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Locally Split Homomorphisms Relative To A Sub module

Dr. Mehdi S. Abbas*

Abstract:

In this article,for a positive integer n ,the concept of n-locally split
homomorphism relative to a sub module has been introduced and
studied,which will turn out to be most useful in the studying and providing
characterizations of local projectivity, local-regularity in the sense of
(Zelmanowitz, Field house and Ware) relative to a sub module.They present
generalization of projectivity and the three types of regularity which have
been mentioned respectivily.

Keywords: n-locally(T)-split homomorphisms,n-locally(T)-projective modules, n-(T)-

regular modules,(T)-pure sub modules and Zelmanowitz (Field house) (T)-regular
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1- Introduction
Nowadays, there are three possible generalizations of the notion of
VVon Neumann regular rings to the general module theoretic setting by
Zelmanowitz [9], and Field house [5], as well as Ware [8], each one called

regular.

“ Prof / Dept. Mathematics / College of Science / Mustansiriya University, Baghdad, Iraq
Received Date 26/9/2013 Accept Date 21/11/2013

[21]



Locally Split Homomorphisms Relative To A Sub module

A right R-module M is Zelmanowitz-regular, if for each xeM, there exists
an R-homomorphism o EM* = HomR(M,R) satisfies x = xa(x). The Field
house-regular module

Was defined as one whose sub modules are pure, while Ware-module was
defined as a projective module in which every principal sub module is
direct summand. The concept of locally split homomorphisms was
introduced in [3].Let M and N be R-modules, and o : N — M an R-
homomorphism. A is called locally split, if for each xo€ a(N), there is an
R-homomorphism B : M — N such that a(p(x0)) = xo. This concept had
been utilized to characterize Zelmanowitz-regula modules, and modules in
which every sub module is locally split, that is, the inclusion mapping i : N
— M is locally split for each sub modules N of M.

Many algebraic structures had been restudied relative to a class of sub
modules, as semi-regular modules relative to a fully invariant sub module
[2], uniform extending modules [4], quasi-injective modules relative to the
closed sub modules class [7], pseudo-injective modules relative to a
principal sub modules class [10].Recently, projective module relative to a
sub module has been studied in [1].Let P be an R-module and T a sub
module of P. P is called (T)-projective , if for every R-epimorphismf : A
—B and R-homomorphism g : P — B, there exists an R-homomorphism h :
P — A such that foh(x) — g(x) €g(T) for all xeP.

In section two of this work we introduce the concept of n-locally split R-
homomorphism relative to a sub module. Several properties have been
given and considered modules in which the inclusion mapping of every sub
module is locally split with respect to a sub module. In section three, we
utilize locally split homomorphism relative to a sub module to characterize

locally(T)-projective modules which
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IS a generalization of (T)-projective modules [1]. Many properties and
characterizations have been investigated. Finally, in section four, we
introduce Zelmanowitzregularand Field house-regular modules relative to a
sub module, and characterize them in terms of our notions in section two,
and we show that the three notions of regularity relative to a sub module are
coinciding under locally (T)-projective modules.

In what follows, R will represent an associative ring with identity and R-
moduleM will mean unitary right R-module, unless otherwise stated.

2. n-Locally Split Homomorphisms Relative To A Sub module

Splitting homomorphisms are valuable tools for splitting modules into
internal direct sum. In this section we introduce a generalization of locally
split homomorphisms.

Definition 2.1: Let M , N be two R-modules and T a sub module of M. An
R-homomorphism o : N — M is called n-locally (T)-split, if for any finite
number of x1, x2, ..., xn€a(N), there exists an R-homomorphism f: M — N
such that a(p(xi)) — xi€eT foreachi=1, 2, ..., n.

This concept extends some notions in the literature. It is clear that an
Rhomomorphism o : N — M is n-locally (0) -split if and only if it is locally
split which was introduced in [3]. Clearly, an R-homomorphism is n-locally
(T)-split if and only if it is k-locally (T)-split for all k < n. It is well-known
that, the Z-module Z is indecomposable and hence the inclusion mapping i :
2Z — Z is not locally split, but it is 1-locally (62)-split, since if we consider
the Z-homomorphism a : Z — 2Z defined by a(x) = 4x for each x €Z, then
for each y €2Z we have a(y) -y €6Z

Let M be an R-module and N, T be sub modules of M. N is called n-
locally(T)-split, if the inclusion mapping i : N — M is n-locally (T)-split,

that is, for any finite number of x1, x2, ..., XxneN, there exists an R-
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homomorphism s : M — N such that s(xi)—xi€T for each i =1, 2, ..., n. the
notion of n-locally (0)-split sub moduleswas introduced by Ramamurthi and
Rangaswany [6] by the name of strongly pure sub modules.

Recall that a sub module N of an R-module M is fully invariant if a(N) € N
for each R-endomorphism o of M. It is known that an R-homomorphism a :
A —M is n-locally (0)-split if and only if it is 1-locally(0)-split[3]. Relative
to a non-zero sub module we have the following:

Proposition 2.2: Let A and B be R-modules and T a fully invariant sub
moduleof B.Then an R-homomorphism o : A — B is n-locally (T)-split if
and only if it is1-locally(T)-split.

Proof: The “only if” part is clear for any arbitrary sub module T of B. We
shall use induction to prove the "if” part. Suppose that our statement is true
for n-1 where n > 1.Then there exists an R-homomorphism 1 : B—A such
that xi — o(pl(xi)) €T for each i = 1, 2, .., n — 1. As xn —
a(BLl(xn)) €a(A), there exists an Rhomomorphism B2 : B — A such that
xn—o( BL(xn))—a(p2 (xn—a(Pl(xn)))) €T .Put p = B1 + B2 — 20 a o B1, then
B : B — A and xn—a(p(xn)) = xn— a(BL(xn)) — a(B2(xn)) + a(B2(a(BL(xN))))
= xn—o(BL(xn)) — a(B2(xn — a(B1(xn)))) €T .

Furthermore, fori=1, 2, ..., n, we have xi — a(B(xi)) = xi — a(B1(xi)) —
a(B2(xD)+a(B2(a(BL(xi))))= xi — a(Plxi))— a(P2(xi — BL(xi))) = v — a o
B2(v) €T where v = xi — a(B1(xi)).This shows that,xi — a(p(xi))_T for each i
=1, 2, .., nand hence a is n-locally(T)-split.

