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Abstract:

In this article,for a positive integer n ,the concept of n-locally split

homomorphism relative to a sub module has been introduced and

studied,which will turn out to be most useful in the studying and providing

characterizations of local projectivity, local-regularity in the sense of

(Zelmanowitz, Field house and Ware) relative to a sub module.They present

generalization of projectivity and the three types of regularity which have

been mentioned respectivily.
Keywords: n-locally(T)-split homomorphisms,n-locally(T)-projective modules, n-(T)-

regular modules,(T)-pure sub modules and Zelmanowitz (Field house) (T)-regular

modules.
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(Zelmanowitz, Field house and Ware).

.

1- Introduction

Nowadays, there are three possible generalizations of the notion of

Von Neumann regular rings to the general module theoretic setting by

Zelmanowitz [9], and Field house [5], as well as Ware [8], each one called

regular.
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A right R-module M is Zelmanowitz-regular, if for each x M, there exists
an R-homomorphism M* = HomR(M,R) satisfies x = x (x). The Field
house-regular module

Was defined as one whose sub modules are pure, while Ware-module was

defined as a projective module in which every principal sub module is

direct summand. The concept of locally split homomorphisms was

introduced in [3].Let M and N be R-modules, and  : N  M an R-

homomorphism.  is called locally split, if for each xo (N), there is an

R-homomorphism  : M N such that (xo)) = xo. This concept had

been utilized to characterize Zelmanowitz-regula modules, and modules in

which every sub module is locally split, that is, the inclusion mapping i : N

 M is locally split for each sub modules N of M.

Many algebraic structures had been restudied relative to a class of sub

modules, as semi-regular modules relative to a fully invariant sub module

[2], uniform extending modules [4], quasi-injective modules relative to the

closed sub modules class [7], pseudo-injective modules relative to a

principal sub modules class [10].Recently, projective module relative to a

sub module has been studied in [1].Let P be an R-module and T a sub

module of P. P is called (T)-projective , if for every R-epimorphismf : A

B and R-homomorphism g : P  B, there exists an R-homomorphism h :

P  A such that foh(x)  g(x)	 g(T) for all x P.

In section two of this work we introduce the concept of n-locally split R-

homomorphism relative to a sub module. Several properties have been

given and considered modules in which the inclusion mapping of every sub

module is locally split with respect to a sub module. In section three, we

utilize locally split homomorphism relative to a sub module to characterize

locally(T)-projective modules which
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is a generalization of (T)-projective modules [1]. Many properties and

characterizations have been investigated. Finally, in section four, we

introduce Zelmanowitzregularand Field house-regular modules relative to a

sub module, and characterize them in terms of our notions in section two,

and we show that the three notions of regularity relative to a sub module are

coinciding under locally (T)-projective modules.

In what follows, R will represent an associative ring with identity and R-

moduleM will mean unitary right R-module, unless otherwise stated.

2. n-Locally Split Homomorphisms Relative To A Sub module

Splitting homomorphisms are valuable tools for splitting modules into

internal direct sum. In this section we introduce a generalization of locally

split homomorphisms.

Definition 2.1: Let M , N be two R-modules and T a sub module of M. An

R-homomorphism  : N  M is called n-locally (T)-split, if for any finite

number of x1, x2, ..., xn (N), there exists an R-homomorphism : M  N

such that (xi))  xi T for each i = 1, 2, ..., n.

This concept extends some notions in the literature. It is clear that an

Rhomomorphism  : N  M is n-locally (0) -split if and only if it is locally

split which was introduced in [3]. Clearly, an R-homomorphism is n-locally

(T)-split if and only if it is k-locally (T)-split for all k   n. It is well-known

that, the Z-module Z is indecomposable and hence the inclusion mapping i :

2Z  Z is not locally split, but it is 1-locally (6Z)-split, since if we consider

the Z-homomorphism  : Z  2Z defined by (x) = 4x for each x Z, then

for each y 2Z we have (y) –y 6Z

Let  M  be  an  R-module  and  N,  T  be  sub  modules  of  M.  N  is  called  n-

locally(T)-split, if the inclusion mapping i : N  M is n-locally (T)-split,

that is, for any finite number of x1, x2, ..., xn N,  there  exists  an  R-
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homomorphism s : M  N such that s(xi) xi T for each i = 1, 2, ..., n. the

notion of n-locally (0)-split sub moduleswas introduced by Ramamurthi and

Rangaswany [6] by the name of strongly pure sub modules.

Recall that a sub module N of an R-module M is fully invariant if (N)  N

for each R-endomorphism  of M. It is known that an R-homomorphism  :

A M is n-locally (0)-split if and only if it is 1-locally(0)-split[3]. Relative

to a non-zero sub module we have the following:

Proposition 2.2: Let A and B be R-modules and T a fully invariant sub

moduleof B.Then an R-homomorphism  : A  B is n-locally (T)-split if

and only if it is1-locally(T)-split.

Proof: The ”only if” part is clear for any arbitrary sub module T of B. We

shall use induction to prove the ”if” part. Suppose that our statement is true

for n-1 where n > 1.Then there exists an R-homomorphism 1 : B A such

that xi 1(xi)) T  for  each  i  =  1,  2,  ...,  n  1.  As  xn

1(xn))	 (A),there  exists  an  Rhomomorphism  2  :  B   A  such  that

xn ( 1(xn)) 2 (xn 1(xn))))	 T .Put  = 1 + 2 2 1, then

 : B  A and xn (xn)) = xn 1(xn)) 2(xn)) + 2( 1(xn))))

= xn 1(xn)) 2(xn 1(xn))))	 T .

Furthermore, for i = 1, 2, ..., n, we have xi (xi)) = xi 1(xi)) 

2(xi))+ 2( 1(xi))))= xi 1xi)) 2(xi 1(xi))) = v 

2(v) T where v = xi 1(xi)).This shows that,xi (xi))_T for each i

= 1, 2, ..., n and hence  is n-locally(T)-split.

