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The Zero Divisor Graphs of a finite Certain Rings
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Abstract

For each commutative ring we associate a graph I'(R). In this paper
we consider the zero divisor graphs of certain finite rings, and we
characterize the complete Dbipartite zero divisor graph of finite

commutative rings.
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1. Introduction.

Throughout this paper , any ring R is a commutative with identity.
We write Z(R)" the set of all non zero zero- divisor of a ring R. Recall
from [1] that the zero divisor graph of R, denoted by I'(R), is the graph
whose vertex set of all nonzero zero-divisors of R and distinct vertices

X,y are joined by an edge in this graph if and only if xy=0.
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The notion of the zero divisor graph I'(R) was firstly introduced by I.
Beck [ 3], where his motive was coloring of the graph. This work had
been extended to commutative semi-group by De Mayer, Mckanzie and
Schneider [5 ]. The zero divisor graphs also studied by Anderson and

Livinyston [ 1 ]. They found that I'(R) is always connected.

We recall that a graph G is said to be a bipartite if it's vertices can be
divided into two disjoint sets U and V such that every edge connects a
vertex in U to one in V; that is U and V are each independent sets. A
graph G is said to be complete bipartite if every vertex of U is connected
to every vertex of V. If |U|=m and |V|=n, the complete bipartite graph
will be denoted by Ky, ,. Note that K , is called a star graph.

2. The Diameter of I'(R).

In this section we consider I'(R) with diameter less than or equal
to2.Recall that in a graph G, the distance between two vertices u and v,
d(u,v) is the length of the shortest path joining u and v. The diameter of
G, denoted by dim(G), is the maximum distance among all pairs of

vertices in G.
We start this section with the following result.

Theorem 2.1: Let R be a finite ring with dim(T'(R)) < 2. ThenR is a

local ring or R=F,xF, , where F; and F, are fields.

Proof : Since R is a finite ring, then R=R1xRyX...XR,, where R; are local

ring for all i > 1.

If n> 3, then Z,=(0,1,1,...,1) is only adjacent with (1,0,0,...,0), and
Z,=(1,0,1,...,1) is only adjacent with (0,1,0,...,0). Since Z; and Z, do
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not have a common annihilator, dim(I"(R))=3 which is a contradiction,

therefore n=2 or 1.

Assume that RzR1xR; , if R; and R, are local rings but not a field.
Let zeZ(Ry), weZ(R,)". Consider the zero —divisor z;=(z,1) and
w;=(1,w). The shortest path between z; and w; must be of length 3, and

hence dim(I'(R))=3 which is a contradiction.

If Ry is a local ring but not a field and R is a field, let xl,xzeZ(Rl)*,
such that x;x,=0. Consider the zero-divisor z;=(x;,1) and z,=(1,0). The
shortest path between z; and z, must be length 3, and hence dim(I'(R))=3

which is a contradiction. So that R is local or R=FxF,. =

Recall that , a ring R is said to be regular, if for every aeR, there
exists beR such that a=aba. Clearly (ab)? =abab=ab. Therefore ab is an

idempotent element in R.

Definition 2.2: We call a ring R, satisfies a property (*) if every

orthogonal idempotent elements ey, €, ...,e, We have e;+ey+...e,=1 for

all positive integers n>2.

The following result establish the relation between regular ring R and
the dim(I'(R)).

Theorem 2.3: Let R be a finite regular ring satisfying condition (*), then
dim(I"(R))<2.

Proof : Let x,y be a distinct zero divisor elements in R. If xy=0, then
d(x,y)=1. Suppose that xy=0, since R is regular, there exists Oze=e? ,
0=f=fcR such that x=xe and y=yf, this implies that x(1-e)=0 and y(1-
f)=0. If ef=0 ,then xy=xeyf=xyef=0 which is a contradiction. If ef=0 ,
since R satisfying condition ( *), then (1-e)(1-f) # 0, so that  x(1-e)(1-
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f)=0 and y(1-e)(1-f)=0. This means that the path between x,y is x— (1-
e)(1-f) —y ,hence d(x,y)=2. Therefore dim(I'(R))<2. m
The following example shows that the condition " regular ring, R

satisfies a condition (*) or R finite ring" in Theorem 2.3 is not
superfluous

Example 1:

1- R=Z3 is a finite regular ring but is not satisfying condition (*), then
dim(I"(R))=3.

2- If R=Z;, or R=Z;5 , then R is a finite ring and not regular which
satisfy the condition (*) and hence dim(I'(R))=3.

3- Let R=Z,xZ, then R is a infinite ring with T'(R) is complete bipartite
graph and R not regular. m
Before giving the main result of this section, the following theorem

which are due to Axtell, Stickles and Trampbachls [ 2 ] is needed.
Lemma 2.4: Let R be a finite ring. Then the following are equivalent:

1- Z(R) is an ideal;

2- Z(R) is a maximal ideal;

3- Ris local;

4- Every xe Z(R) is nilpotent;

5- There exists beZ(R) such that bZ(R)=0.

