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Modified PRP Method in Unconstrained Optimization Method

Aseel Muayad Qasim*

Abstract
we suppose in this paper a new scalar /3; which is a modification to PRP

method derived from the quadratic function , and we compute the numerical
value of the conjugacy factor tto achieve to a new parameter g, with computed
value t from the conjugacy condition using inexact line search and combine it

with ﬁk** in order to achieved the global convergence for this method.
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l.Introduction

The conjugate gradient method is designed to solve the following
unconstrained optimization problem:

min{f 00 XER"} (1)

n
Where f:R — Ris a smooth, nonlinear function whose gradient will
be denoted by g, =Vf(x,) More explicitly, It is well known that the

linear conjugate gradient methods generate a sequence of search
directions d, such that the following condition holds:

xk+1:xk+akdk..............................(2)
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Where . is a step length which is computed by carrying out a line

search, and the search direction at the first iteration is the steepest
descent direction i.e dy= —gO.The consequent search

direction can be defined by: dy o 1="9 1B

Where ﬁk Is a scalar, f(x,) is a strictly convex quadratic function , if

. Is the exact one-dimensional minimize along the direction dy

oy =arg min{f(x, +ad, )} then (2),(3) are called the linear conjugate
a>0

gradient method. Otherwise, (2), (3) are called the nonlinear conjugate

gradient method (Guoyin Li, Chunming Tang and ZengxinWei , 2007)

Some well-known formulas for B, —are the Hestense—

Stiefel(HS)(Hestense and Stiefel , 1952), Fletcher—Reeves
(FR)(Fletcher , 1964) Polak—Ribiere(PR)(Polak and Ribiere,1969)
methods which are given, respectively by:

T
HS :gk+1 yk

...................................... 4
“ dy Yy ()
ER g;+12 (5)
R
[EN(&
BPRP S (6)

e
The global convergence properties of the FR , PR and HS methods
have been studied by many researches, including (Zoutendijk , 1970).
To establish the convergence results of these methods , it is usually
required that the step
length o should satisfy some line searchs , one of them is strong

Wolfe conditions:

-
f(xk)—f(xk+akdk)2—5akgkdk ....................... @)

T T
‘gk+1dk‘£—agkdk ................................................... (8)

Where 0<8 <o <1. some convergence analysis even require that the o be
computed by the exact line search : that IS
f(x, +a, d, )= min f(x, +a,d, ) . On the other hand , many other numerical
k™ %%k? T o0 kKK

methods for unconstrained optimization are proved to be convergent under the
Wolfe conditions (Guoyin , Chunming Tang and ZengxinWei , 2007) :
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T
PO ) = (X + e 0, )= =80 G) Ay e, (9)
T T

9y 19} 209, d, PPN ¢/ 10)

2. New nonlinear conjugate gradient methods:

The new nonlinear conjugate gradient methods is depend on the idea of
using the conjugacy condition :
T _ T
dk+1yk _—tgk+1sk .....................................

We know if any algorithm use ELS then yIdk+1 =0 and this is satisfies when

we put t=0 in equation (11) , but if the direction is not exact then
yIdkH:—tngSk ; Assume that our new parameter which is denoted by ﬁ;

iIs a modification to the numerator of the PRP update parameter with the
Conjugacy condition to obtain this new form :

*:ngka 1% pPRP +t9I+15k
2 = "k 2 i
o] ol

where s =2 dy and t>0 is a constant , for an exact line search Oy 41 IS

orthogonal to Sy hence /3: iIs reduced to PRP method. But if the line search is
inexact then we can compute t by multiplying equation (3) with Yi and using
(11), we obtain the following formula for computing t

T - _
ykdk+1_ Y ngﬁL,Bkyk RLLEITRREPPPRTIRPPPPPRITRTE

Now if the direction is inexact (ILS) then y-l[d = and so we have:

.
k+1~ Oy 1%

T T
O +1% *Ok42% | T d,

2
o

98 5o | = YE gkl ok 0 avi 9 a3 Ve

T T
9y 15 =" Yk Ikt

‘tgLfk Hgk Hz‘t 9I+15k YIdk}yE9k+1H9kH2+9E+1yk VIdk

o5 0+ Ol 15 =8 Ol -0 v v o
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T 2. T T
K Ok 0| -9k a¥ic vk i
T 2. T T
cs25k | 9| Oka5k vk O
now substitute the value of t in (14) in equation (12) we get:

2.7 T T
T +||9k|| Vi Ok~ Ve Ok T
9k +1Yk 9k +1%

O 15 (||9k||2+yldk)

2
ol

*k:g-kr+1yk (||9k ||2+yldk )+||9k ||2 Vi Ok 11TV Yk O

o dloe]*+sT 00

By =

O N e R T [ R )

ol Qo+

A=
T
o |+ v o
and we use the last ;" in equation (15) to prove the convergence analysis of
our algorithms.

3. Convergence Analysis:
In order to establish the global convergence analysis, we make the
following assumptions for the objective function f .

Assumption (1)
I. The level set & ={x| f(x) < f(x

>0 such that ||x|<B forall xe¢
ii. In some neighborhood N of & , fis continuously differentiable, and its

gradient is globally Lipschitz continuous, namely, there exists a constant L>0
such that |g(x)-g(y)|<L|x-y| forallx,yeN (GilbertJ.C.and Nocedal J.

11992)
Theorem (2)
Suppose that d, _ ,is given by (3) and /3;* which is defined in (15) then,

1)}is bounded, namely, there exists a constant B

. . . - 2
the following result is satisfies : o , 1d 1 <-c|loy 1]
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Proof:
By induction for k=1 we have d, =-9, then le 9, <0, then we assume that

gldk<0 v k>2.

Ay y1= "9 117 By

2 2y)

9E+1dk+1:*H 9k41 H +%ghdk
(Y dk+”9k” )

It follows from strong wolfe condition (7) and (8) that:

2 2yng+l

T T
9kp1 k41 < “ Ot ||+ 2 (Fo9k dy)
Vg dy + ng
T 2 Zy-ll;gk-l-l T - e g . 2
9k+1dk+1+‘ Ik+1 H T 4o [ (-o9y dy ) dividing both side by |g,,,|" and
k "k
invert the inequality:
2 T 2 2
| 9 g di o) 94
k1 Giant| Qi T 2y19k+1(_aggdk)
.
i . -y, d
Now also it follows from strong wolfe condition (7) and (8) thatg,d, sﬁ
o +
.
d
— g’d, Yy O¢
(c+1)
2
| 9kt (e d+ol®)] g | (o+1)
2 =
9[+1dk+1+‘ Ok+1 ZHka Ik +1 (oygdy)
2
H Ok (y-||(-dk+Hng2)H 9y ||(0+1)
ket diat| Gk © ZHka(GYIdk)
2
(Vg A H 0P| Gea [ (o42) o
=6 >
and let ZHyk H(Uy;dk)

2 2

.
Oi1 Oyug +H 91
2

H 9 k41 1

5 =

— 20 = <

-
st dyin +H 9k H 9k
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‘ 2

2 2
T 1 T 1
gk+1dk+1S§H Oy ‘ _H Oy ‘ = gk+1dk+1g_(1_g)H O
1

and if we assume 1—5 =¢ and %e (0,1) then we complete the proof

‘ 2

T
gk+1 dk+1 < _CH g k+1

4. Global Convergence Theorem:

Under Assumption ii , we give a useful lemma which was essentially proved
by ( Zoutendijk ,1970) :
Lemma (2) : Suppose that X, Is a starting point for which Assumption (1) is

satisfied. Consider any method of the form (2), where dy Is a descent direction

and «, satisfies Wolfe conditions (7) and (8) then we have : °zi

k
Theorem (3) : Suppose that x

o,
= ol

1 Is a starting point for which Assumption (1)

holds. Let { x, , k=1,2,...} be generated by our method . Then the algorithm
either terminates at a stationary point or converges in the sense that
lim inf