According to the above proposition, all results follow will doing either in

thesense of (1 locally) or (n locally) concept for arbitrary sub

module,these results will be true in the sense of (n  locally) or (1  locally)

concept respectively for fully invariant sub module, unless otherwise

mentioned.
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Proposition 2.3: Let h : A  B be an R-homomorphism, hbe  the  R-

epimorphismfrom A onto h(A) and T be a fully invariant sub module of

h(A). Then the following are equivalent:

(1) h is n-locally (T)-split,

(2) h is n-locally (T)-split and h(A) is n-locally (T)-split sub module in B.

Proof: Let x1, x2, ..., xn be elements in h(A). Assume (1), then there exists

an R-homomorphism q : B A such that h(q(xi))  xi_T for each i = 1, 2,

..., n. Let s = h  q : B  h(A) such that s(xi)  xi_T and hence h(A) is n-

locally (T)-split in B. If we denote q = q|h(A) : h(A) A, then h (q(xi)) 

xi T  foreach  i  =  1,  2,  ...,  n  which  shows  that  h0  is  n-locally  (T)-split.

Assume (2), then there are R-homomorphism s : B  h(A) with s(xi) 

xi T and q : h(A)  A with h (q (xi)) – xi T for each i = 1, 2, ..., n. Let q

= q  s : B  A. Thenh(q(xi))  xi = h (q (s(xi))) xi = h (q(xi+ti)) xi = h (q

(xi)) xi+ h(q (ti)) Tfor each i  = 1, 2,  ...,  n,  and some ti_T .  Thus h is n-

locally(T)-split.

The following corollary follows directly from proposition (2.3) and

proposition (2.2).

Corollary 2.4:Let A,B, h, handT be as in proposition (2.3) . Then the

following are equivalent:

(1) h is 1-locally (T)-split

(2) h is 1-locally (T)-split and h(A) is 1-locally (T)-split sub module in B.

Let M be an R-module and T a sub module of M. A sub module N of M is

called (T)-pure, if MA  N = NA + T  (MA  N) for each right ideal A of

R.This is equivalent to saying that, for every finite sets {mi}  M,{nj}  N

and {rij}  R with nj = mirij
n
i=1  ,j = 1, 2, ...,m, there is a finite set {xi}  N
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suchthat nj xirij
n
i=1 	N  T for each j = 1, 2, ...,m [1]. In the Z-module

Z,2Z is (6Z)-pure sub module in Z which is not pure.

Proposition 2.5: Let M be an R-module and T a sub module of M. Then

(1) Every 1 locally ( hence n locally) (T)-split sub module in M is (T)-

pure.

(2) Let h : M Mbe R-epimorphism. If h is 1  locally(h(T))  split, then

Ker(h) is 1  locally (T)-split in M.

Proof: Let N be 1  locally (T)-split sub module of M and nj = x r

{nj}  N, j = 1, 2, ..., n, {xi}  M and {rij}  R. For each j = 1, 2, ..., n,

there exists an R-homomorphism sj: M  N such that sj(nj) nj 	T . Put s

= sj
n
j=1  ,  then  s  :  M  N. Hence s(xi) 	N and s(xi)rij

m
i=1 nj

= ( sj)(n
j=1 x

i
)rij

m
i=1   xirij

m
i=1  = ( sj(xi

m
i=1

n
j=1 )  xi)rij = sj

n
j=1  nj 	T .

This shows that N is (T)-pure. For the second statement, let h : M Mbe

an R-homomorphism and nj = xirij
m
i=1  Ker(h). Then h(xi)rij

m
i=1  = 0.

Since h(xi) 	h(M) = M there is an R-homomorphism q : M  M such that

h(q(h(xi))) h(xi) = h(ti) for some ti  T and each i = 1, 2, ...,m, and hence

ti+xi q(h(xi)) tim
i=1 +xi q(h(xi)))rij nj = tirij

m
i=1   T .This shows that

Ker(h) is (T)-split in M.

Corollary 2.6:Let h : A  B be an R-homomorphism and T be a fully

invariant sub module of h(A). If h is 1  locally(T)-split homomorphism,

then h(A) is a (T)-pure sub module of B.

We call an R-module M, n (T) regular, if each sub module of M is

locally(T)-split, where T is a sub module of M.

It is clear that, if M is n (T) regularR module, then it is k (T) regularfor

each k  n, in particular, every n-(T)-regular R-module is 1-(T)-regular.
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The following result gives a good motivaton for considering relativity in

moduletheory.

Proposition 2.7: Let M be an R-module and T a sub module of M. If M is 1-

locally ( n-locally )-(T)-regular, then M/T is regular. The converse is true if

M/T is locally projective.

Proof: Let N/T be a sub module of M/T and x N/T . Then there exists an

Rhomomorphism   : M N such that x (x)	 T .  Hence   induces  a

mapping  : M/T  N/T . This implies that (x) = x which means that M/T

is regular. Conversly, let N be a sub module of M and x1, x2, ..., xn be a

finite number of elements of N. Then there is an R-homomorphism s : M/T

 N + T/T such that s(xi) = x  for each i = 1, 2, ..., n. Local projectivity of

M/T implies that there is an R-homomorphisms: M/T  N  such  that  

s(x ) = s(xi) for each i = 1, 2, ..., n, where  is the natural R-epimorphism

of N onto N +T/T . Put  = s  : M N. Then (xi)  xi T for each i = 1,

2, ..., n and hence M is n  (T)  regular.

If M is n-(T)-regular R-module where T is a fully invariant sub module of

M,then  M  is  m-(T)-regular  for  each  m   n.  Also,  if  M  is  n-(0)-regular  R-

module,then it is n-(T)-regular for each sub module T of M.

Recall that a sub module N of an R-module M is (T)-direct summand in M,

ifthere exists a sub module K of M such that M = N + K and K  N  T,

where T is a sub module of M [1]. Let Q be the group of rational numbers

and p be a prime number. Consider the two subgroups of Q, Qp ={a/b 	 Q :

b is relatively prime to p } and Qp={a/pn	 Q: n is non-negative integer } .

Then,  it  is  known  that  Qp  +Qp  =  Q  and  Qp   Qp  =  Z.  Thus  Qp

(respectivilyQp) is (Z)-direct summand of Q while neither one is direct

summand.
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Proposition 2.8: Let M be an R-module and T a sub module of M.Then

(1) If M is n-(T)-regular, then every k-generated sub module of M is (T)-

direct summand where k  n.