According to the above proposition, all results follow will doing either in
thesense of (1-locally) or (n—locally) concept for arbitrary sub
module,these results will be true in the sense of (n — locally) or (1 — locally)
concept respectively for fully invariant sub module, unless otherwise

mentioned.
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Proposition 2.3: Let h : A — B be an R-homomorphism, hbe the R-
epimorphismfrom A onto h(A) and T be a fully invariant sub module of
h(A). Then the following are equivalent:

(2) h is n-locally (T)-split,

(2) hiis n-locally (T)-split and h(A) is n-locally (T)-split sub module in B.
Proof: Let x1, X2, ..., xn be elements in h(A). Assume (1), then there exists
an R-homomorphism q : B —A such that h(q(xi)) — xi_T for each i = 1, 2,
., N.Lets=hoq:B — h(A) such that s(xi) — xi_T and hence h(A) is n-
locally (T)-split in B. If we denote ¢ = glh(A) : h(A) —A, then h (q(xi)) —
XieT foreach i = 1, 2, ..., n which shows that hO is n-locally (T)-split.
Assume (2), then there are R-homomorphism s : B — h(A) with s(xi) —
xi€T and ¢ : h(A) — A with h (§ (xi)) - xi€eT foreach i =1, 2, ..., n. Let g
=Qos:B — A Thenh(q(xi))— xi = h (q (s(xi)))—xi = h (g(xi+ti))—xi = h (q
(xi))—xi+ h(q (ti)) €Tfor each i =1, 2, ..., n, and some ti_T . Thus h is n-
locally(T)-split.

The following corollary follows directly from proposition (2.3) and
proposition (2.2).

Corollary 2.4:Let AB, h, handT be as in proposition (2.3) . Then the
following are equivalent:

(2) hiis 1-locally (T)-split

(2) his 1-locally (T)-split and h(A) is 1-locally (T)-split sub module in B.
Let M be an R-module and T a sub module of M. A sub module N of M is
called (T)-pure, if MANN=NA+T N (MA N N) for each right ideal A of
R.This is equivalent to saying that, for every finite sets {mi} € M,{nj} € N

and {rij} € R with nj =X, mjry; ,j =1, 2, ...,m, there is a finite set {xi} & N
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suchthat nj =Xy xjrj € N N T for each j = 1, 2, ...,m [1]. In the Z-module
Z,2Z is (6Z)-pure sub module in Z which is not pure.

Proposition 2.5: Let M be an R-module and T a sub module of M. Then

(1) Every 1-locally ( hence n—locally) (T)-split sub module in M is (T)-
pure.

(2) Let h : M — Mbe R-epimorphism. If h is 1 — locally(h(T)) — split, then
Ker(h) is 1 — locally (T)-split in M.

Proof: Let N be 1 — locally (T)-split sub module of M and nj = %2, X;r;;
e N, j=212 ..,n {xi} €cMand{rij} € R. Foreachj=1, 2, ..., n,
there exists an R-homomorphism sj: M — N such that sj(nj)—nje T . Put s
=Xjk18 » then s © M — N. Hence s(xi) €N and XTI s(x)rj —nj
=X (X $r — XiZy Xirj =X (X2 8j(%i) — Xrij =X, s — nje T .
This shows that N is (T)-pure. For the second statement, let h : M — Mbe
an R-homomorphism and nj = X, xir; (1 Ker(h). Then}iZ; h(x.)rj = 0.
Since h(xi) € h(M) = M there is an R-homomorphism ¢ : M— M such that
h(q(h(xi)))—h(xi) = h(ti) for some tie T and each i = 1, 2, ...,m, and hence
ti+xi—q(h(xi)) [ X2 ti+xi—q(h(xi)))rij—nj = X, tir; () T .This shows that
Ker(h) is (T)-split in M.

Corollary 2.6:Let h : A — B be an R-homomorphism and T be a fully
invariant sub module of h(A). If h is 1 — locally(T)-split homomorphism,
then h(A) is a (T)-pure sub module of B.

We call an R-module M, n—(T)—regular, if each sub module of M is
n—locally(T)-split, where T is a sub module of M.

It is clear that, if M is n—(T)—regularR—module, then it is k—(T)—regularfor

each k <n, in particular, every n-(T)-regular R-module is 1-(T)-regular.
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The following result gives a good motivaton for considering relativity in
moduletheory.

Proposition 2.7: Let M be an R-module and T a sub module of M. If M is 1-
locally ( n-locally )-(T)-regular, then M/T is regular. The converse is true if
M/T is locally projective.

Proof: Let N/T be a sub module of M/T and XeN/T . Then there exists an
Rhomomorphism o : M —N such that x — a(x) €T . Hence o induces a
mapping « : M/T — N/T . This implies that a(X) = X which means that M/T
is regular. Conversly, let N be a sub module of M and x1, x2, ..., xn be a
finite number of elements of N. Then there is an R-homomorphism s : M/T
— N + T/T such that s(X;) = Xx; foreach i = 1, 2, ..., n. Local projectivity of
M/T implies that there is an R-homomorphisms: M/T — N such that =
o 5(X,) =s(x;) foreachi=1, 2, ..., n, where = is the natural R-epimorphism
of Nonto N+T/T . Putw =5 [In: M —N. Then a(xi) — xieT for each i = 1,
2, ...,nand hence M is n— (T) — regular.

If M is n-(T)-regular R-module where T is a fully invariant sub module of
M,then M is m-(T)-regular for each m n. Also, if M is n-(0)-regular R-
module,then it is n-(T)-regular for each sub module T of M.

Recall that a sub module N of an R-module M is (T)-direct summand in M,
ifthere exists a sub module K of M suchthat M=N+ Kand K N N c T,
where T is a sub module of M [1]. Let Q be the group of rational numbers
and p be a prime number. Consider the two subgroups of Q, Qp ={a/b €Q:
b is relatively prime to p } and Qp={a/pn €Q: n is non-negative integer } .
Then, it is known that Qp +Qp = Q and Qp N Qp = Z. Thus Qp
(respectivilyQp) is (Z)-direct summand of Q while neither one is direct

summand.
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Proposition 2.8: Let M be an R-module and T a sub module of M.Then

(1) If M is n-(T)-regular, then every k-generated sub module of M is (T)-
direct summand where k <n.

