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Certain Subclasses Of Meromorphically Multivalent
Functions Involving New Linear Operator
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Abstract
The main object of this article is to study the subclasses of

multivalent meromorphic functions by using a linear operator in
punctured unit disk. Some geometric properties like coefficients bound,
distortion theorems and convolutions property
are investigated.
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1. Introduction :
Let p denots the clas of functions of the form :
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which are analytic and p-valent in the punctured unit disk   U_ = {z : 0 <
|z| < 1}.

We denote by )()(*
PP CandS   the subclass of

meromorphic p-valent starlike and convex functions,respectively,that is,
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For a function
p

zf )( ,we define the following operator which

studied by El- Ashwah[7].
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We note that:
1- )(),()(),1(1 zfmIzfI m , studied by Cho. et. al. [6].

2- )()(),1( zfDzfI M
P

m
p , studied by Aouf and Hossen[4],Liu

and Owa[8] and Sirvistava  and Patel[12].

3- )()(),1( zfIzfI mm
p , studied by Uralgaddi and Somanatha

[14].

4- )()(),(1 zfDzfI mm
 , studied by Al-Oboudi and Al-

Zkeri[1].

Definition 1.1.A function f is in the Class ),,,(,
m

pM    if it
satisfies the following condition:
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. There are many special cases of this class were studied by several
authors (for example see Cho et.al.[5] and Aouf [2]). Also,several results
were obtained and studied for subclasses of multivalent meromorphic
functions by many authors (see e.g.[9],[10],[3]and [13]). In the present
paper we have obtained coefficient bounds , distortion bounds and some
properties of convolutions of functions in this class .

2. Coefficient Bounds :
In this section,necessary and sufficient condition for a function

f(z) belongs to the class ),,,(,1
m

pM  are obtained.
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Theorem 2.1. A function f(z) of the form (1.1) is in the class
),,,(,1

m
pM    if and only if :
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Proof : Suppose (2.1) hold true.Then we obtain :

There for :

.0))(()(2))((
11 k

p
k

m

k

k
k za

p
kpkpzakpk

For |z| = r < 1 the left hand side of last inequality is bounded above by :
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Then :
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For converse,

Let ).,,,()( ,1
M

PMzf           be given by (1.1).Then :
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Since |Re(z)| _ |z| for all z.Then we get :
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Choose values of z on the real axis so that ))(),((( 1 zfIz m
p

p

is real Then , Upon clearing the denominator in(2.2) and letting   :
z through real values , we obtain
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This gives required condition.

Corollary 2.2: Let f(z) of the form (1.1) is in the class
),,,(,

m
pM

Then :

   …….    2 – 3 .

. 2 – 4 .

The result is sharp of the function :

3. Distortion Theorem :
Theorem 3.1.If a function f(z)defined by (1.1) is in the class

),,,(,
m

pM ), then :
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For sharpness, take the functions f(z) defined by :

      …. 3 – 2
.

:nBy Theorem 2.1,we obtai:Proof

k
m

k
k akpkap )21())(()21)(1(

1

),(2 p

therefore,

1 )21())((

)(2
k m

k kpk

pa

Thus, for 0 < |z| = r < 1,

pk
k

m

k

pm
pt Ta

p
kTzfI )()(),(

1

)(),(
)21())((

)(2 1 zfITkpk

pT m
p

P

m

p

,
)21())((

)(2 1 P

m

p Tkpk

pT

p

m

p zkpk

pzzf 1

)21())((

)(2)(



Certain Subclasses Of Meromorphically Multivalent . . . .

]6[

1

1 )(
k

k
mpp aTT

p

m

p T
p

pT 1

)21())(1(

)(2

And :

.)(
1

1

k
k

mpp aTT

.
)21())(1(

)(2 1 p

m

p T
p

pT

This gives the required result.

Corollary 3.2. If a function f(z)defined by (1.1) is in the class
),,,(,

m
pM

Then :
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4. Hadamard Product
Let g(z) p     defined by :
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Then the hadamard product (convolution) of the functions f(z) and g(z)
denoted by f *g and defined:
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Theorem 4.1. Let the functions f, g defined by (1.1) and (4.1)
respectively, be in the class ),,,(,

m
pM .

Then ),,,()*( ,
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pMgf , where :
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Proof : By using the technique used earlier by Schild and
Silverman[11], in order to prove this theorem ,we need to find the largest

 such that :
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Therefore, by the Cauchy Schwarz inequality, we get :
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It follows from (4-4) that :
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Its clear that )(k  is an increasing function of k.Thus,we obtain :
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This completes the proof.

Theorem 4.2:    Let the functions f, g defined by (1.1) and (4.1)

respectively, be in the class ),,,(,
m

pM   with kb  1, k = 1, 2, 3,

...p N.Then : ),,,(, ,
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therefore by Theorem 2.1 ,we have the result and the proof is complete.

Theorem 2.4: Let the functions f, g defined by (1.1) and (4.1)
respectively, be in the  class ),,,(,

m
pM  and :
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For k = 1, 2, 3, ... the left hand side of the last inequality is
increasing function of k, and its satisfied for all k if :
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and this completes the proof of theorem.
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