(2) If further, T is fully invariant in M, then every finitely generated sub

moduleof M is (T)-direct summand.

Proof: (1) Let N = xi
k
i=1 R be k-generated sub module of M, for each k 

n.By hypothesis, there exists an R-homomorphism s : M N such thats(xi)

 xi_T for each i = 1, 2, ..., k, and hence s(x)  x	 T for each x in N. For

each m 	 M, we have s(m)	 N and s(s(m) m) = s(s(m))  s(m)	 N 	 T.

This  shows  that  M  =  N  +  s 1(T   N),  and  it  is  easy  to  check  that  N  

1(T N)  T. Thus N is(T)-direct summand.

(2) Let N be m-generated sub module of M. Without loss of generality, we

canassume that m > n. As T fully invariant, then M is m (T) regular

andhence by (1), N is (T)-direct summand.

Recall that a sub module N of an R-module M is (T)-direct summand in M,

ifthere  exists  a  sub  module  K  of  M such  that  M =  N  +  K  and  K N T,

whereT is a sub module of M [1]. Let Q be the group of rational numbers

and p be aprime number. Consider the two subgroups of Q, Qp ={a/b 	 Q :

b is relatively prime to p } and Qp={a/pn	 Q: n is non-negative integer } .

Then,  it  is  known  that  Qp  +Qp  =  Q  and  Qp   Qp  =  Z.  Thus  Qp

(respectivilyQp) is (Z)-direct summand of Q while neither one is direct

summand.

Proposition 2.9: Let M be an R-module and T a sub module of M.Then

(1) If M is n-(T)-regular, then every k-generated sub module of M is (T)-

direct summand where k  n.
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(2) If further, T is fully invariant in M, then every finitely generated sub

moduleof M is (T)-direct summand.

Proof: (1) Let N = xi
k
i=1 R be k-generated sub module of M, for each k  n.

By hypothesis, there exists an R-homomorphism s : M N such that s(xi) 

xi	 T for  each i  =  1,  2,  ...,  k,  and hence s(x)  x	 T for each x in N. For

each m	 M, we have s(m)	 N and s(s(m) m) = s(s(m)) s(m)	 N T. This

shows that M = N + s 1(T  N), and it is easy to check that N  s 1(T 

N)  T. Thus N is(T)-direct summand.

(2) Let N be m-generated sub module of M. Without loss of generality, we

can assume that m > n. As T fully invariant, then M is m (T) regular and

hence by (1), N is (T)-direct summand.

Corollary 2.10: Let M be an R-module and T asub module of M. If M is n-

(T)- regular, then J(M)  T.

Proof: Let x J(M). Then xR is small and (T)-direct summand of M. This

implies that J(M) T.

Proposition 2.11: Let M be an R-module and T a fully invariant sub module

of M. If M is n-(T)-regular and S is the endomorphism ring of M, then, as

an S-module, M is n-(T)-regular.

Proof: We consider M a left S- module and hence (S R)-bimodule. Let N

be an S-sub module of M and x0 N. Then there exists an R-homomorphism

s : M  N such that s(x0) – x0 T . We consider s is an element of S.

Define s : M  N bys(y) = s·y. It is clear that s

0 is an S-homomorphism and hence s(x0) x0 T .  This shows that N is 1-

locally ( and hence n-locally) (T)-split. Thus M is n -(T)-regular

S-module.

3. N-Locally Projective Modules Relative To A Sub module
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Projectivity relative to a sub module had been studied in [1]. Let M be anR-

module  and  T  a  sub  module  of  M.  M is  called  (T)-projective,  if  for  each

Repimorphism  : A  B and R-homomorphism  : M  B, there exists an

R-homomorphism  : M  A such that (x) (x) (T) for each x in

M.

In this section, we consider the local property of (T)-projective modules.

We characterize these modules by means of locally homomorphisms

relative to a sub module. First we introduce the following:

Definition 3.1: Let M be an R-module, T a sub module of M and n a

positive integer. M is called n-locally projective relative to T (or simply n-

locally (T)- projective ), if for each R-epimorphism  : A  B and R-

homomorphism  : M  B, then for any finite number of x1, x2, ..., xn_M,

there exists an R-homomorphism  : M  A such that  (xi) (xi)

(T) for each i = 1, 2, ..., n.

It is clear that, every (T)-projective module is n-locally(T)-projective for

each positive integer n and each sub module T. In particular, every

projective module is locally projective module which introduced by

Zimmermann in [11]. Also, it is clear that n-locally (T)-projective module is

(T)-projective if it is finitely generated by n elements.

The Z-module Q is not 1-locally (Z)-projective, if not, let x_Q which is not

in Z.Assume F is a free Z-module having a Z-epimorphism  : F Q, then

there exists a Z-homomorphism f : Q  F such that  f(x) – x Z. But

HomZ(Q,Z) = 0and hence HomZ(Q, F) = 0. This implies that x Z which

contradicts the choiceof x. More generally, KR is not 1-locally (R)-

projective  where  R is  a  domain and K is  the  field  of  quotients  of  R as  R-

module.
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In the following , we give characterizations of n-locally (T)-projective

modules in terms of n-locally (T)-split homeomorphisms.

Theorem 3.2: The following are equivalent for an R-module M and a sub

module T of M

(1) M is n-locally (resp. 1-locally) (T)-projective,

(2) Every R-epimorphism into M (from any R-module) is n-locally(resp.1-

locally) (T)-split,

(3) For any finite number of x1, x2, .., xn (resp.x) M, there exist families

mj J
M and j J

  M*  such that for each i = 1, 2, ..., n

(a)  j (xi)(resp.  (x))  0 for only finitely many j  J

(b) xi mjJ j (xi) (resp.x mjJ j (x)) T .

Proof: We shall prove the n-locally case

(1)  (2) : Let A be any R-module and  : A  M be an R-epimorphism

.Then there exists an R-homomorphism  : M  A such that (xi) – xi

T for each i = 1, 2, ..., n. This shows that  is n-locally (T)-split.

