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Abstract:

In this paper we investigated new algorithm of Augmented
Lagrang-method to solve constrained optimization. The new
proposed method satisfied global convergence and it is too
effective when compared with other established algorithm to solve
standard constrained problem.
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1. Introduction :

The general constrained minimization problem
minimize f(x)...(1)

Subject to
gi(x) <0 i=1.. .,n.@2)
hi(x) =0 i=1,.....k.Q3)

where x is an n-dimensional vector and the functions f(x) , gi(x),
I=1,... nand hi(x), i=1,... k are continuous and usually as-summed to
possess continuous second partial derivatives.(Al Bayati , 2013)

There exits an important class of methods to solve the
general constrained optimization. This class of methods seeks the
solution by replacing the original constrained problem with a
sequence of unconstrained sub problems in which the objective
function is formed by the original objective of the constrained
optimization plus additional 'penalty' terms. The 'penalty' terms are
made up of constraint functions
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multiplied by a positive coefficient. By making this coefficient larger
and larger a length optimization of the sequential unconstrained
sub problems, we force the minimize of the objective function
closer and closer to the feasible region of the original constrained
problem. However, as the penalty coefficient grows to be too large,
the objective function of the unconstrained optimization sub
problem may become ill conditioned, thus, making the optimization
of the sub problem difficult. This issue is avoided, after the proof of
convergence, by the so called 'Augmented Lagrange method' in

which an explicit estimate of the Lagrange multipliers A, p is

included in the objective. (Buys, 1972)
2.The Lagrange method :

Lagrange multipliers play a crucial role in the study of constrained
optimization. On the one hand, the conditions imposed on the Lagrange
multipliers are always an integral part of various necessary and sufficient
conditions and, on the other, they provide a natural connection between
constrained and corresponding unconstrained optimization problems;
each individual Lagrange multiplier can be interpreted as the rate of
change in the objective function with respect to changes in the associated
constraint function (Flecher , 1987).

3.Augmented Lagrange Multiplier Method :
3.1 Mixed Equality—Inequality-Constrained Problems
Consider the following general optimization problem:

minimize f(x) .. (4)
subject to
g;(x) <0 =12 m .. (5
h (x)=0 =12 ... (6)

This problem can be solved by combining the procedures of the two
preceding sections.
The augmented Lagrangian function, in this case, is defined as

m P m P
AXA,0) = FO)+D A+ Y An, i (0 +1. Y,  +1, > 0 (x) ... (7)
j=1 j=1 j=1 j=1

where qj is given by

A
a; = max gj(x),—?

k
The solution of the problem stated in Egs. (4) to (6) can be found by
minimizing the function A, defined by Eq. (7), as in the case of equality-
constrained problems using the update formula
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k

()
2800 =289 1 2, max{gj(x),—z;} : j=12,..m ... (8)

A8 =28 +2rh(x) =12, ... (9)
The ALM method has several advantages. As stated earlier, the value of
r.need not be increased to infinity for convergence. The starting design
vector, X(1), need not be feasible. Finally, it is possible to achieve g;(x)=0
and h; (x) = O precisely and the nonzero values of the Lagrange

multipliers (4, #0) identify the active constraints automatically.
(Rao,2009)

3.2 Outlines of The Standard Augmented Lagrange Algorithm

1. choose a tolerance e =10® starting point X,=0 , initial penalty
parameter ro=1, and initial Lagrange multipliers A,=0

2. Perform unconstrained optimization on the augmented Lagrangian
function

(k)
3 set l(ijrl) :/Ujk) +2r, max{gj(x),—?} : i=12,....m
k

And Anei = Ans; +260;(x) j=12,.....p
4. Increase r,,, =2r, if |4, —4]~<05
5. Check the convergence criteria. If |x.-x%|<e , then stop.