(2) If further, T is fully invariant in M, then every finitely generated sub
moduleof M is (T)-direct summand.

Proof: (1) Let N =ZE‘:1 X; R be k-generated sub module of M, for each k <
n.By hypothesis, there exists an R-homomorphism s : M —N such thats(xi)
—Xi_T foreach i =1, 2, ..., k, and hence s(x) — x €T for each x in N. For
each m €M, we have s(m) eN and s(s(m)—-m) = s(s(m))— s(m) eEN €T.
This shows that M = N + s—1(T N N), and it is easy to check that N N
s—1(T NN) € T. Thus N is(T)-direct summand.

(2) Let N be m-generated sub module of M. Without loss of generality, we
canassume that m > n. As T fully invariant, then M is m—(T)-regular
andhence by (1), N is (T)-direct summand.

Recall that a sub module N of an R-module M is (T)-direct summand in M,
ifthere exists a sub module K of M such that M = N + K and K NNCT,
whereT is a sub module of M [1]. Let Q be the group of rational numbers
and p be aprime number. Consider the two subgroups of Q, Qp ={a/b €Q :
b is relatively prime to p } and Qp={a/pn €Q: n is non-negative integer } .
Then, it is known that Qp +Qp = Q and Qp N Qp = Z. Thus Qp
(respectivilyQp) is (Z)-direct summand of Q while neither one is direct
summand.

Proposition 2.9: Let M be an R-module and T a sub module of M.Then

(1) If M is n-(T)-regular, then every k-generated sub module of M is (T)-

direct summand where k <n.
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(2) If further, T is fully invariant in M, then every finitely generated sub
moduleof M is (T)-direct summand.

Proof: (1) Let N =ZE‘:1 X; R be k-generated sub module of M, for each k <n.
By hypothesis, there exists an R-homomorphism s : M —N such that s(xi) —
xi €T for each i =1, 2, ..., k, and hence s(x) — x €T for each x in N. For
each m €M, we have s(m) €N and s(s(m)—m) = s(s(m))—s(m) eN NT. This
shows that M = N + s—1(T N N), and it is easy to check that N N s—=1(T N
N) € T. Thus N is(T)-direct summand.

(2) Let N be m-generated sub module of M. Without loss of generality, we
can assume that m > n. As T fully invariant, then M is m—(T)—regular and
hence by (1), N is (T)-direct summand.

Corollary 2.10: Let M be an R-module and T asub module of M. If M is n-
(T)- regular, then J(M) C T.

Proof: Let x €J(M). Then xR is small and (T)-direct summand of M. This
implies that J(M) cT.

Proposition 2.11: Let M be an R-module and T a fully invariant sub module
of M. If M is n-(T)-regular and S is the endomorphism ring of M, then, as
an S-module, M is n-(T)-regular.

Proof: We consider M a left S- module and hence (S —R)-bimodule. Let N
be an S-sub module of M and xO€N. Then there exists an R-homomorphism
s : M — N such that s(x0) — xOeT . We consider s is an element of S.
Define § : M — N by§(y) =s-y. Itis clear that s

0 is an S-homomorphism and hence $§(x0)—x0€T . This shows that N is 1-
locally ('and hence n-locally) (T)-split. Thus M is n -(T)-regular

S-module.

3. N-Locally Projective Modules Relative To A Sub module
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Projectivity relative to a sub module had been studied in [1]. Let M be anR-
module and T a sub module of M. M is called (T)-projective, if for each
Repimorphism o : A — B and R-homomorphism 3 : M — B, there exists an
R-homomorphism 6 : M — A such that a o 6(x) — B(x) € B(T) for each x in
M.

In this section, we consider the local property of (T)-projective modules.
We characterize these modules by means of locally homomorphisms
relative to a sub module. First we introduce the following:

Definition 3.1: Let M be an R-module, T a sub module of M and n a
positive integer. M is called n-locally projective relative to T (or simply n-
locally (T)- projective ), if for each R-epimorphism o : A — B and R-
homomorphism B : M — B, then for any finite number of x1, X2, ..., xn_M,
there exists an R-homomorphism ¢ : M — A such that a oc (xi) — B(xi) €
B(T) foreachi=1,2,...,n.

It is clear that, every (T)-projective module is n-locally(T)-projective for
each positive integer n and each sub module T. In particular, every
projective module is locally projective module which introduced by
Zimmermann in [11]. Also, it is clear that n-locally (T)-projective module is
(T)-projective if it is finitely generated by n elements.

The Z-module Q is not 1-locally (Z)-projective, if not, let x_Q which is not
in Z.Assume F is a free Z-module having a Z-epimorphismw : F —Q, then
there exists a Z-homomorphism f : Q — F such that w o f(x) — x €Z. But
HomZ(Q,Z) = 0and hence HomZ(Q, F) = 0. This implies that x €Z which
contradicts the choiceof x. More generally, KR is not 1-locally (R)-
projective where R is a domain and K is the field of quotients of R as R-

module.
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In the following , we give characterizations of n-locally (T)-projective
modules in terms of n-locally (T)-split homeomorphisms.

Theorem 3.2: The following are equivalent for an R-module M and a sub
module T of M

(1) M is n-locally (resp. 1-locally) (T)-projective,

(2) Every R-epimorphism into M (from any R-module) is n-locally(resp.1-
locally) (T)-split,

(3) For any finite number of x1, X2, .., xn (resp.x) €M, there exist families

{mj}jDJ cMand {(Pj}jDJ C M* suchthatforeachi=1,2,...,n

(@) P; (xi)(resp. @; (X)) # O for only finitely many j € J

(b) Xi =%y m; 0 (xi) (resp.X =3 M; 0 (X)) €T.

Proof: We shall prove the n-locally case

(1) = (2) : Let A be any R-module and o : A — M be an R-epimorphism
.Then there exists an R-homomorphism § : M — A such that a(B(xi) — xi
€T foreachi=1, 2, ..., n. This shows that o is n-locally (T)-split.

