o = gk+1d2k and 6?2 = d y;
o 9.
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2.New proposed method
in this paper we will get new projection matrix from three-term CG-

algorithm as follows:

)
d

ey = -G+ B5d - g By (12)
dk yk

If we use the exact line search and, then our method (12) becomes the

nonlinear conjugate gradient method (3)

)
Ay =~ G + BR(1 —%)dk ............................................. (13)
k yk

.
Where the matrix [I —yEg%J is also a projection matrix into the

orthogonal complement of Span{g, ., }

3. The New Algorithm :
Step 1 : For the initial point 7, , x, eR", &, Set d, =-g, k=1, if lo.| <e,

then
stop.
Step 2: Set dy =—g,
Step 3 : Find 2, > 0satisfying the strong wolf conditions.

Step 4: Let x _,=x +44d, and Ingk+l

< ¢ thenstop .

Step 5 : compute the search direction d, , by (13)

‘glgkﬂ
Step6:I1f k=n or —
Hgk+lH

Step 7: Set k: = k+1, go to Step 3.

>(0.2 ,then go to step 2.

4. Global Convergence Properties for the new Suggestion algorithm:

In this section we will study the convergence of the new proposed
method depending by the following assumption
Assumption(A) :
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(i) Thelevelset S=[xeR"; f(x)< f(x,)} is bounded.

(i) Inaneighborhood N of S, the function f is continuously
differentiable and its gradient is Lipschitz continuous, i.e there
exists a constant L > 0 such that

IVE(x) - f(y)| < L|x-y] forall x,y e N ..(14)

We can get from assumption (A) that there exists positive constant
w >0, such that:
lox)|<y  VxeS ....(15)

Lemma (1). Suppose that the assumption (A) hold and consider any
conjugate gradient method (2) and (3), where is a descent directiond, and

A, 1s obtained by the strong Wolfe line search

If
%12 co e, (16)
= dkH
Then
liminf loc|=0 (17)

(Dai, Y.H., etal, 1999)

Lemma:
Suppose the assumption (A) hold , let the sequence {x, } generated by (2)

and the step length 2, satisfies wolf conditions, then the direction which is

define in (13)is satisfied sufficient condition
Proof :

2
By multiply both side of (13) by gy,, and dividing by Hng we get :

g;-+1dk+1+||gk+1”2 _ HFR ngdk _ pRR (glﬂyk)(glﬂdk) (18)
||gk+1||2 ‘ T dkTyk ||gk+1||2

gk+1
By using strong wolf condition we get:
2 _ T T T
odlg, |, @yedle) (19)
[ o o7 v

g:+1dk+1 -i_”ngrl”2 < Hgkﬂ

2 = 2
91l o]
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Since gy, S|gk+1 yk”

gI+1dk+1+||zgk+1||2 —ody gy ‘gk” ot e (20)
l9ca o[ A7 Yy |9

Oadeatoall odly _ fulodive (21)
||gk+1||2 (o +1)Hng2 dkTyk ‘ Oyl (0+1)

Gubeatf9al _odly, _ o 22)
|9l (a+1)Hng

where c is small positive constant

gk+1 i S—(1= C)||gk+1||
the proof is complete.

Theorem (2):
(Global convergence for new proposed method ):
Consider the iteration method which is define in (2) where d, defined

by,(13) and suppose the assumption A holds. Then the new algorithm

either stops at stationary point i.e. |g,[ =0 or Li{nﬁotnfugku =0
Proof:
Form (12),we get
g-kr+yk

Oy = =G + B A — kFRWyk
el <o+ 87l | 877 9.4 k||yk|| .......................................... (23)
<D0l + Bl \gFR\“”gk” Y I (24)
|dk+1 Sl//

1
)3 >y 2 =Y 1=w
k1 k+1" KAV ket

1
D _
k>1 k+1||
by using lemma(1) we get :
lim [, =0

k—o0

5:Numerical experiments
In this section, we will test the feasibility and effectiveness of the
Algorithm 2.1. The algorithm is implemented in Fortran77 code using
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double precision arithmetic and Comparison our new algorithm with
standard three term CG-algorithm in Table (1)

overall the calculation and for different dimension for (100<n<5000), all the
algorithms in this paper use the same ILS strategy.

