Iraqi Journal of Statistical Sciences (25) 2013

The 6th Scientific Conference of the College of Computer Sciences & Mathematics

pp [14-20]

The Zero Divisor Graphs of a finite Certain Rings

Dr.Nazar H. Shuker*

Dr. Husam Q. Mohammad**

Abstract

For each commutative ring we associate a graph $\Gamma(R)$. In this paper we consider the zero divisor graphs of certain finite rings, and we characterize the complete bipartite zero divisor graph of finite commutative rings.

الملخص

لكل حلقة ابدالية R ، نمثل البيان $\Gamma(R)$. في هذا البحث درسنا بيانات قواسم الصفر للحلقات المنتهية، وكذلك اعطينا تمييزا لبيانات قواسم الصفر الثنائي التجزئة التام للحلقات المنتهية.

Keywords: zero divisor graph, regular ring, bipartite graph, diameter of the graph.

1. Introduction.

Throughout this paper , any ring R is a commutative with identity. We write $Z(R)^*$ the set of all non zero zero- divisor of a ring R. Recall from [1] that the zero divisor graph of R, denoted by $\Gamma(R)$, is the graph whose vertex set of all nonzero zero-divisors of R and distinct vertices x,y are joined by an edge in this graph if and only if xy=0.

Received Date 24/9/2013 ————— Accept Date 21/11/2013

^{*}Prof / Dept. Mathematics / Computer Sciences and Mathematics College / Mosul University

^{**} Assist Prof / Dept. Mathematics / Computer Sciences and Mathematics College / Mosul University

The Zero Divisor Graphs of a finite Certain Rings

The notion of the zero divisor graph $\Gamma(R)$ was firstly introduced by I. Beck [3], where his motive was coloring of the graph. This work had been extended to commutative semi-group by De Mayer, Mckanzie and Schneider [5]. The zero divisor graphs also studied by Anderson and Livinyston [1]. They found that $\Gamma(R)$ is always connected.

We recall that a graph G is said to be a bipartite if it's vertices can be divided into two disjoint sets U and V such that every edge connects a vertex in U to one in V; that is U and V are each independent sets. A graph G is said to be complete bipartite if every vertex of U is connected to every vertex of V. If |U|=m and |V|=n, the complete bipartite graph will be denoted by $K_{m,n}$. Note that $K_{1,n}$ is called a star graph.

2. The Diameter of $\Gamma(R)$.

In this section we consider $\Gamma(R)$ with diameter less than or equal to 2. Recall that in a graph G, the distance between two vertices u and v, d(u,v) is the length of the shortest path joining u and v. The diameter of G, denoted by $\dim(G)$, is the maximum distance among all pairs of vertices in G.

We start this section with the following result.

Theorem 2.1: Let R be a finite ring with $\dim(\Gamma(R)) \le 2$. Then R is a local ring or $R \cong F_1 \times F_2$, where F_1 and F_2 are fields.

<u>Proof</u>: Since R is a finite ring, then $R \cong R_1 \times R_2 \times ... \times R_n$, where R_i are local ring for all $i \geq 1$.

If $n \ge 3$, then $Z_1=(0,1,1,\ldots,1)$ is only adjacent with $(1,0,0,\ldots,0)$, and $Z_2=(1,0,1,\ldots,1)$ is only adjacent with $(0,1,0,\ldots,0)$. Since Z_1 and Z_2 do

not have a common annihilator, $\dim(\Gamma(R))=3$ which is a contradiction, therefore n=2 or 1.

Assume that $R \cong R_1 x R_2$, if R_1 and R_2 are local rings but not a field. Let $z \in Z(R_1)^*$, $w \in Z(R_2)^*$. Consider the zero –divisor $z_1 = (z,1)$ and $w_1 = (1,w)$. The shortest path between z_1 and w_1 must be of length 3, and hence $\dim(\Gamma(R)) = 3$ which is a contradiction.