(2)  (3) : Let mj J
be a generated set of M, that is M = mjRJ . Define

f : Rj  M where Rj = R for every j J, by f((rj)) = mjJ rj . Clearly, f

isan R-homomorphism. By (2), there is an R-homomorphism  : M

Rj   such that f( (xi))–xi T for each i = 1, 2, ..., n. Then for each j	

J,  there  is  j  :  M  Rj  such  that  (m)  =  ( j  (m))  for  each  m 	M, in

particular, (xi) = ( j(xi)) for each i = 1, 2, ..., n. Thus xi mjJ j (xi)  =

xi f( j (xi)) = xi  f( j (xi)) T . Let J0 = {j J : j (xi) 	0}. Then J0 is a

finite subset of J and xi mjJ j (xi) Tfor each i = 1, 2, ..., n.

(3)  (1) : Let  : A  B be an R-epimorphism and  : M  B be an R-

homomorphism. By (3), for each finite number of elements x1, x2, ..., xn of



Locally Split Homomorphisms Relative To A Sub module

]32[

M, there are families mj J
 M and j J

  M* such that j (xi) 	0

for finitely many j	 J and xi m j (xi) 	T for each i = 1, 2, ..., n. Since

(mj) 	B, there exists aj 	A such that (aj) = (mj) for each j 	J. Define 

:  M  A  by  (m)  = ajJ j (m)  for each m 	M,  in  particular  (xi)

= ajJ j  (xi)  for  each  i  =  1,  2,  ...,  n.  Thus  (xi) (xi)  =  ( a j

(xi)) (xi)  = (a ) j  (xi)  (xi)  = (mj)J j  (xi)  (xi)  =

( mjJ j (xi))  xi) 	 (T).This shows that M is n-locally (T)-projective.

We call the third statement of the above theorem, the dual basis lemma

forn-locally(T)-projectiive modules. the original statements in the theorem

are equivalent to the respective statements for fully invariant sub modules,

more precisely, every n-locally(T)-projective module is k-locally(T)-

projective for each k  n. Also,if M is 1-locally(T)-projective module and T

is fully invariant in M, then M is n-locally(T)-projective.

Corollary 3.3: The following statements are equivalent for an R- module M

and a sub module T of M:

(1) M is n-locally(resp.1-locally)(T)-projective,

(2)  For  each  free  R-module  F,  each  R-epimorphism   :  F  M  is  n-

locally(resp.1- locally)(T)-split.

Proof. (1)  (2) :follows from theorem (3.2)

(2)	  (1) : Let A be any R-module and  : A  M be an R-epimorphism.

Let{ai} I be a generated set of A and let F be a free R-module with basis

{zi} I .  Define  :  F  A by (zi) = ai.  Clearly is an R-epimorphism. By

(2),  is n-locally (T)-split, that is for any finite number of x1, x2, .., xn

	M, there exists an R homomorphism  : M  F such that  ( (xi)) xi

	T  for  each  i  =  1,  2,  ...,  n.  Put   =   ,  then   :  M   A  and  satisfies
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(xi)) xi T for each i = 1, 2, ..., n. This shows that  is n-locally(T)-split

and hence by theorem(3.2), M is n-locally(T)-projective.

Remark 3.4: (1) Let K be an R-module which is not (T)-projective for some

sub module T of K ( Q is not (Z)-projective Z-module), and M = K  H

where H = R is a direct sum of countable number of copies of R.

Since every module is projective relative to itself, then H is (H)-projective

and hence M is not (T H)-projective, otherwise, by

([1],propositon(3.7))implies that K is (T)-proective. We claim that M is 1 

locally(T  H) projective . Let {x } be a basis for H. Then T {xi} N is

a generated set of M. For each j N,  define  fj  :  H   R  by  f(j)(xi)

=
1       if i=j
0       if i j

fj can be extended ( by linearity ) to all H, therefore, if x = xi
n
i=1 ri, then

fj(x) = rj . Again fj can be extended to an R-homomorphism gj : M  R by

putting gj(t) = 0 for all t T . Then {gj} M*.  Let  m M. It is clear that

gj(m)  0 for only finitely many j N and m = t + x where t T and x H.

Then we have m x gj(m) = m x fj(m)  = m – x   T .  By dual

basis lemma for 1-locally(T)-projective modules we have M is 1-locally(T)-

projective and hence 1-locally( T  H )-projective.

(2) As an application of theorem(3.2), it is easy to see the following: If R is

a commutative ring and Mi is 1-locally(Ti)-projective R-module,i = 1, 2.

Then M1   M2 is 1-locally(M1   T2 + T1   M2 + T1   T2 )-projective .

In particular, tensor product of projective module M with 1-locally(T)-

projective module is 1-locally(M  T)-projective.

(3) the following statement is obvious. It follows directly by the dual basis

lemma for 1-locally(T)-projective modules. Let R be a commutative ring.

If M is 1-locally(T)-projective R-module and S is a multiplicative closed
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subset of R, then S 1M  is  1-locally(S 1T)-projective S 1R-module,

inparticular MP is 1-locally(TP )projective RP-module for each prime ideal

P of R.

(4) The converse of (3) is not true in general, as we see in the following

example. Let R be a Von Neumann regular ring which has no finitely

generated maximal ideal and hence has no maximal ideal which is a direct

summand. Let{P }  be the family of maximal ideals of R. Consider the

R-module M = (R/P ). Then RP  is a field and hence MP  is 1-

locally(T)- projective R -module for each sub module (T) of M. We claim

that  M*  =  0.  For,  if  f  :  R/P  R,  then  either  f  =  0  or  f  is  R-

monomorphism. If f is R-monomorphism, then R/P  is isomorphic to an

ideal W  in R. As R regular, then W  is a pure in R, and P  = annR(W ).

Thus W  = W  P  = 0. Maximality of P_ implies that P +W  = R and

hence P  is a direct summand of R, which contradicts the choice of R. Thus

M* = 0. Let K be a proper sub module of M and m M/K. By the above,

MP  is  1 locally(KP ) projective R  P module. If M is 1-locally(K)-

projective R-module, then by the dual basis lemma for 1-locally(K)-

projective modules we have m K which is a contradiction.