All the results are obtained using (Pentium 4 computer). All programs are
written in FORTRAN 90 language and for all cases the stopping criterion
taken to be:

Hgk+1H310_5
The comparative performance for all of these algorithms is evaluated by

considering number of function Evaluations NOF and number of
iterations NOI .

Table (1) Comparison of our new algorithm with standard FR CG-
algorithm.

FR. New
Algorithm Algorithm

Test fun. Dim.

NOI | NOF | NOI | NOF

Powell 100 50 136 40 109
Central 100 33 222 30 234
Edger 100 6 15 6 15
Cubic| 100 16 44 16 46
Wolfe | 100 49 99 46 93
Sum | 100 12 64 14 69
Wood | 100 29 67 30 69
Miele | 100 46 146 45 144
Rosen | 100 22 55 22 55
Recip | 100 S 16 S 16
Powell | 1000 54 164 40 109
Central 1000 40 312 33 278
Edger 1000 6 15 6 15
Cubic | 1000 16 44 16 46
Wolfe | 1000 64 129 53 107
Sum | 1000 21 110 23 114
Wood | 1000 29 67 30 69
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Miele | 1000 53 180 45 144
Rosen | 1000 22 55 22 55
Recip | 1000 S 16 S 16
Powell | 10000 56 168 43 128
Central | 10000 45 384 34 292
Edger | 10000 6 15 6 15
Cubic | 10000 16 44 16 46
Wolfe | 10000 | 118 238 131 266
Sum | 10000 32 161 35 165
Wood | 10000 29 67 30 69
Miele | 10000 53 180 53 182
Rosen | 10000 22 55 22 55
Recip | 10000 6 18 6 18
Total 961 | 3286 | 903 | 3039
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Appendix
1. Generalized Central Function:

f(X) _ ”ZM: (exp(X‘H) _X4i2): +100(X4i—2 _X4i71)6 + ’
1| arctan( X, , — X, )" + X, .
X0=(1,2,2,2;...)".

2. Extended Wood Function

n/4

f (X) = Z(loo(xfifs - X4i—2)2 + (X4i—3 _1)2 + go(xji—l - X4i)2 +
i=1

(1-x,,)* +10.1((x, , —1)* + (x,, —1)?) +19.8(x,, , —D(x,, - 1)),

4i-1

X, = (-3,-1,-3-1,...,-3,-1,-3,-1)".
3. Generalized Powell Function:

f(X) = f: (X4i*3 + 10X4i24)2 + 5(X4i—1 — Xy )j +
T (X — 2%4)" +10(X, ., — X,)

X,=(3,-101..,3,-1,01).
4. Sum of Quadritics (SUM) function:
F(x) =Y (x —i)*
i=1

Xo=(1,...)".
5. Wolfe Function;
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=[— — 112 il [X, =X (S—Xi/2+2Xi+1—1)]2
f(X) =[-x,(8-x,/2)+2x,-1] +le +[X ,—X (3=x /2)-1]
Xo=(-1,...)T

6. Rosenborck Function:

n/2

F(x) =2.100(%, —X;, )" + (L~ X, ,)’
Xo=(-1.2,1,...)".

7. Generalized Recip Function:

& 2 o2 X3i
f(x) =2 | (X311 —5)" +Xgi 4 +
i—1

(X311 —X3i2)" |,
Xo=(251,..2,51)"

8. Miele Function:

n/4

f(x)= Z(eXp(X4i—3)+ 10X4i_5 )2 +100(x4_p + X4i—1)6
i1

+ (tan(xgi g = Xg))* +(Xgi3)° + (x4 —1)%,

Xo=012,22,..12.272)"

9. Generalized Edger Function:

f(x)= r%lz(xzi—l = 2" + (Xoig —2)2%5 + (Xg +1)°
i1

Xo = (1.,0.,...,1.,0.)7

10. Generalized Cubic Function:

) = S [1000x, X3, )7 + (L-x,.,)°)
X, =(-1.21,...,.~1.2,1)"
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