Theorem 2.5: Let R be a finite ring , then

1- dim(I'(R)) =0 iff R=Z, or Zo[X]/(X?).

2- dim(T(R)) =1 iff R=Z,xZ, or R is local ring with (Z(R))*=0.

3- dim(T(R)) =2 iff R=F;xF, with R%Z,xZ, or local with (Z(R))* = 0,
where F; and F; are field.

4- For all cases except (1), (2) and (3), dim(I'(R)) =3.
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Proof : (1) Since I'(R) connected and dim(I'(R)) =0, then I'(R) has
exactly one vertex so that by [ 4 ] R=Z, or Z,[X]/(X?)

(2) Let dim(I'(R)) =1, then T'(R) is complete graph and therefore
R=Z,xZ, or xy=0 for all x,yeZ(R)[ 1 ]. If R = Z,xZ, we are done . If
xy=0 for all x,yeZ(R), then by Lemma 2.4 R local and hence if
(Z(R))%£0, then there exists a,beZ(R) such that ab=0 which is a
contradiction . Therefore (Z(R))*=0.

(3) If dim(I'(R)) =2, then by Theorem 2.3 R is local ring or R=FxF, . If
Rx=F;xF,, we are done. If R local, then by Lemma 2.4 there exists
beZ(R) such that bZ(R)=0 ,so that dim(I'(R)) <2, if (Z(R))?=0, then
dim(T'(R)) =1 which is a contradiction , therefore (Z(R))%£0

(4) Since dim(I"(R)) <3 for any ring [1, Theorem 2.3]. m
3. Complete Bipartite Zero-Divisor Graph.

In this section we investigate a complete bipartite zero divisor
graph (T'(R) .

First we state the following result of [ 2 ]

Lemma 3.1: Let R a finite ring such that I'(R)=K_, with center a. Then

the following are equivalent:

1- 1- Z(R) is an ideal,
2- a*=0;
3- R= Zy, Zg, Zo, Zo[XI(X?), Zo[XV(X3), Za[X]/(X?) or Zy[X]/(2X,X>-2).
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Proposition 3.2: Let R be a finite ring with T'(R) is complete bipartite,
then R= F;xF, or A, where F; and F, are fields and A=Z, , Zg, Z,,
Zo[XI(X?), Zo[X(X3), Za[X]/(X?) or Zo[X]/(2X,X3-2).

Proof : Since I'(R) is complete bipartite, then dim(I'(R))=2, and hence
R=F;xF, or R is a local ring Theorem 2.3. If R= F;xF, we are done. If R
local , then by Lemma 2.4 there exists beZ(R)" such that b is adjacent
with every other vertices. So that I'(R) is star with center b. Therefore by
Lemma 3.1 R=A. m

Theorem 3.3 : Let R be a finite ring with I'(R) is complete bipartite,
then

1- If R reduced , then R=F;xF, ,and hence R is regular.
2- R satisfying condition (*). In particular, the only idempotent

elements of R are 0,1,e,1-e.

Proof : (1) Since R reduced ring and I'(R) complete bipartite graph, then
applying Proposition 3.2, R=F;xF, . Therefore R is regular ring,

(2) Claim 1: R satisfying (*) condition, where n=2.

Let 0,1,#e,f be any orthogonal idempotent elements in R and T'(R)
complete bipartite, then we can write I'(R)=AuB with AnB = ¢ and for
every two vertices from different partition class are adjacent and for
every two vertices from same partition class are non-adjacent. Now if
ecA, then feB. Now since e=e?, then e(1-e)=0 and hence (1-e)eB.
Similarly 1-fe A. Therefore (1-e)(1-f)=0 which implies that e+f=1 so that
R satisfying condition (*) , where n=2 and f=1-e.

Claim 2: Let there exists idempotent elements g?=geR with g#0,1,e or

(1-e) , since I'(R) complete bipartite graph , and e(1-e)=0, then either
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ge=0 or g(1-e) , without loss generality, let(1-g)e=0, then ge=0 and so
that g,ecA or B. Let g,ecA, then (1-g), (1-e)eB and hence g(1-e)=e(1-
g)=0, so that g=e which is a contradiction. Therefore the only idempotent
elementsin R is 0,1,e,1-e.
From Claims 1 and 2 , we conclude that R satisfying (*) condition m

The condition " R is reduced "in Theorem 3.3(1) is not superfluous
Example 2: R=Z,[X]/(X% is not a reduced ring with ['(R) complete
bipartite graph and R not regular ring. m

Proposition 3.4: Let R be a finite ring, then R is regular ring satisfying

condition (*) if and only if R is reduced with I'(R) is complete bipartite

Proof : Suppose that R is regular ring satisfying (*)condition , then
obviously R is reduced and by Theorem 2.3, dim(I'(R))<2 and by
Theorem 2.1 we have R=F;xF, which implies that I'(R) is complete
bipartite.

Conversely, assume R be a reduced ring with I'(R) complete bipartite,
then by Theorem 3.3, R is regular satisfying condition (*).m
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