(5) IfM is 1-locally (and hence n-locally)(T)-projective R-module, then

J(M) MJ(R)+T(direct application of dual basis lemma for 1-locally(T)-

projective modules).Further, if T a small sub module of M, then J(M) =

MJ(R)+T

(6) The following result gives a motivation for studying n-locally(T)-

projective modules: Let M be an R-module and T a sub module of M. Then

M is 1- locally(resp. n-locally)(T)-projective R-module if and only if M/T is

locally projective R-module.
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Proof: Let x	 M/T . then there exist a pair of dual basis xj j J
 on  M

such that  j (x) 0 for only finitely many j	 J and x – xjJ j(x) T . For

each j J , define j:  M/T   R/t(T)  by  j (m)  =  j(m) + t(T) form M

where t(T) is the trace ideal of T. It is clear that j is well-defined R/t(T)-

homomorphism and x	 = xj j(x)J . This shows that M/T is locally

projective R/t(T)-module. As t(T) is two-sided ideal of R, then M/T is

locally projective R-module. Conversely, let x M. Then there a pair of

dual basis xj , j J
on M/T such that j(x)  0 for only finitely many j J

and  x = xj j(x)J .  Thus  x xj jJ (x) T where  is the natural

epimorphism. This shows that M is 1-locally(T)-projective.

It  is well-known that,  if  M is a projective R-module, then M = Mt(T), and

(M)  =and  (t(M))  and  t(M)  is  a  pure  ideal  of  R  ,  provided  that  R  is  a

commutative ring, where t(M) = (M), the sum runs over all  M*. For

1-locally(T)-projective modules, we have the following.

Proposition 3.5: Let R be a commutative ring and M a 1-locally(T)-

projective R-module. Then

(1) M = Mt(M) = T

(2) annR(M) = annR(t(M)) annR(T)

(3) t(M) = (t(M))2 + t(T)

Proof:(1) By theorem(3.2), for each x M, x = xiI fi(x)+vi where fi M*,

xi M and vi T . Therefore x Mt(M) + T and hence M  Mt(M)  +  T.

Thus M = Mt(M) + T.

(2) Let w t(M).Then w = f (ai) whereai M. Let r annR(M). Then wr

= f (air)  =  0,  hence  r annR(t(M)) . Thus annR(M)  annR(t(M)
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annR(T). Let s_annR(t(M)) annR(T). Then by (1), we have Ms = Mt(M)s

+ Ts = 0. Thus annR(M) = annR(t(M)) annR(T).

(3) Let w_t(M). Then w = h (mi) where mi M, hi M*. For each I I,

mi  = yjJ j(mi)+vi where yj M, M* andvi T  .  w

= hiI ( yjJ j(mi)  +  vi)  = hiJI (yj) j(mi)+ hiI (vi). Thus w

(t(M))2+t(M)\t(T) and hence t(M) = (t(M))2 + t(T).

Corollary 3.6: Let R be a commutatvie ring, M an R-module and T a sub

moduleof M. If M is 1-locally(T)-projective, then

(1) Mt(M) is (T)-direct summand (and hence(T)-pure) in M.

(2) t(M) is (t(T))-pure ideal of R.

Theorem 3.7: The following statements are equivalent for an R-module M

and a sub module T of M:

(1) M is n-locally(T)-projective,

(2) For each k-generated sub module M0 of M where k  n, there exist a

finitely generated free R-module F and R-homomorphisms f : M  F and g

: F  M such that g(f(x)) – x T for each x M0.

Proof: (1)  (2) : Let Qbe a free R-module having an R-epimorphism h : Q

 M. Then h is n-locally(T)-split. Thus we can find an R-homomorphism q

:  M  Q such that  h(q(x))   x T  for  all  x M0. As q(M0) is a finitely

generated sub module of Q, there exists a finite subset {u1, u2, ..., uk} of

the free basis of Q such that q(M0) is contained in a finitely generated free

sub module F = u1R + u2 + ... + ukR of Q. Since F is a direct summand of

Q, then let  : Q  F be the natural projection of Q onto F. Put f =  q : M

 F and g = h|F : F  M. Then clearly g(f(x)) – x T for each x M0.

(2)  (1) : Consider a finite number of x1, x2, ..., xn_M and let N be the
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sub module of M generated by these elements. By the hypothesis, there

exist a finitely generated free R-module F and R-homomorphisms f : M

F, g : F  M such that g(f(x)) – x T for each x_N,in particular g(f(xi)) 

xi T for each i = 1, 2, ..., n. Let {u1, u2, .., uk} be a free basis for F. For

each j = 1, 2, .., k we define an R-homomorphism  :  M R by  f(m)

= uj j
k
j=1 (m) for each m M. Let yj = g(uj) for each j = 1, 2, ..., k. Then for

each  i  =  1,  2,  ...,  n  we  have yj j(
k
j=1 xi)   xi  = g(uj j

k
j=1 (xi)   xi  =

g( uj j
k
j=1 (xi))  xi = g(f(xi))  xi T .  Theorem(3.2) implies that M is n-

locally(T)-projective. _

Corollary 3.8: If M is n-locally(T)projective R-module. then for every k-

generated sub module N of M where k  n, there exists s

EndR(M)suchthat s(x) – x T for each x N.

The last corollary suggests a weak concept of n-locally(T)-split sub

modules. LetN be a sub module ofM. N is called weak n-locally(T)-split if

for each finite number of x1, x2, ..., xn N,there exists an R-endomorphism

s of M such that s(xi)  xi T for each i=1,2,...,n. It is clear that n-

locally(T)-split sub modules are weak n-locally(T)-split. The converse is

not true. Thus, in n-(T)-regular modules, every sub module is

weak n-locally(T)-split, while in n-locally(T)-projective modules, every k-

generated sub module is weak n-locally(T)-split where k  n.

We have mentioned before that every k-generated n-locally(T)-projective

module where k  n is (T)-projective, for countably generated modules we

have the following:

Theorem 3.9: Let M be an R-module and T a fully invariant sub module of

M. If M is countably generated n-locally( T )-projective module, then it is

(T)-projective.
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Proof:Let {x1, x2, x3, ...} be a countably generated set of M. Let M1 = x1R.

