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Modified PRP Method in Unconstrained Optimization Method
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Abstract

we suppose in this paper  a new scalar *
k   which is a modification to PRP

method  derived from the quadratic function , and we compute the numerical
value of the conjugacy  factor tto achieve to a new parameter **

k with  computed
value  t  from the conjugacy condition  using inexact line search and combine it
with **

k  in order to achieved the global convergence  for this method.

  *
kPRP

t**
k

t  

  **
k  .

1.Introduction
       The conjugate gradient method is designed to solve the following
unconstrained optimization problem:

}:{ )(min
n

Rxf x …………………..(1)

 Where R
n

Rf : is a smooth, nonlinear function whose gradient will
be denoted by )( kk xfg   More explicitly, It is well known that the
linear conjugate gradient methods generate a sequence of search
directions kd  such that the following condition holds:

kdkkxkx 1 …………………………(2)
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Where k  is a step length which is computed by carrying out a line
search, and the search direction at the first iteration is the steepest
descent direction i.e 00 gd .The consequent search
direction can be defined by: kdkkgkd 11
………………….….(3)
Where k   is a scalar , )( kxf  is a strictly convex quadratic function ,  if

k  is the exact one-dimensional minimize along the direction kd ,
)}({

0
minarg kdkxfk  then (2),(3) are called the linear conjugate

gradient method. Otherwise, (2), (3) are  called the nonlinear conjugate
gradient method   (Guoyin Li, Chunming Tang and ZengxinWei , 2007)  .
Some well-known formulas for k  are the Hestense–
Stiefel(HS)(Hestense and Stiefel , 1952),  Fletcher–Reeves
(FR)(Fletcher , 1964) Polak–Ribiere(PR)(Polak and Ribiere,1969)
methods which are given, respectively by:
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1     ………………...……………..(4)
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k …………………………….....…(5)
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    The global convergence properties of the  FR , PR and HS  methods
have been studied by many researches, including (Zoutendijk , 1970).
To establish the convergence results of these methods , it is usually
required that the step
length k  should satisfy some line searchs , one of  them is  strong
Wolfe conditions:

,)()( kdT
kgkkdkkxfkxf ……….…………(7)

kdT
kgkdT

kg 1 ...................................................(8)

  Where 10 . some convergence analysis even require that the k  be
computed by the exact line search , that is

)(
0

min)( kdkkxfkdkkxf  . On the other hand , many other numerical

methods for unconstrained optimization are proved to be convergent under the
Wolfe conditions (Guoyin , Chunming Tang and ZengxinWei , 2007) :
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,)()( kdT
kgkkdkkxfkxf ……………..….(9)

kdT
kgkdT

kg 1  ………………………………..(10)

2. New nonlinear conjugate gradient methods:

     The new nonlinear conjugate gradient methods is depend on the idea of
using  the conjugacy condition :

ksT
ktgkyT

kd 11 .……………………………...(11)

 We know if any algorithm  use ELS then 01kdT
ky  and this is satisfies when

we  put   t=0   in  equation  (11)  ,  but   if  the  direction  is  not  exact   then

ksT
ktgkdT

k y 11 ; Assume that our  new parameter  which is denoted by *
k

is  a  modification  to  the  numerator  of  the  PRP  update  parameter   with  the
Conjugacy condition  to obtain this new form :
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tPRP
k   ……………(12)

  where kdkks   and 0t   is a constant , for an exact line search 1kg  is

orthogonal to ks  hence *
k  is reduced to PRP method. But if the line search is

inexact then we can compute t by multiplying equation (3) with ky  and using
(11), we obtain the following formula for computing t

kdT
kykkgT

kykdT
k    y 11 ………………………(13)

Now if the direction is inexact (ILS) then ksT
ktgkdT

ky 11   and so we have:
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    now substitute the value of t in (14) in  equation (12)  we  get :
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and  we  use  the  last **
k  in equation (15) to prove the convergence analysis of

our algorithms.

3. Convergence Analysis:
        In order to establish the global convergence analysis, we make the
following assumptions for the objective function f .