(2) = (3) : Let {mj}jmbe a generated set of M, that is M =Y, ;m;R. Define

f: ®j¢Rj — M where Rj = R for every jeJ, by f((rj)) =X ;m;rj . Clearly, f
iIsan R-homomorphism. By (2), there is an R-homomorphism ¢ : M
—®;gR] such that f(e(xi))—xi €T foreachi=1, 2, ..., n. Then for each j €
J, there is @] : M —Rj such that ¢(m) = (¢j (m)) for each m € M, in
particular, o(xi) = (@j(xi)) for each i=1, 2, ..., n. Thus xi —%;; m;ej (xi) =
xi =f(oj (xi)) = xi — f(pj (xi)) €T . Let JO = {j€J : 9j (xi) #0}. Then JO is a
finite subset of J and xi —%;;m;ej (xi) ETforeachi=1, 2, ..., n.

(3) = (1) : Leta: A — B be an R-epimorphism and  : M — B be an R-

homomorphism. By (3), for each finite number of elements x1, x2, ..., xn of
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M, there are families {mj}jDJ c M and {(Pj}jDJ S M* such that ¢j (xi) =0
for finitely many j €J and xi—;¢;m;oj (xi) € T foreachi=1, 2, ..., n. Since
B(mj) € B, there exists aje A such that a(aj) = B(mj) for each j € J. Define o
M — A by o(m) =ijJ ajpj (m) for each m €M, in particular o(xi)
=i 18j0j (xi) for each i =1, 2, ..., n. Thus ae o(xi)— B(xi) = a(Xjcjaje]
(xD)— B(xi) =Xjeya(a)ej (xi) — Pxi) =X iBMmej (xi) — P(xi) =
B(X;13M;joj (xi)) — xi) € B(T).This shows that M is n-locally (T)-projective.
We call the third statement of the above theorem, the dual basis lemma
forn-locally(T)-projectiive modules. the original statements in the theorem
are equivalent to the respective statements for fully invariant sub modules,
more precisely, every n-locally(T)-projective module is Kk-locally(T)-
projective for each k < n. Also,if M is 1-locally(T)-projective module and T
is fully invariant in M, then M is n-locally(T)-projective.

Corollary 3.3: The following statements are equivalent for an R- module M
and a sub module T of M:

(1) M is n-locally(resp.1-locally)(T)-projective,

(2) For each free R-module F, each R-epimorphism g : F — M is n-
locally(resp.1- locally)(T)-split.

Proof. (1) = (2) :follows from theorem (3.2)

(2) = (1) : Let A be any R-module and  : A — M be an R-epimorphism.
Let{a;}; | be a generated set of A and let F be a free R-module with basis
{zi}i | . Define y : F — A by y(zi) = ai. Clearly is an R-epimorphism. By
(2), Boy is n-locally (T)-split, that is for any finite number of x1, X2, .., Xn€
M, there exists an R homomorphism ¢ : M — F such that Boy (o(xi))—xi€
T foreachi=1,2, ..,n Putc= vy op, then¢c: M — A and satisfies
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B(c(xi))—xieT for each i =1, 2, ..., n. This shows that B is n-locally(T)-split
and hence by theorem(3.2), M is n-locally(T)-projective.
Remark 3.4: (1) Let K be an R-module which is not (T)-projective for some
sub module T of K ( Q is not (Z)-projective Z-module), and M = K & H
where H = @R is a direct sum of countable number of copies of R.
Since every module is projective relative to itself, then H is (H)-projective
and hence M is not (T@H)-projective, otherwise, by
([1],propositon(3.7))implies that K is (T)-proective. We claim that M is 1 —
locally(T @ H)—projective . Let {X;};cnbe a basis for H. Then T N {X;}; n is
a generated set of M. For each jeN, define fj : H — R by f(j)(xi)
={1 if i=j

0 ifi#
fj can be extended ( by linearity ) to all H, therefore, if x =X, X; r;, then
fj(x) =rj . Again fj can be extended to an R-homomorphism gj : M — R by
putting gj(t) = 0 for all t €T . Then {gj} SM*. Let m M. It is clear that
gj(m) = O for only finitely many j eN and m =t + x where t €T and x €H.
Then we have m =YL x;gj(m) = m =X, X;fj(m) = m —x€ T . By dual
basis lemma for 1-locally(T)-projective modules we have M is 1-locally(T)-
projective and hence 1-locally( T @ H )-projective.
(2) As an application of theorem(3.2), it is easy to see the following: If R is
a commutative ring and Mi is 1-locally(Ti)-projective R-module,i = 1, 2.
Then M1® M2 is 1-locally(M1® T2+ T1® M2+ T1® T2 )-projective .
In particular, tensor product of projective module M with 1-locally(T)-
projective module is 1-locally(M ® T)-projective.
(3) the following statement is obvious. It follows directly by the dual basis
lemma for 1-locally(T)-projective modules. Let R be a commutative ring.

If M is 1-locally(T)-projective R-module and S is a multiplicative closed
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subset of R, then S—1M is 1-locally(S—1T)-projective S—1R-module,
inparticular MP is 1-locally(TP )projective RP-module for each prime ideal
P of R.

(4) The converse of (3) is not true in general, as we see in the following
example. Let R be a Von Neumann regular ring which has no finitely
generated maximal ideal and hence has no maximal ideal which is a direct
summand. Let{P,}, ., be the family of maximal ideals of R. Consider the
R-module M = []qea(R/Pa). Then Rp is a field and hence Mp_is 1-
locally(T)- projective Rp_-module for each sub module (T) of M. We claim
that M* = 0. For, if f : R/IPo — R, then either f = 0 or f is R-
monomorphism. If f is R-monomorphism, then R/Pa is isomorphic to an
ideal Wa in R. As R regular, then Wa is a pure in R, and Pa = annR(Wa).
Thus WoPa = Wa N Pa = 0. Maximality of P_ implies that Pa+Wao = R and
hence Pa is a direct summand of R, which contradicts the choice of R. Thus
M* = 0. Let K be a proper sub module of M and m eM/K. By the above,
MP is 1-locally(KP )—projective R P—module. If M is 1-locally(K)-
projective R-module, then by the dual basis lemma for 1-locally(K)-
projective modules we have m €K which is a contradiction.