Then theorem (3.7) implies that there are a finitely generated free R-module

F1 and R-homomorphisms

f1 : M  F1, g1 : F1  M such that g1(f1(x)) – x T for each

x M1. Let M2 = g1(F1) + x2R. Since M2 is finitely generated, again by

theorem (3.7), there exist a finitely generated free R-module F2 and R-

homomorphismsf2 : M  F2, g2 : F2  M such that g2(f2(x)) – x T for

each x M2. Observethat g1(F1)  g2(F2) + T and x2 g2(F2) + T. In this

manner, for each n > 1, wecan find a finitely generated free R-module Fn

and R-homomorphismsfn : M  Fn, gn : Fn  M such that gn(fn(x)) – x

T for each x Mn = gn 1(Fn 1) + xnR.

This is equivalent to saying that gn(fn(gn 1(y))) gn 1(y) T  for  each  y

Fn 1 and gn(fn(xn))  xn T and hence gn 1(Fn 1)  gn(Fn) + T and

xn gn(Fn) + T. Thus we have an ascending chain g1(F1)  g2(F2)  +  T

g3(F3) + T  ... of sub modules of M whose union is equal to M. Let sn =

gn  fn  :  M gn(Fn) for each n . Then sn EndR(M)  satisfying  that  sn  _

gn 1(m)  gn 1(m)	 T and hence sn  sn 1(m) sn 1(m) T for each m_M

and n > 1. Thus sn  gr(m)  –  m T and sn  sr(m)  sr(m) T for each m

M, whenever r < n, because gr(Fr) + T gn 1(Fn 1) + T and so sn(gr(y))

 gr(y) T for every y Fr. We shall convene that for any two R-

homomorphisms  and ,  =  modulo T means (x) (x) T for

each x in their common domain. Let F = Fn. Then F is a countably

generated free module. Define g : F  M by g((wn)n) = gn(wn),

n=1,2,3,... . Thus g(F) = gn(Fn)  +  T  =  M  and  hence  g  is  an  R-

epimorphism. We claim that g is (T)-split R-homomorphism, that is, there

exists an R-homomorphism f : M  F such that g f(x) x T for all x M.
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Now, let  qn :  Fn  F be the canonical injection for each n. Then g qn =

gn. We shall construct an R-homomorphism hn : Fn  F such that g 	hn =

gn modulo T and hn  fn gn 1 = hn+1  fn+1  gn 1 modulo T if n > 1 by

induction on n. Let h1 = q1. Then g  h1 = g1. Suppose n > 1 and thereis

given an R-homomorphism hn : Fn F such that  g  hn = gn modulo T

andhn fn gn 1 = hn+1 fn+1 gn 1 modulo T. We define hn+1 =

(hn fn+gn+2 fn+2  (1 sn))  gn+1. Then we have g hn+1  =  (g

hn fn+gn+2  fn+2  (1 sn))  gn+1= (gn  fn +gn+2  fn+2  (1 sn))  gn+1

modulo T = (sn +sn+2  (1 sn))  gn+1modulo T = (sn + sn+1  sn+2 sn)

gn+1 modulo T = sn+2  gn+1 modulo T = gn+1 modulo T. On the other

hand, we have hn+1  fn+1  gn 1 = (hn  fn + gn+2  fn+2  (1 sn))  gn+1

fn+1  gn 1 = (hn  fn + gn+2  fn+2  (1   sn))  gn modulo T = hn  fn

gn 1 + gn+2  fn+1 gn 1  gn+2  fn+2  gn 1 modulo T= hn  fn

gn 1modulo T. Thus we get a desired sequence of R-homomorphismshn.

Let x M. Then there exists n > 0 such that x gn+1(Fn 1) + T, that is, x =

gn 1(y)+t for some  t T  and  y Fn 1.  Then  we have hn(fn(x)) =

hn(fn(gn 1(y)+ t)) = hn+1(fn+1(gn 1(y) + t)) + t1 = hn+1(fn+1(x)) + t1 for

some t1 T . Moreover, since x gn(Fn) + T, in this case, by replacing n by

n+1 we should have hn+1(fn+1(x)) = hn+2(fn+2(x)) + t1. Continuing in this

way,  we  confirm  that  hn(fn(x))  =  hm(fm(x))  +  t1  for  every  m  >n.  This

shows that hn(fn(x)) is independent of the choice of n so for as x in

gn 1(Fn 1). Define f(x) = hn(fn(x)) for each x M,  we  have  an  R-

homomorphism f : M  F, which satisfies g(f(x)) x = gn(fn(x)) – x T

(since x gn 1(Fn 1)). Finally, the R-module F is projective and hence F is

(f(T))  projective. Then f(m) F . By dual basis lemma for (f(T))-

projective modules ([1],theorem(3.8)) there exist two families wj J
F
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and j J
 F* such that (f(m))  0 for only finitely many j J andf(m)

wjj j(f(m)) f(T).  But  m  =  g(f(m))  +  v  for  some  v 	T.  Thus  m  =

g( wjj j(f(m))  +  f(t)   v  = g(wj)j j f(m) +g f(t)  v  =

g(wj)(j j f)(m)  +t1 for some t, t1 T . Thus the two families g(wj) J

and j  f
J
 satisfy the dual basis lemma for (T)-projective modules and

hence M is (T)-projective.

It is well-known that, every projective module is isomorphic to a direct

summanda free module. In [11], it was proved that, every locally projective

R-module is a pure sub module of a direct product of copies of R. For n-

locally (T)-projective modules we have the following.

Proposition 3.10: Every n-locally (T)-projective R-module is isomorphic to

a (t(T)I )-pure sub module of RI

Proof: Let M be n-locally (T)-projective R-module and denote M* as a

family(fi) I. Define  : M  RI by (m) = (fi(m)) I for m M. Clearly  is

an R-homomorphism and M is isomorphic to (M). We claim that (M) is

(t(T)I ) –pure sub module of RI . Consider a system of equations (mk) =

(fi(mk)) I= rlL slkwhere rl = (rli) I RI ,  slk R, L is a finite set and k

K (finite set). Theorem (3.2) implies that there exist a finite subset J  I

and a family{xj} J
 M such that mk = xjJ fj(mk) + tkwhere tk T for all

k K. (mk) =(fi( xjJ fj(mk)+tk)
I
=(fi fi(xj)J fj(mk)+fi(tk)

I

= fi(xj)J rljL slk+ (fi(tk)) I = fi( xjrlj)slkjl + (fi(tk)) I for all i_I,

k_K. But (fi(tk)) I t(T)I .
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Then (mk) (xjrlj)slkL t(T)I , but (xjrlj) (M). This shows that

(M) is (t(T)I)-pure sub module of RI .