Otherwise, set xo =X and return to Step 2.
(Rao,2009)
4.Augmented Lagrange Multiplier Method(PHRAUG):
The constraints defined by h(x) = 0 and g(x) < 0 will be included in

the augmented Lagrangian definition .Given set Q = {x € IR™|h(x) =
0,g(x)<0} . p € IR n > 0 ,we define the Powell-Hestenes—
Rockafellar(PHR),(Buys,1972),(Conn,2000),(Hestenes,,1969),(polyak,19
92)and(Rockafeller,1973)augmented Lagrangian defiend by:

m

L, (X, A, 1) = f(x)+§{2[h,(x)+£} +imax{o,g,(x)+iH .. (10)
P i=1 P

i=1
PHP-like augmented lagrangian methods are based on the iterative
minimization of L (x,4,u) with respect to x € Q followed by convenient

updates of A, p and p. (Birgin ,2010) .
4.1.Algorithm :

Step 1: choose a tolerance e =10~ ,starting point X,=0 , initial penalty
parameter ro=1, and initial Lagrange multipliers A,=0
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step 2 : Perform unconstrained optimization on the augmented
Lagrangian function
Step 3: set

20 = 7% 4 p h(x*)

and

p =@+ pg(x),

Step 4: Increase r,,, =2r, if |4, —4]~<05
Step 5 : Check the convergence criteria. If [xwa—x"|<¢ , then stop.
Otherwise, set xo =X and return to Step 2.

5. New Modified Barrier Augmented Lagrangian Method(MBAUG) :
we develop a new method for solving constrained nonlinear
optimization problems involving both inequality and equality constraints.
Our method is a combination of the augmented Lagrangian method for
equality constraints of [Hestenes (Hestenes,1969) and Powell (Powell
,1969)]with a modified barrier function (MBF) method of Polyak(Polyak
,1992). Variants of the latter method have been considered by Breitfeld
and Shanno(Breifeld,1994) and Conn et al.(Conn , 1997). Since the
modified barrier function can be viewed as an interior augmented
Lagrangian, the MBAUG method can be viewed as an interior-exterior
augmented Lagrangian method .The idea of combining a barrier function
and a penalty function approach to solve constrained optimization
problems with both inequality and equality constraints was suggested
nearly thirty years ago by Fiacco and McCormick.(Yuzefovich , 1999)

The new modified Barrier Augmented Lagrangian multiplier
Method (MBAUG)

n| m A 2 | :
BAL, (X, 4, 1) = f(X) +%{z [hi(x) +2—p'nj —zl: 2 log Ugi(x) +%m ...(11)

i=1
Barrier augmented lagrangian methods are based on the iterative
minimization of  BAL (x,,u) with respect to x € Qsuch that Q =

{x € IR"|h(x) =0 ,g(x) < O} followed by convenient updates of A, u
and p.

5. 1. Algorithm:
Step 1 : Start point X initial of the feasible , nis scalar , H; =I, initial

parameter po = 1, initial Lagrange multiplier Ao , poand €= 1 x 1075,
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Step 2:Set k=1 d;=-H; 01

Step 3 : Perform unconstrained optimization on the augmented lagrangian
function of eq. (10) .

Set dyx = -Hxgk where Hy is BFGS method.
Step 4 : Set xp.1 = xp + Axd; Where A is satisfied wolfe condition .

Step 5 :Check the convergence criteria [x"c. - x| < & stop

Otherwise

At = 1(/Tk +2p h(x"))
n

and

k+1 1 4p2n
== n K
ni " +2p¢ g(x*)

Step 6 : set Xo =xx and k=k+1 return to Step 3.