(5) IfM is 1-locally (and hence n-locally)(T)-projective R-module, then
J(M) =MJ(R)+T(direct application of dual basis lemma for 1-locally(T)-
projective modules).Further, if T a small sub module of M, then J(M) =
MJ(R)+T

(6) The following result gives a motivation for studying n-locally(T)-
projective modules: Let M be an R-module and T a sub module of M. Then
M is 1- locally(resp. n-locally)(T)-projective R-module if and only if M/T is

locally projective R-module.
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Proof: Let X eM/T . then there exist a pair of dual basis{xj,(pj} ; on M
ju
such that P (x) #0 for only finitely many j €J and X — X5 X; (pj(X) €T . For

each j €J , define@l.: M/T — R/A(T) by o; (m) = (pj(m) + t(T) form eM
where t(T) is the trace ideal of T. It is clear that 9, is well-defined R/t(T)-
homomorphism and X =ij>‘<j6j(>‘<). This shows that M/T is locally

projective R/t(T)-module. As t(T) is two-sided ideal of R, then M/T is

locally projective R-module. Conversely, let x €M. Then there a pair of

dual basis {X; ,@.r on M/T such that @.(X) # 0 for only finitely many j €J
RS i01d J

and X =% >‘<j6j(x). Thus x—ZjDJY(j@an(x) €T where = is the natural
epimorphism. This shows that M is 1-locally(T)-projective.

It is well-known that, if M is a projective R-module, then M = Mt(T), and
(M) =and (t(M)) and t(M) is a pure ideal of R , provided that R is a
commutative ring, where t(M) =), a(M), the sum runs over all o € M*. For
1-locally(T)-projective modules, we have the following.

Proposition 3.5: Let R be a commutative ring and M a 1-locally(T)-
projective R-module. Then

OM=M(M)=T

(2) annR(M) =annR(t(M)) NannR(T)

(3) t(M) = (t((M))2 + (T)

Proof:(1) By theorem(3.2), for each x €M, x =), X;fi(X)+vi where fieM*,
xi €M and vieT . Therefore x eMt(M) + T and hence M € Mt(M) + T.
Thus M = Mt(M) + T.

(2) Let w €t(M).Then w =};iL, f;(ai) whereaieM. Let r eannR(M). Then wr
=)L, fi(air) = 0, hence r €annR(t(M)) . Thus annR(M) < annR(t(M)N
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annR(T). Let s_annR(t(M)) NannR(T). Then by (1), we have Ms = Mt(M)s
+ Ts = 0. Thus annR(M) = annR(t(M)) NannR(T).

(3) Let w_t(M). Then w =Y};c;h;(mi) where mieM, hieM*. For each | €l,
mi =ijyj (pj(mi)+vi where  yjeM, @; EM* andvieT . w
=i (T 0y, 0 (M) + Vi) =X o () oy (MiyE hy(vi). Thus w
€(t(M))2+t(M)\t(T) and hence t(M) = (t(M))2 + t(T).

Corollary 3.6: Let R be a commutatvie ring, M an R-module and T a sub
moduleof M. If M is 1-locally(T)-projective, then

(1) Mt(M) is (T)-direct summand (and hence(T)-pure) in M.

(2) t(M) is (t(T))-pure ideal of R.

Theorem 3.7: The following statements are equivalent for an R-module M
and a sub module T of M:

(1) M is n-locally(T)-projective,

(2) For each k-generated sub module MO of M where k < n, there exist a
finitely generated free R-module F and R-homomorphisms f : M — F and g
: F — M such that g(f(x)) — x €T for each x eMO.

Proof: (1) = (2) : Let Qbe a free R-module having an R-epimorphism h : Q
— M. Then h is n-locally(T)-split. Thus we can find an R-homomorphism g
: M — Q such that h(q(x)) — x €T for all x eM0. As q(MO) is a finitely
generated sub module of Q, there exists a finite subset {ul, u2, ..., uk} of
the free basis of Q such that q(MO) is contained in a finitely generated free
sub module F = ulR + u2 + ... + ukR of Q. Since F is a direct summand of
Q, then let p : Q — F be the natural projection of Q onto F. Putf=poq: M
— Fand g =h|F : F — M. Then clearly g(f(x)) — x €T for each x eMO.

(2) = (1) : Consider a finite number of x1, x2, ..., xn_M and let N be the
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sub module of M generated by these elements. By the hypothesis, there
exist a finitely generated free R-module F and R-homomorphisms f: M —
F, g : F — M such that g(f(x)) — x €T for each x_N,in particular g(f(xi)) —
xi €T foreachi=1, 2, ..., n. Let {ul, u2, .., uk} be a free basis for F. For
each j = 1, 2, .., k we define an R-homomorphism ¢; : M — R by f(m)
=Z}‘:1 uj(pj(m) for each m eM. Let yj = g(uj) for eachj =1, 2, ..., k. Then for
each i =1,2, .., n we haveZ}‘zlyj(pj(xi) — Xi =Zleg(uj)(pj(xi) — Xi =
g(ZfS; Uj;(xi)) — xi = g(f(xi)) — Xi€T . Theorem(3.2) implies that M is n-
locally(T)-projective. _

Corollary 3.8: If M is n-locally(T)projective R-module. then for every k-
generated sub module N of M where k < n, there exists s
€EndR(M)suchthat s(x) — x €T for each x €N.

The last corollary suggests a weak concept of n-locally(T)-split sub
modules. LetN be a sub module ofM. N is called weak n-locally(T)-split if
for each finite number of x1, x2, ..., Xn€N,there exists an R-endomorphism
s of M such that s(xi) — xieT for each i=1,2,...n. It is clear that n-
locally(T)-split sub modules are weak n-locally(T)-split. The converse is
not true. Thus, in n-(T)-regular modules, every sub module is

weak n-locally(T)-split, while in n-locally(T)-projective modules, every k-
generated sub module is weak n-locally(T)-split where k <n.

We have mentioned before that every k-generated n-locally(T)-projective
module where k < n is (T)-projective, for countably generated modules we
have the following:

Theorem 3.9: Let M be an R-module and T a fully invariant sub module of
M. If M is countably generated n-locally( T )-projective module, then it is

(T)-projective.