If R_1 is a local ring but not a field and R_2 is a field, let $x_1, x_2 \in Z(R_1)^*$, such that $x_1x_2=0$. Consider the zero-divisor $z_1=(x_1,1)$ and $z_2=(1,0)$. The shortest path between z_1 and z_2 must be length 3, and hence $\dim(\Gamma(R))=3$ which is a contradiction. So that R is local or $R\cong F_1xF_2$.

Recall that, a ring R is said to be regular, if for every $a \in R$, there exists $b \in R$ such that a=aba. Clearly $(ab)^2 = abab = ab$. Therefore ab is an idempotent element in R.

<u>Definition 2.2:</u> We call a ring R, satisfies a property (*) if every orthogonal idempotent elements e_1 , e_2 , ..., e_n we have $e_1+e_2+...e_n=1$ for all positive integers $n\geq 2$.

The following result establish the relation between regular ring R and the $dim(\Gamma(R))$.

Theorem 2.3: Let R be a finite regular ring satisfying condition (*), then $\dim(\Gamma(R)) \le 2$.

The Zero Divisor Graphs of a finite Certain Rings

f)=0 and y(1-e)(1-f)=0. This means that the path between x,y is x— (1-e)(1-f) — y ,hence d(x,y)=2. Therefore $dim(\Gamma(R)) \le 2$.

The following example shows that the condition "regular ring, R satisfies a condition (*) or R finite ring" in Theorem 2.3 is not superfluous

Example 1:

- 1- $R=Z_{30}$ is a finite regular ring but is not satisfying condition (*), then $\dim(\Gamma(R))=3$.
- 2- If $R=Z_{12}$ or $R=Z_{18}$, then R is a finite ring and not regular which satisfy the condition (*) and hence $\dim(\Gamma(R))=3$.
- 3- Let $R=Z_2xZ$, then R is a infinite ring with $\Gamma(R)$ is complete bipartite graph and R not regular.

Before giving the main result of this section, the following theorem which are due to Axtell, Stickles and Trampbachls [2] is needed.

<u>Lemma 2.4:</u> Let R be a finite ring. Then the following are equivalent:

- 1- Z(R) is an ideal;
- 2- Z(R) is a maximal ideal;
- 3- R is local;
- 4- Every $x \in Z(R)$ is nilpotent;
- 5- There exists $b \in Z(R)$ such that bZ(R)=0.

Theorem 2.5: Let R be a finite ring, then

- 1- $\dim(\Gamma(R)) = 0$ iff $R \cong \mathbb{Z}_4$ or $\mathbb{Z}_2[X]/(X^2)$.
- 2- $\dim(\Gamma(R)) = 1$ iff $R \cong \mathbb{Z}_2 \times \mathbb{Z}_2$ or R is local ring with $(\mathbb{Z}(R))^2 = 0$.
- 3- dim($\Gamma(R)$) =2 iff $R \cong F_1 x F_2$ with $R \not\cong Z_2 x Z_2$ or local with $(Z(R))^2 \neq 0$, where F_1 and F_2 are field.
- 4- For all cases except (1), (2) and (3), $\dim(\Gamma(R)) = 3$.

<u>Proof</u>: (1) Since $\Gamma(R)$ connected and $\dim(\Gamma(R)) = 0$, then $\Gamma(R)$ has exactly one vertex so that by $[4] R \cong Z_4$ or $Z_2[X]/(X^2)$

- (2) Let $dim(\Gamma(R)) = 1$, then $\Gamma(R)$ is complete graph and therefore $R \cong Z_2 \times Z_2$ or xy = 0 for all $x,y \in Z(R)[1]$. If $R \cong Z_2 \times Z_2$ we are done. If xy = 0 for all $x,y \in Z(R)$, then by Lemma 2.4 R local and hence if $(Z(R))^2 \neq 0$, then there exists $a,b \in Z(R)$ such that $ab \neq 0$ which is a contradiction. Therefore $(Z(R))^2 = 0$.
- (3) If $\dim(\Gamma(R)) = 2$, then by Theorem 2.3 R is local ring or $R \cong F_1 x F_2$. If $R \cong F_1 x F_2$, we are done. If R local, then by Lemma 2.4 there exists $b \in Z(R)$ such that bZ(R) = 0, so that $\dim(\Gamma(R)) \le 2$, if $(Z(R))^2 = 0$, then $\dim(\Gamma(R)) = 1$ which is a contradiction, therefore $(Z(R))^2 \ne 0$
- (4) Since $\dim(\Gamma(R)) \le 3$ for any ring [1, Theorem 2.3].