6. The Convergence Analysis of The New Modified Barrier
Augmented Lagrangian Multiplier Method (MBAUG) :

The convergence analysis of augmented Lagrangian method
is similar to that of the quadratic penalty method, but significantly
more complicated because there are three parameters A , u ,p
instead of just one. As a straightforward generalization of the
previous method, we can define:

Vi(x) + A, Vh(x) — u, Vg (x)

foedme Awp)=|  (L+D)+2he) |02

npm + 2np, p™g(x) — 4p*"
and solve for (X,A+) , (X,u+) regarding A ,u and p as parameters . first of all
assuming as usual that x , A*, u* ,lagrange multiplier pair ,

Vi(x*) + Z'Vh(x™) — " Vg(x™) 0
FOs 20 A p) = (2 + %) + %h(x*) = H ..(13)
np'm+2nuptg(x*) — 4p*" 0

For all p>0 . moreover , the Jacobean of f (with respect to the variables x
’ }\'+ ’ le+) IS

V21(x, Ay piy)  Vh(x) —Vg(x)
](x,2—+,ll+ lAll"llp) = %Vh(X) 1 O (14)
p"Vg(x) 0 nml + 2nlp™g(x)
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Assuming x* is a nonsingular point of the NLP , and using the sufficient
condition the matrix

V2I(x*, 25 1) Vh(x*)  =Vg(x*)
JG A w A ) = | 2 v I 0 ...(15)
prVg(x7) 0  2nlp"g(x")

As p—0 , therefore there exists >0 such that J(x*, A", u*, A, u,p) is
nonsingular for all u € [0, i]. The implicit function theorem then implies
that there exists a neighborhood N of i~ A" such that there exist function
X, A+ and X, p. ,defined on N x [0, ] such that

XA, p) = x* ,A,(A%,p) = A* forall p € [0,p]

-x(up) = x" ,uy(u',p) = p* forallp € [0,p]

-forallA, e N, p €[0,9],

(A ), (4, p) s (s p) s A, p) = 0

Then the function x , A, , p. satisfy

Vf(x(A 1 p)) + 2.4, pIVh(x(4,p)) — s (u, IV g (x (e, p)) =0 ... (16)
(1 +2) + 2 =0 .7
npy (u, p)m + 2, (u, p)p" g (x(u, p)) — 4p*" =0 ...(18)

solving (17) , (18) , 2, (4, p) and u,;(u, p) yield

2.0up)==(2+20" ()
and

_Lf_ 4"
)

substituting this in to (16)

Vi(x(Awp)) —1/n A+ 2p"™n h(x(A,p) )Vh(x(4,p)) -

1/n ((4p~2n)/ (u+ 2p™n g(x(u, p) ) NVg(x(u,p) ) = 0...(19)
rearranging the last equation shows that

VL (x(A, 1, p)) =0 ... (20)

in other words , x(4, p), x(u, p) a stationary point of L(x(4, u, p))
for eachAe N, n € N and each p € [0, 7],
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since
VEL(x(A, w, p), A i, p) = VAL (x (A, p), 2+ (A, p), 1y (1, p)

8p3"vg(x (1, p))Vg(x(u, p))*
(u+ 2p"g(x(u, p)))?

.(21)

2
—=p"Wh(x (1, p))Vh(x(2, p))" -

and X(hp)— X, AMAp)— A, X(p) = X, p(u,p) = p'as A—d, pop .
it is straightforward to show that

VEL(x (A, 1, p), A, p,p) =0 o
Is positive definite for A, p sufficiently close to A , u and for p
sufficiently small we have therefore proved the following theorem .

6.1. Theorem:

Suppose f: R"—R and ¢c:R"—R™ are twice continuously differentiable and
X is a local minimizes of the NLP

minimize f(x)

Subject to
gi(x) <0 i=1,....,1n..(22)
hi(x) =0 i=1....k

If x* is a nonsingular point and A~ is the corresponding lagrange
multiplier , then there exists 5 > 0,e > 0 and a function

x:N X [0, p] = R™, N=Be@*)with the following properties:

1- x is continuously differentiable.