[37]



Locally Split Homomorphisms Relative To A Sub module

Proof:Let {x1, x2, X3, ...} be a countably generated set of M. Let M1 = x1R.
Then theorem (3.7) implies that there are a finitely generated free R-module
F1 and R-homomorphisms

fl:M — F1, g1 : F1 — M such that g1(f1(x)) — x €T for each

X EML. Let M2 = g1(F1) + x2R. Since M2 is finitely generated, again by
theorem (3.7), there exist a finitely generated free R-module F2 and R-
homomorphismsf2 : M — F2, g2 : F2 — M such that g2(f2(x)) — x €T for
each x eM2. Observethat g1(F1) € g2(F2) + T and x2e€g2(F2) + T. In this
manner, for each n > 1, wecan find a finitely generated free R-module Fn
and R-homomorphismsfn : M — Fn, gn : Fn — M such that gn(fn(x)) — x
€T for each x eMn = gn—1(Fn—-1) + xnR.

This is equivalent to saying that gn(fn(gn—21(y)))—gn—1(y) €T for each y
€Fn—1 and gn(fn(xn)) — xn€T and hence gn—1(Fn—1) < gn(Fn) + T and
xnegn(Fn) + T. Thus we have an ascending chain g1(F1) c g2(F2) + T
cg3(F3) + T c ... of sub modules of M whose union is equal to M. Let sn =
gne fn : M —gn(Fn) for each n . Then sneEndR(M) satisfying that sn _
gn—1(m) — gn—1(m) €T and hence sno sn—1(m)—sn—1(m) €T for each m_M
and n > 1. Thus sne gr(m) — m €T and sne sr(m) — sr(m) €T for each m
€M, whenever r < n, because gr(Fr) + T cgn—-1(Fn—1) + T and so sn(gr(y))
— gr(y) €T for every y €Fr. We shall convene that for any two R-
homomorphisms o and 3, o = f modulo T means a(x)— B(x) €T for

each x in their common domain. Let F = @,Fn. Then F is a countably
generated free module. Define g : F — M by g((wn)n) =X g (wn),
n=123,.. . Thus g(F) =Xg (Fn) + T = M and hence g is an R-
epimorphism. We claim that g is (T)-split R-homomorphism, that is, there

exists an R-homomorphism f : M — F such that g of(x)—x €T for all x M.
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Now, let gn : Fn — F be the canonical injection for each n. Then g oqn =
gn. We shall construct an R-homomorphism hn : Fn — F such thatg o hn =
gn modulo T and hne fnegn—1 = hn+1e fn+le gn—1 modulo T if n > 1 by
induction on n. Let h1 = gl1. Then g o hl = gl1. Suppose n > 1 and thereis
given an R-homomorphism hn : Fn — F such that g o hn = gn modulo T
andhnefnegn—1 = hn+lofn+legn—-1 modulo T. We define hn+l =
(hnefn+gn+2ofn+20 (1-sn)) o gn+l. Then we have g ohn+tl = (g
ohnefn+gn+2e fn+20 (1-sn)) o gn+1= (gne fn +gn+2e fn+20 (1-sn)) o gn+1
modulo T = (sn +sn+2¢ (1-sn)) o gn+1modulo T = (sn + sn+1 — sn+2osn) o
gn+1 modulo T = sn+20 gn+1 modulo T = gn+1 modulo T. On the other
hand, we have hn+1o fn+1e gn—1 = (hne fn + gn+20 fn+20 (1 —sn)) o gn+1e
fn+lo gn—1 = (hne fn + gn+2e fn+20 (1 — sn)) o gn modulo T = hne fne
gn—1 + gn+2o fntlegn—-1 — gn+20 fn+20 gn—1 modulo T= hne fne
gn—1modulo T. Thus we get a desired sequence of R-homomorphismshn.
Let Xx€M. Then there exists n > 0 such that x egn+1(Fn-1) + T, that is, X =
gn—1(y)+t for some t €T and y €Fn—1. Then we have hn(fn(x)) =
hn(fn(gn—1(y)+ t)) = hn+1(fn+1(gn—1(y) + t)) + t1 = hn+1(fn+1(x)) + t1 for
some t1€T . Moreover, since x €gn(Fn) + T, in this case, by replacing n by
n+1 we should have hn+1(fn+1(x)) = hn+2(fn+2(x)) + t1. Continuing in this
way, we confirm that hn(fn(x)) = hm(fm(x)) + t1 for every m >n. This
shows that hn(fn(x)) is independent of the choice of n so for as x in
gn—1(Fn—1). Define f(x) = hn(fn(x)) for each x €M, we have an R-
homomorphism f : M — F, which satisfies g(f(x)) — x = gn(fn(x)) — x €T
(since x egn—1(Fn—1)). Finally, the R-module F is projective and hence F is

(f(T)) — projective. Then f(m) €F . By dual basis lemma for (f(T))-

projective modules ([1],theorem(3.8)) there exist two families {wj}jDJ cF
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and {(pj}jJ < F* such that ¢;(f(m)) # 0 for only finitely many jeJ andf(m)
j

2 W (pj(f(m)) ef(T). But m = g(f(m)) + v for some v € T. Thus m
9w g;(F(m)) + () — v =Xjg(w)e,f(m) +g ) — v =
% 9(w;)(@;[1f)(m) +t1 for some t, t1€T . Thus the two families {g(wj)}jDJ

and {(ij f}jDJ satisfy the dual basis lemma for (T)-projective modules and

hence M is (T)-projective.

It is well-known that, every projective module is isomorphic to a direct
summanda free module. In [11], it was proved that, every locally projective
R-module is a pure sub module of a direct product of copies of R. For n-
locally (T)-projective modules we have the following.