Assumption (1)
i. The level set )}1()(|{ xfxfx is bounded, namely, there exists a constant B
>0 such that Bx  for all x

ii. In some neighborhood N of  , f is continuously  differentiable, and its
gradient is globally Lipschitz continuous, namely, there exists a constant L>0
such that yxLygxg )()(    for all x ,y N (Gilbert J.C. and Nocedal J.
,1992)
Theorem (2)
       Suppose that 1kd is given by  (3)  and **

k  which is defined in (15)  then ,

the following result is satisfies : 2
111 kgckdT

kg
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    Proof:
      By induction  for k=1 we have 11 gd  then 011 gTd , then we  assume that

2k0kdT
kg .

kdkkgk d 11
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     It follows from strong wolfe condition (7) and  (8)  that:
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dividing both side by 2
1kg and

invert the inequality:
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Now also it  follows from strong wolfe condition (7) and  (8)  that
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and if we assume c11  and )1,0(1  then we complete the proof
2
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4. Global Convergence Theorem:
     Under Assumption ii , we give a useful lemma which was essentially proved
by ( Zoutendijk ,1970)  :
 Lemma (2) : Suppose that 1x  is a starting point for which Assumption (1)  is
satisfied. Consider any method of the form (2), where kd  is a descent  direction

and k  satisfies  Wolfe conditions (7) and (8) then we have :
1 2

1

k kd

 Theorem (3) : Suppose that 1x  is a starting point for which Assumption (1)
holds. Let  { kx  , k = 1,2,....}  be generated by our method . Then the algorithm
either terminates at a stationary point or converges in the sense that

0inflim
k

g
k

Proof :
   Suppose that the conclusion does not hold , that is to say their exist appositive

constant  such that kg  for  all k . Since kdkkgkd 11  which is

can be written as 11 kdkkgkd  and since:
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such that b is a constant kdkkgkd 11 kdbkg 1 = b
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and with this contradiction  we complete the prove that is

1k
12

1

1 2
1

b

k

i
id

5. Numerical experiments :

       Now we present a numerical experiments whose objective function  is
compared  with PRP algorithms on the same set of unconstrained optimization
test problem.  For each  test function (Andre , 2008). All algorithms
implemented with the same line search and with the same parameters . The
comparison is based on number of iteration (NOI), and number of function
evaluation (NOF) .Our algorithms has converged as soon as 510kg .

Tables (1)  ,(2) and (3) show the Comparison of algorithms w.r.s to NOI and
NOF for n=10,  n=100, n=500,n=1000,,n=10000 respectively.

Table(1)
Test problems PRP

N=10
New
N=10

PRP N=100 New
N=100

NOF(NOI) NOF(NOI) NOF(NOI) NOF(NOI)
Shallow 8(21) 8(21) 8(21) 8(21)
Wolfe 36(73) 36(73) 44(89) 44(89)
Strait 6(14) 6(14) 6(14) 6(14)
Edger 5(14) 5(14) 5(14) 5(14)

Nondiagonal 28(73) 27(71) 27(73) 27(71)
Cubic 14(40) 13(39) 15(44) 13(39)
Rosen 27(77) 30(81) 27(77) 30(81)
Beal 12(30) 11(28) 12(30) 12(30)

Powell 43(105) 31(79) 50(136) 34(95)
Fred 6(19) 6(20) 9(25) 6(20)
Sum 7(41) 7(41) 13(61) 13(61)
Recp 8(25) 8(25) 8(25) 8(25)
Total 200(532) 188(506) 224(609) 206(560)

Table(2)

Test problems PRPN=500 NewN=500 PRPN=1000 NewN=1000
NOF(NOI) NOF(NOI) NOF(NOI) NOF(NOI)

Shallow 8(21) 8(21) 9(24) 9(24)
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Wolfe 47(95) 55(111) 64(129) 62(125)
Strait 6(14) 6(14) 6(14) 6(14)
Edger 6(16) 6(16) 6(16) 6(16)

Nondiagonal 27(73) 26(67) 27(73) 27(71)
Cubic 15(44) 13(39) 15(44) 13(39)
Rosen 27(77) 30(81) 27(77) 30(81)
Beal 12(30) 12(30) 12(30) 12(30)

Powell 50(136) 39(110) 54(164) 39(110)
Fred 10(27) 6(20) 10(27) 6(20)
Sum 19(102) 18(85) 21(106) 22(112)
Recp 8(25) 8(25) 8(25) 8(25)
Total 235(660) 227(619) 259(729) 240(667)

Table(3)

Test problems PRP N=10000 NewN=10000
NOF(NOI) NOF(NOI)

Shallow 9(24) 9(24)
Wolfe 271(551) 267(542)
Sum 35(127) 35(166)

Edger 6(16) 6(16)
Nondiagonal 27(73) 28(73)

Cubic 15(44) 13(39)
Beal 12(30) 12(30)

Wood 30(69) 30(69)
Powell 56(168) 39(110)
Fred 10(28) 9(26)
Recp 8(25) 8(25)
Osp 699(2683) 631(2485)
Total 1178(3838) 1087(3605)

6. Conclusion:
       From tables (1),(2) and (3) which is denoted above we note clearly that the
comparison  result for the new k which is denoted by *

k with  PRP  method for
n=10 ,100 , 500, 1000 and 10000 the result  is more effective and effietient than
the PRPmethod .
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