A5
k—0 k
Proof :
Suppose that the conclusion does not hold , that is to say their exist appositive

constant ¢ such that HngZa‘ for all k. Since dk+1=-0k 4+1+ B, dk which is

.
20 41k

**

By

can be written as ||9k +1//<]| 9k +1]|*[Bk [[dk || and since: HngZWIdk

208 1Yk
oy [*+(o-00f

*k<
:‘ﬂk ‘_

2
- 207, 1, 5 < H9k+1 Hyk!
-
o ~o-0]ay | = 2-0)ay
- 2
Bl oy

such that b is a constant  |[dya|H- 941+ B < oy o] +10] [ | =y +|bjn
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and with this contradiction we complete the prove that is

K 1
z >
i:1||di||2 (7+bn)? i

o0

l=owo

5. Numerical experiments :

Now we present a numerical experiments whose objective function is
compared with PRP algorithms on the same set of unconstrained optimization
test problem. For each test function (Andre , 2008). All algorithms
implemented with the same line search and with the same parameters . The
comparison is based on number of iteration (NOI), and number of function

evaluation (NOF) .Our algorithms has converged as soon as Hng <107°.
(e 0]

Tables (1) ,(2) and (3) show the Comparison of algorithms w.r.s to NOI and
NOF for n=10, n=100, n=500,n=1000,,n=10000 respectively.

Table(1)

Test problems

PRP
N=10

New
N=10

PRP N=100

New
N=100

NOF(NOI)

NOF(NOI)

NOF(NOI)

NOF(NOI)

Shallow

8(21)

8(21)

8(21)

8(21)

Wolfe

36(73)

36(73)

44(89)

44(89)

Strait

6(14)

6(14)

6(14)

6(14)

Edger

5(14)

5(14)

5(14)

5(14)

Nondiagonal

28(73)

27(71)

27(73)

27(71)

Cubic

14(40)

13(39)

15(44)

13(39)

Rosen

27(77)

30(81)

27(77)

30(81)

Beal

12(30)

11(28)

12(30)

12(30)

Powell

43(105)

31(79)

50(136)

34(95)

Fred

6(19)

6(20)

9(25)

6(20)

Sum

7(41)

7(41)

13(61)

13(61)

Recp

8(25)

8(25)

8(25)

8(25)

Total

200(532)

188(506)
Table(2)

224(609)

206(560)

Test problems

PRPN=500

NewN=500

PRPN=1000

NewN=1000

NOF(NOI)

NOF(NOI)

NOF(NOI)

NOF(NOI)

Shallow

8(21)

8(21)

9(24)

9(24)
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Wolfe 47(95) 55(111) 64(129) 62(125)
Strait 6(14) 6(14) 6(14) 6(14)
Edger 6(16) 6(16) 6(16) 6(16)
Nondiagonal 27(73) 26(67) 27(73) 27(71)
Cubic 15(44) 13(39) 15(44) 13(39)
Rosen 27(77) 30(81) 27(77) 30(81)
Beal 12(30) 12(30) 12(30) 12(30)
Powell 50(136) 39(110) 54(164) 39(110)
Fred 10(27) 6(20) 10(27) 6(20)
Sum 19(102) 18(85) 21(106) 22(112)
Recp 8(25) 8(25) 8(25) 8(25)
Total 235(660) | 227(619) | 259(729) | 240(667)

6. Conclusion:

Test problems

Table(3)

PRP N=10000

NewN=10000

NOF(NOI)

NOF(NOI)

Shallow

9(24)

9(24)

Wolfe

271(551)

267(542)

Sum

35(127)

35(166)

Edger

6(16)

6(16)

Nondiagonal

27(73)

28(73)

Cubic

15(44)

13(39)

Beal

12(30)

12(30)

Wood

30(69)

30(69)

Powell

56(168)

39(110)

Fred

10(28)

9(26)

Recp

8(25)

8(25)

Osp

699(2683)

631(2485)

Total

1178(3838)

1087(3605)

From tables (1),(2) and (3) which is denoted above we note clearly that the
comparison result for the new g, which is denoted by g, with PRP method for
n=10,100, 500, 1000 and 10000 the result is more effective and effietient than
the PRPmethod .
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