Proposition 3.10: Every n-locally (T)-projective R-module is isomorphic to
a (t(T)I )-pure sub module of RI

Proof: Let M be n-locally (T)-projective R-module and denote M* as a

family(f;). . Define 6 : M — RI by 6(m) = (f{(m))., for meM. Clearly 0 is

il
an R-homomorphism and M is isomorphic to 6(M). We claim that 6(M) is
(t(T)1') —pure sub module of RI . Consider a system of equations 6(mk) =
(fi(my)), =2 niskwhere rl = ()., €RI, sIkeER, L is a finite set and k
€K (finite set). Theorem (3.2) implies that there exist a finite subset J € |
and a family{xj}jDJ ) M such that mk =%, x;fj(mk) + tkwhere tkeT for all

k€K, 0(mk)  =(fi(X; 0% fi(ma+t) . =(f; (Zj[in(Xj) fj(mk)"'fi(tk))i[l
=X i) Zioery st (FiCtd) ;- =X fi( Xy xjrswct (k) ;- for all i_L,
K_K. But (F(t) . | €t(m)I.
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Then O(mK)—; . (X;r)sik EYT)I , but 6(xjrlj) € 6(M). This shows that
O(M) is (t(T)I)-pure sub module of RI .

Corollary 3.11: Every n-locally (T)-projective R-module is isomorphic to a
(t(M)1 )-pure sub module of direct product of free modules.

Proposition 3.12:Let M be n-locally (T)-projective R-module and N a sub
moduleof M. If N+T is (T)-pure in M, then N is n-locally (T N N)-
projective and n-locally (T N N)-split.

Proof: Let x1, X2, ..., XxneN. Then by theorem(3.2), there are two families

{m;}. O Mand {¢;} [ M*such that foreachi=1,2, .. n, ¢(xi) #0
i S aN j

for only finitely many j €J and xi — ti =}, mj(pj(xi). (T)-purity of N+ T in M
implies that there exists ujeN and VvjeT such that xi — ti -
(X (uj+vj)(pj(xi) €T. Thus xi — uj((pj|N)(xi) €T N N. This implies that N is
n-locally (T NN)-projective. Define

s: M — N bys(m) =) u]-((pj|N)(m) for each m eM. Clearly, s(xi) —xi €T N
N foreachi=1, 2, ..., nand hence N is n-locally (T N N)-split.

Corollary 3.13: Let M be a locally projective R-module and N a pure sub
moduleof M. Then N is locally projective and locally split.

Proposition 3.14: Let M be an R-module and T a fully invariant sub module
of M. If M is n-locally (T)-projective R-module and S is the endomorphism
ring of M, then ,as an S-module, M is n-locally (T)-projective.

Proof: Let A be a left S-module and o : A —M an S-epimorphism. Let
X0 €a(A). Then a is an R-homomorphism. Thus n-local (T)-projectivity of
M implies that o is 1-locally (T)-split, that is, there is an R-homomorphism
B : M — A such that a(B(x0)) — X0 €T . Let y €M. Then the mapping p : M
— A defined by B (y) = B.y is an S-homomorphism and a(B (x0))—x0 =
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a(B(x0))—x0 €T . Then theorem (3.2) and proposition (2.2) imply that M is
n-locally (T)-projective S-module.

4. MORE REGULARITY RELATIVE TO A SUB MODULE

In this section, we invest locally (T)-split homomorphisms in studying
Zelmanowitzregularand Field house-regular modules relative to a
submodul.

Definition 4.1: Let M be an R-module and T a sub module of M. Then

(1) M is called Field house-regular relative to T (Simply,Field house (T)-
regular), if each sub module of M is (T)-pure.

(2) M is called Zelmanowitz-regular relative to T(Simply,Zelmanowitz(T)-
regular), if for each m €M there is o« €M* such that m — ma(m) €T .

It is clear that, an R-module M is Zelmanowitz (Field house)-regular if and
onlyif, it is Zelmanowitz (Field house )(0)-regular. If an R-module M is
Zelmanowitz(Field house )(T1)-regular, then M is Zelmanowitz (Field
house)(T2)-regular for each sub module T2 of M containing T1. Then every
Zelmanowitz (Field house ) regular module is Zelmanowitz (Field house
)(T)-regular for each sub module T of M.

Remark 4.2: (1) Every sub module N of Zelmanowitz (Field house)(T)-
regular module M, is Zelmanowitz (Field house)(T N N)-regular.

(2) For each positive integer n, the Z-module Zn is not Zelmanowitz (T)-
regular for each proper sub module T of Z.1f not, let a €Zn/T . Then there is
Zhomomorphism a : Zn — Z such thata—a a(a) €T . But HomZ(Zn,Z) = 0,
this implies that & €T which contradicts the choice of a. In a similar manner
we can see that Z-modules Q and Zp1l is not Zelmanowitz (T)- regular for
each proper sub module T of Q and Zplrespectivily.

(3) If o : M — N is an R-epimorphism and M is Field house (T)-regular,
then N is Field house (a(T))-regular.
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(4) Every n-(T)-regular module is Field house(T)-regular,(see
proposition(2.5)).

(5) Let M be an R-module and T a sub module of M. Then M is Field house
(T)-regular R-module if and only if M/T is Field house regular R-module.
Proof: Letn; =YL, X;rij where n; eN/T , X EM/T, rijeRand j =1, 2, ... m.
Then nj =YL, X;rijeT and hence (nj + tj) = YL, X;rij where jeT < N, j =1,
2, ...,m. There exist X; €N such that (nj + tj) —XiL; Xrij€T and hence 0; =
Yieq Xirij. Conversely, let N be a sub module of M and nj =3}, x;rij where
njeN, xieM and rijeR, j =1, 2, ..m. As N + T/T is pure in M/T , there
existk; €N + T/T such that 0 = i Xirij and hence nj —XL; %rij€T . Thus
M is Field house (T)-regular.

In the following, we characterize Field house (T)-regular modules over a
commutative

rings.

Proposition 4.3: Let M be a module over a commtative ring R and T a
suboduleof M. Then the following are equivalent:

(1) R/(T : x) is regular ring for each non-zero element x eM,

(2) For each x eM and r €R, there exists s €R such that rx — rsrxeT ,

(3) M is Field house (T)-regular.

Proof: (1) = (2) : Let x eM and r €R. Since R/(T : x) is regular, then there
exists S eR/(T : x) such that r = rsr and hence rx — rsrxeT .