2- x(A',p)=x and x(u,p)=x forall p € [0, 5]

3- x(A,p)=X and  x(u.p) is the unique local minimize
ofVL (x(A,u,p)) in N

proof

Accordlng to the preV|ous theorem, if pis sufflciently small and A—
A, u— w then x(A,p)— X and X(1 ,p) — X, however since A is
unknown the condition A— A~ , p— p cannot be enforced directly.
Instead, theaugmented Lagrangian method updates A using the results of
the unconstrained minimizationd < A,(4,p) andu < p,(u,p) It is
necessary to prove, then, that updating A , « in this manner produces a
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sequence of Lagrange multiplier estimates converging to A", &~ Since
Ay, uy UI0TIs a continuously differentiable function of 4, u
and A, (A%, p) = A", u.(u*, p) = u*, we can write

1

L(Lp) =1 + j VA, (I + 64— 4. p)T(4 — 1*) dt
0

Using the triangle inequality for integrals if follows
1
122G p) = 27N < [I2, G+ £ = 20, )T 1A = Xl
0

< c(P)a -2
.(23)

Where c(p) is an upper bounded for |[VA.(., p)T|| Similarly

1

(e, p) = it j Vi, (1 + tQu — 1), p) (u — ) dt
0

1
s (o p) — pll < jIIVuJ,(u* +t(u—p)p) Nl — plide
0
<D(p) llu =l

.(24)

Where D(p) is an upper bounded for ||Vy, (., p)” || Similarly

(L p) = x* + f Vx, (1" + t(— 4%). o) (4 — 1°) dt
0

1
(4, p) — x°|| < j 1%, (" + £ — %), p)TI1 1A = 2 llde
0
< E(p) 11— 'l

...(25)

Where E(p) is an upper bounded for ||Vx, (2, p)T||
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1

x(u,p) =x" + f Uxy (U + t(u—p*), p) (u—p*) dt
0

1
lx(u, p) — x|l < j||VX+(.U* +t(u—u)p) IHlw — plld
0

< F(p) llu—pl
...(26)

Where F(p) is an upper bounded for ||Vx, (i, p)7 ||
The function x , A, , u, are defined by the equation.
V(x4 up)) + 2. (4, p)Vh(x) — py(u, p)Vg(x) =0
A\ 2p"
(ep +2)+Lhm = 0
npy (u, p)m + 2np, (u, p)p™g(x) — 4p*" =0

Differentiating These equation respect to A,u and Simplifying the
results yields

Vzl(X(A, ‘Ll, p))a /1+(/1 1p)1 ‘Ll_l_(‘Ll, p))VX(A, .u)T + vﬂ'+(ﬂ~ ,p)TVh(X) -

Vi (u,p)"Vg(x) =0
..(27)

227 h(x)Vx(A, p) + VA, (1,p) =0
...(28)

2np, (1, p)p"Vg(x)V(x)(A, m) + nuVu, (u,p) +
2np™g(x)Vu,(u, p) = 0...(29)

Vx(A,w)" 0
Jx(, 1, p), A4 (A, p), 14 (u, p)A, 1, p) lV/L(/Lp)T‘ = H ...(30)
Vi, (u,p)"| 10

Since J(x(A, 1, p), A+ (A, 1), A, i, p) = J(x™, A", 0", A", u", p) as A- A7,
u — p* it follows that

(A, w, ), A (A, p), 1 (u, p)A, 1, p)~ | is bounded above for all
A, u sufficiently close to A*, u* therefore from
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Vx(A, u)T 0
VAL ()| = pJ (x4, 1, p), A+ (A, p), s (i, ) A, 1, p) 1 H
Vi (u, p)” 0

...(31)

we can deduce That There exist p” = 0and M > 0 such That for all
pe(0,p")

Vx4, )7l < pM VAL p) Il < pM
IVx(u,p)"ll < pM Vi, ()"l < pM
Using pM in place of C(P) , D(P) , E(P) , F(P)
Above , we obtain

124+ (4, p) = 27|l < pM [IA = 27|

(4, p) = x*|| < pM ||2 = 27|

s (o p) — Il < pM |l — 7|l

x(u, p) = x7Il < pM || — ||

For all p € (0, p)

7 . Results and Conclusion

Several standard non-linear constrained test functions were minimized
to compare the new algorithms with standard algorithm see

(Appendix,B). with 1<m<4 and 1<g;(x)<4 . Is considered as the

comparative performance of the following algorithm.