Corollary 3.11: Every n-locally (T)-projective R-module is isomorphic to a

(t(T)I )-pure sub module of direct product of free modules.

Proposition 3.12:Let M be n-locally (T)-projective R-module and N a sub

moduleof  M.  If  N+T  is  (T)-pure  in  M,  then  N  is  n-locally  (T  N)-

projective and n-locally (T  N)-split.

Proof: Let x1, x2, ..., xn N. Then by theorem(3.2), there are two families

{mj} J
 M and { j} J

 M* such that for each i = 1, 2, ..., n, j(xi)  0

for only finitely many j J and xi  ti = mj j(xi). (T)-purity of N + T in M

implies that there exists uj N and vj T such that xi  ti  

(( (uj+vj j(xi) T. Thus xi  uj( j |N)(xi)	 T  N. This implies that N is

n-locally (T N)-projective. Define

s : M  N by s(m) = u j|N)(m) for each m 	 M. Clearly, s(xi)  xi	 T 

N for each i = 1, 2, ..., n and hence N is n-locally (T  N)-split.

Corollary 3.13: Let M be a locally projective R-module and N a pure sub

moduleof M. Then N is locally projective and locally split.

Proposition 3.14: Let M be an R-module and T a fully invariant sub module

of M. If M is n-locally (T)-projective R-module and S is the endomorphism

ring of M, then ,as an S-module, M is n-locally (T)-projective.

Proof: Let A be a left S-module and  : A M an S-epimorphism. Let

x0	 (A). Then  is an R-homomorphism. Thus n-local (T)-projectivity of

M implies that  is 1-locally (T)-split, that is, there is an R-homomorphism

 : M  A such that (x0))  x0	 T . Let y 	 M. Then the mapping  : M

 A defined by  (y) = .y is an S-homomorphism and  (x0)) x0 =
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(x0)) x0	 T . Then theorem (3.2) and proposition (2.2) imply that M is

n-locally (T)-projective S-module.

4. MORE REGULARITY RELATIVE TO A SUB MODULE

In this section, we invest locally (T)-split homomorphisms in studying

Zelmanowitzregularand Field house-regular modules relative to a

submodul.

Definition 4.1: Let M be an R-module and T a sub module of M. Then

(1) M is called Field house-regular relative to T (Simply,Field house (T)-

regular), if each sub module of M is (T)-pure.

(2) M is called Zelmanowitz-regular relative to T(Simply,Zelmanowitz(T)-

regular), if for each m 	 M there is 	 M* such that m  m (m) T .

It is clear that, an R-module M is Zelmanowitz (Field house)-regular if and

onlyif, it is Zelmanowitz (Field house )(0)-regular. If an R-module M is

Zelmanowitz(Field house )(T1)-regular, then M is Zelmanowitz (Field

house)(T2)-regular for each sub module T2 of M containing T1. Then every

Zelmanowitz (Field house ) regular module is Zelmanowitz (Field house

)(T)-regular for each sub module T of M.

Remark 4.2: (1) Every sub module N of Zelmanowitz (Field house)(T)-

regular module M, is Zelmanowitz (Field house)(T  N)-regular.

(2) For each positive integer n, the Z-module Zn is not Zelmanowitz (T)-

regular for each proper sub module T of Z.If not, let a Zn/T . Then there is

Zhomomorphism  : Zn  Z such thata a (a) T . But HomZ(Zn,Z) = 0,

this implies that a T which contradicts the choice of a. In a similar manner

we can see that Z-modules Q and Zp1 is not Zelmanowitz (T)- regular for

each proper sub module T of Q and Zp1respectivily.

(3)  If   :  M  N  is  an  R-epimorphism and  M is  Field  house  (T)-regular,

then N is Field house ( (T))-regular.
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(4) Every n-(T)-regular module is Field house(T)-regular,(see

proposition(2.5)).

(5) Let M be an R-module and T a sub module of M. Then M is Field house

(T)-regular R-module if and only if M/T is Field house regular R-module.

Proof: Letnj = xi
n
i=1 rij where nj N/T ,  xi M/T, rij R and j = 1, 2, ...,m.

Then nj xi
n
i=1 rij T and hence (nj + tj) = xi

n
i=1 rij where tj T  N, j = 1,

2, ...,m. There exist xi N such that  (nj  +  tj)  xi
n
i=1 rij T and hence nj =

xi
n
i=1 rij. Conversely, let N be a sub module of M and nj = xi

n
i=1 rij  where

nj N, xi M and rij R,  j  =  1,  2,  ...,m.  As N + T/T is  pure  in  M/T ,  there

existxi N + T/T such that  nj = xi
n
i=1 rij and hence nj xi

n
i=1 rij T . Thus

M is Field house (T)-regular.

In the following, we characterize Field house (T)-regular modules over a

commutative

rings.

Proposition 4.3: Let M be a module over a commtative ring R and T a

suboduleof M. Then the following are equivalent:

(1) R/(T : x) is regular ring for each non-zero element x M,

(2) For each x M and r R, there exists s R such that rx – rsrx T ,

(3) M is Field house (T)-regular.

Proof: (1)  (2) : Let x M and r R. Since R/(T : x) is regular, then there

exists s R/(T : x) such that r = rsr and hence rx – rsrx T .