(2) = (3) :Let N be a sub module of M and A an ideal of R. Let x EN N
MA. Then x =)L, m;ai where mieM and ai€eA. By (2), foreachi=1, 2, ...,
n there is si€eR such that miai — miaisiai€T . Put ei = siai and e = []iL; (1-¢;),
note that e €A and miai — miaiei = wi€T for each i =1, 2, ..., n and miei —

mie? €T . It is easy to check that for each j, mjeiej— mjei = ujeT . Now xe
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=y mjaie =YL, maieie +YNL,wie =YL, maiei +YL,uai +Yn, wie
=YL, mai + YL uiai X, wi(e — ei) = x + v where v =YL, u;ai + wi(e —
ei) €T, thus x eNA + T N (MA N N). This shows that N is (T)-pure in M
and hence M is

Field house(T)-regular.

(3) = (1): Letx eM and T eR/(T : x) and let P be the sub module generated
byy = xr. Then P is (T)-pure in M, so there is z €P such thaty —rzeP N T,
so there isr €R such that z = trx and hence T = rtr.

Corollary 4.4: Let M be a module over a commutative ring R and T a sub
moduleof M. Then

(1) If R/(T : M) is aregular ring, then M is Field house (T)-regular.

(2) If M is a finitely generated Field house (T)-regular R-module, then R/(T
: M) is regular ring.

Proof: (1) It is easy to see that R/(T : x) is epimorphic image of R/(T : M)
for each x €M and hence proposition (4.3) implies that M is Field house
(T)-regular.

(2) Let {x1, X2, ..., xn} be generated set of M and A = (T : M),Ai = (T : xi)
foreachi=1, 2, ..., n. Then A = NL; A;. Define o : RIA — @{L,R/Ai by
a(r+ A) =(r+ Al r+ A2, .., r+ An) for reR. It is easy to see that a is
Rmonomorphismand hence R/A is isomorphic to a subring W of @;L;R/Ai
where W = {(r+Al, r+A2, ..., r+tAn)|r €R}. Note that ®iLR/Ai is regular.
We finish if we prove that W is regular. Let y = (r+Al, r+A2, ..., r+An)

€W. Then for each i, there is tieR such that r +Ai = rtir +Ai and hence r
—rtire(T : xi). Put 1-tr =[[,(1-tr). Then for each i, r(1-tr) =
r(IT, (1-4)=ITL, (1-tr) € (T : xi), this shows that r + Ai = rtr + Ai. If we
putu=(t+ Al t+ A2, .. t+ An), then y =yuy.
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We have proved in section one that, if M is n-(T)-regular R-module, then
J(M) € T and hence J(R) € (T : M). First we note that, if P is a (T)-pure sub
module ofM and A a right ideal of R, then P € MA if and only if P =
PA+(TNP).

Lemma 4.5: If P is a finitely generated (T)-pure sub module in M such that
P €MA where Ais aright ideal of R contained in J(R), thenP C T.
Proof:By the above we have P = PA+(T N P). Then Nagayama’s lemma
implies that PA isa small in P and hence P=T NP and thus P _T.
Proposition 4.6: If M is a Field house (T)-regular R-module, then MJ(R) <
T.

Proof: Let P be a finitely generated sub moduleof MJ(R). Since M is Field
house (T)-regular, then P is (T)-pure in M and hence by lemma(4.5), P € T.
This shows that MJ(R) € T.

Corollary 4.7: I1f M is a Field house (T)-regular R-module such that J(M)
cMJ(R) + T, then J(M) c T. In particular, J(M) cT for every Field house
(T)-regular 1-locally (T)-projective module.

Theorem 4.8: The following are equivalent for an R-module M and a sub
moduleT of M:

(1) M is Zelmanowitz (T)-regular,

(2) Every R-homomorphism into M (form any R-module) is 1-locally(T)-
split,

(3) Every R-homomorphism from R into M is 1-locally (T)-split.

Proof. (1) = (2) : Let a : A — M be an R-homomorphism and x € a(A).
Then x = o(z) for some z €A. By (1), there exists an R-homomorphism § :
M — R such that x — xB(x) €T . Define q : M —A by g(m) = zp(m) for m
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€M. Then a(q(x)) — X = a(z)B(X)— X = XB(X) — x € T. This shows that o is
1-locally(T)—split

(2) = (3) : Trivial.

(3) = (1) : Let x_M. Define the well-defined R-homomorphismg: R — M
by g(r) = mr for r €R. Then by (3), g is 1-locally(T)-split and hence there is
an R-homomorphism g : M — R such that g(q(x)) — X€T , that is xq(x) — X
€T which implies that M is Zelmanowitz (T)-regular.

In the following, we see that the three types of regularity relative to a sub
moduleare equivalent under 1-locally (T)-projective modules.

Theorem 4.9:The following statements are equivalent for an R-module M
and a sub module T of M.

(1) M is Zelmanowitz (T)-regular,

(2) M is 1-locally(T)-projective and 1-(T)-regular,

(3) M is 1-locally(T)-projective and Field house(T)-regular.

Proof: (1) = (2) : Follows from the fact that every R-epimorphism(and
every R-monomorphism) is 1-locally(T)-split.

(2) = (3) : Follows from examples andremarks(4.2)(4).

(3)=(1) : Let h: Q — M be an R-homomaorphism. Since h(Q) + T is (T)-
pure in M, then by proposition(3.12), h(Q) is 1-locally(T)-projective and 1-
locally(T)-split. By regarding h as a map onto h(Q), we have an R-
epimorphismh : Q — h(Q). 1-local(T)-projectivity of h(Q) implies that h is
1-locally(T)-split, theorem(3.2). Thus proposition(2.2) implies that h is 1-
locally(T)-split. Therefore theorem(4.8) assert that M is Zelmanowitz(T)-

regular.
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Corollary 4.10: Let M be Zelmanowitz(T)-regular R-module where T is a
fully invariant sub module of M and S the endomorphism ring of M. Then,
as an SmoduleM is Zelmanowitz (T)-regular.

Proof: By theorem(4.9), M is 1-locally(T)-projective and 1-locally(T)-
regular Rmodule. Hence proposition (3.14) and proposition (2.9) imply
thatM is 1-locally(T)-projective S-module and 1-(T)-regular S-module.
Again theorem(4.9) implies thatM is Zelmanowitz (T)-regular S-module.
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