1- Mixed Equality-Inequality-Constrained Problems of the augmentd
Lagrangian method (MAXAUG)

2- the Powell -Hestenes —Rockafellar of the augmented Lagrangian
method (PHRAUG)

3- New Modified Barrier Augmented Lagrangian Method(MBAUG).

We denoted Mixed Equality—Inequality-Constrained Problems of the
augmented Lagrangian method (MAXAUG),the Powell-Hestenes
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Rockafellar of the augmented Lagrangian method (PHRAUG) , New
Modified Barrier Augmented Lagrangian Method(MBAUG) .

All the results are obtained using (Laptop) . All programs are written
in visual FORTRAN language and for all cases the stopping criterion

taken to be |x —x_,[<&, 5 =10"°

All the algorithms in this paper use the same ELS strategy which is the

quadratic interpolation technique directly adapted from (Bunday ,1984) .

The comparative performance for all of these algorithms are
evaluated by considering NOF, NOI, NOG and NOC, where NOF is the
number of function evaluation and NOI is the number of iteration and
NOG is the number of gradient evaluation and NOC number of
constrained evaluation.

In table (1) we have compared of three algorithms (MAXAUG) ,
(PHRAUG) , (MBAUG) .

Table (1)
Comparison of (MAXAUG), (PHRAUG) , (MBAUG) .
NO. | MAXAUG. PHRAUG. MBAUG.
NOF(NOG)NOI(NOC) | NOF(NOG)NOI(NOC) | NOF(NOG)NOI(NOC)
1 1544(150)2(1) 259(66)3(3) 23(21)2(1)
2 357(28)2(1) 72(7)2(1) 103(9)5(9)
3 144(3)2(1) 144(3)2(1) 9(4)2(1)
4 213(13)2(1) 167(5)2(1) 96(6)2(1)
5 137(3)2(1) 147(3)2(1) 106(8)2(1)
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6 47(4)2(1) 41(3)2(1) 146(9)2(1)
7 36(3)2(1) 76(8)2(1) 6(3)2(1)
8 119(2)2(1) 141(2)2(1) 95(7)5(9)
9 46(5)5(9) 2393(58)2(1) 100(9)5(9)
10 |41(2)2(1) 289(7)5(1) 341(1)1(0)
TO. | 2684(213)23(18) | 3729(162)24(12) | 1025(77)28(34)
Fig(1)
€
|
Yo
|
o I
I I m NOF
" I mNOG
Yoo I ONoI
" |
MAXAUG  PRHAUG  MBAUG
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( Appendix B) (aalall
paiall ey JLAAY) J) g
Appendix
1.min  f(x)=x"-xX,+ X
s.t

X2+ X% —4
—2X, — X, +2

x =[0.02, 0.04]
: _ 2 2
2.min f(X)=(4-2)“+.25%5
s.t

2% +3%y —4
— X +3.5%p +1

x=[3,5]

3.min  f(X)=x7+x3
S.t

[77]



The 6™ Scientific Conference of the College of Computer Sciences & Mathematics

X1 +2Xy —4

- 12—x§+5

X1
X2
x=[.9,1.3]

A.min - f(X)=(x—-2)%+ (% -1

5.min  f(X)=(x—3)"+(X,—2)°
s.t

X, +2X, —4

—XxZ = X2 +5
Xl

X2

x=[0.2 ,1]

6. min  f(x)=(x-1)°+2(x,-3)* +(x,+1)°

x=[3,3,3]
7.min  f(X)=(x—-2)%+(x, -1)?

s.t
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—X12+X2

X1+X2—2
x=[2,2]

8.min f (x)=(x,-2)*+(x,-4)?

s.t

27 +x,—34
2X,+3x,—-18
X, >0

9.min f = xq x
s.t

25X/ =X}
X, +X,
X, >0

10. min f = =2x; — x,
s.t

X7 +x2<25
X7 -x7<27
X; >0
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