(2)  (3) :Let N be a sub module of M and A an ideal of R. Let x N 

MA. Then x = mi
n
i=1 ai where mi M and ai A. By (2), for each i = 1, 2, ...,

n there is si R such that miai  miaisiai T . Put ei = siai and e = (1-ei)n
i=1 ,

note that e A and miai  miaiei = wi T for each i = 1, 2, ..., n and miei 

miei
2 T . It is easy to check that for each j, mjeiej  mjei = uj T . Now xe
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= mi
n
i=1 aie  = mi

n
i=1 aieie + wi

n
i=1 e  = mi

n
i=1 aiei + ui

n
i=1 ai  + wi

n
i=1 e

= mi
n
i=1 ai  + ui

n
i=1 ai + wi

n
i=1 (e  ei) = x + v where v = ui

n
i=1 ai + wi(e

ei) T , thus x NA + T  (MA  N). This shows that N is (T)-pure in M

and hence M is

Field house(T)-regular.

(3)  (1): Let x M and r R/(T : x) and let P be the sub module generated

byy = xr. Then P is (T)-pure in M, so there is z P such that y  rz P  T,

so there is r R such that z = trx and hence r = rtr.

Corollary 4.4: Let M be a module over a commutative ring R and T a sub

moduleof M. Then

(1) If R/(T : M) is a regular ring, then M is Field house (T)-regular.

(2) If M is a finitely generated Field house (T)-regular R-module, then R/(T

: M) is regular ring.

Proof: (1) It is easy to see that R/(T : x) is epimorphic image of R/(T : M)

for each x M and hence proposition (4.3) implies that M is Field house

(T)-regular.

(2) Let {x1, x2, ..., xn} be generated set of M and A = (T : M),Ai = (T : xi)

for each i = 1, 2, ..., n. Then A = Ai
n
i=1 .  Define  :  R/A R/Ai by

(r + A) = (r + A1, r  + A2, ...,  r  + An) for r R. It is easy to see that  is

Rmonomorphismand hence R/A is isomorphic to a subring W of R/Ai

where W = {(r+A1, r+A2, ..., r+An)|r R}. Note that R/Ai is regular.

We  finish  if  we  prove  that  W  is  regular.  Let  y  =  (r+A1,  r+A2,  ...,  r+An)

W. Then for  each i,  there  is  ti R such that r  +Ai = rtir  +Ai and hence r

rtir (T  :  xi).  Put  1 tr  = (1-tir)n
i=1 . Then for each i, r(1 tr)  =

r( (1-tir)n
i=1 )= (1-tir)n

i=1   (T : xi), this shows that r + Ai = rtr + Ai. If we

put u = (t + A1, t + A2, ..., t + An), then  y = yuy.
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We have proved in section one that, if M is n-(T)-regular R-module, then

J(M)  T and hence J(R)  (T : M). First we note that, if P is a (T)-pure sub

module ofM and A a right ideal of R, then P  MA  if  and  only  if  P  =

PA+(T P).

Lemma 4.5: If P is a finitely generated (T)-pure sub module in M such that

P MA where A is a right ideal of R contained in J(R), then P  T.

Proof:By the above we have P = PA+(T  P). Then Nagayama’s lemma

implies that PA is a small in P and hence P = T P and thus P _ T.

Proposition 4.6: If M is a Field house (T)-regular R-module, then MJ(R)

T.

Proof: Let P be a finitely generated sub moduleof MJ(R). Since M is Field

house (T)-regular, then P is (T)-pure in M and hence by lemma(4.5), P  T.

This shows that MJ(R)  T.

Corollary 4.7: If M is a Field house (T)-regular R-module such that J(M)

MJ(R) + T, then J(M)  T. In particular, J(M) T for every Field house

(T)-regular 1-locally (T)-projective module.

Theorem 4.8: The following are equivalent for an R-module M and a sub

moduleT of M:

(1) M is Zelmanowitz (T)-regular,

(2) Every R-homomorphism into M (form any R-module) is 1-locally(T)-

split,

(3) Every R-homomorphism from R into M is 1-locally (T)-split.

Proof. (1)  (2) : Let  : A  M be an R-homomorphism and x (A).

Then x = (z) for some z A. By (1), there exists an R-homomorphism  :

M  R such that x  x (x) T . Define q : M A by q(m) = z (m) for m
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M. Then (q(x))  x = (z) (x)  x = x (x) – x  T. This shows that  is

1 locally(T) split

(2)  (3) : Trivial.

(3)  (1) : Let x_M. Define the well-defined R-homomorphism g : R  M

by g(r) = mr for r	 R. Then by (3), g is 1-locally(T)-split and hence there is

an R-homomorphism q : M  R such that g(q(x)) – x T , that is xq(x) – x

T which implies that M is Zelmanowitz (T)-regular.

In the following, we see that the three types of regularity relative to a sub

moduleare equivalent under 1-locally (T)-projective modules.

Theorem 4.9:The following statements are equivalent for an R-module M

and a sub module T of M.

(1) M is Zelmanowitz (T)-regular,

(2) M is 1-locally(T)-projective and 1-(T)-regular,

(3) M is 1-locally(T)-projective and Field house(T)-regular.

Proof: (1)	  (2) : Follows from the fact that every R-epimorphism(and

every R-monomorphism) is 1-locally(T)-split.

 (2)  (3) : Follows from examples andremarks(4.2)(4).

(3) (1) : Let h : Q  M be an R-homomorphism. Since h(Q) + T is (T)-

pure in M, then by proposition(3.12), h(Q) is 1-locally(T)-projective and 1-

locally(T)-split. By regarding h as a map onto h(Q), we have an R-

epimorphismh : Q  h(Q). 1-local(T)-projectivity of h(Q) implies that h is

1-locally(T)-split, theorem(3.2). Thus proposition(2.2) implies that h is 1-

locally(T)-split. Therefore theorem(4.8) assert that M is Zelmanowitz(T)-

regular.
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Corollary 4.10: Let M be Zelmanowitz(T)-regular R-module where T is a

fully invariant sub module of M and S the endomorphism ring of M. Then,

as an SmoduleM is Zelmanowitz (T)-regular.

Proof: By theorem(4.9), M is 1-locally(T)-projective and 1-locally(T)-

regular Rmodule. Hence proposition (3.14) and proposition (2.9) imply

thatM is 1-locally(T)-projective S-module and 1-(T)-regular S-module.

Again theorem(4.9) implies thatM is Zelmanowitz (T)-regular S-module.
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