3. Complete Bipartite Zero-Divisor Graph.

In this section we investigate a complete bipartite zero divisor graph ($\Gamma(R)$).

First we state the following result of [2]

<u>Lemma 3.1:</u> Let R a finite ring such that $\Gamma(R)=K_{1,n}$ with center a. Then the following are equivalent:

- 1-1-Z(R) is an ideal;
- 2- $a^2=0$:
- 3- $R \cong Z_4, Z_8, Z_9, Z_2[X]/(X^2), Z_2[X]/(X^3), Z_3[X]/(X^2)$ or $Z_4[X]/(2X, X^2-2)$.

The Zero Divisor Graphs of a finite Certain Rings

Proposition 3.2: Let R be a finite ring with $\Gamma(R)$ is complete bipartite, then $R \cong F_1 \times F_2$ or A, where F_1 and F_2 are fields and $A \cong Z_4$, Z_8 , Z_9 , $Z_2[X]/(X^2)$, $Z_2[X]/(X^3)$, $Z_3[X]/(X^2)$ or $Z_4[X]/(2X,X^2-2)$.

<u>Proof</u>: Since $\Gamma(R)$ is complete bipartite, then dim($\Gamma(R)$)=2, and hence $R\cong F_1xF_2$ or R is a local ring Theorem 2.3. If $R\cong F_1xF_2$ we are done. If R local , then by Lemma 2.4 there exists b∈Z(R)* such that b is adjacent with every other vertices. So that $\Gamma(R)$ is star with center b. Therefore by Lemma 3.1 R≅A. ■

Theorem 3.3: Let R be a finite ring with $\Gamma(R)$ is complete bipartite, then

- 1- If R reduced, then $R \cong F_1 \times F_2$, and hence R is regular.
- 2- R satisfying condition (*). In particular, the only idempotent elements of R are 0,1,e,1-e.

<u>Proof</u>: (1) Since R reduced ring and $\Gamma(R)$ complete bipartite graph, then applying Proposition 3.2, $R \cong F_1 \times F_2$. Therefore R is regular ring,

(2) Claim 1: R satisfying (*) condition, where n=2.

Let $0,1,\neq e,f$ be any orthogonal idempotent elements in R and $\Gamma(R)$ complete bipartite, then we can write $\Gamma(R)=A\cup B$ with $A\cap B=\varphi$ and for every two vertices from different partition class are adjacent and for every two vertices from same partition class are non-adjacent. Now if $e\in A$, then $f\in B$. Now since $e=e^2$, then e(1-e)=0 and hence $(1-e)\in B$. Similarly $1-f\in A$. Therefore (1-e)(1-f)=0 which implies that e+f=1 so that R satisfying condition (*), where n=2 and f=1-e.

Claim 2: Let there exists idempotent elements $g^2=g\in R$ with $g\neq 0,1,e$ or (1-e), since $\Gamma(R)$ complete bipartite graph, and e(1-e)=0, then either

ge=0 or g(1-e), without loss generality, let(1-g)e=0, then ge \neq 0 and so that g,e \in A or B. Let g,e \in A, then (1-g), (1-e) \in B and hence g(1-e)=e(1-g)=0, so that g=e which is a contradiction. Therefore the only idempotent elements in R is 0,1,e,1-e.

From Claims 1 and 2, we conclude that R satisfying (*) condition ■

The condition " R is reduced "in Theorem 3.3(1) is not superfluous

Example 2: $R=Z_2[X]/(X^3)$ is not a reduced ring with $\Gamma(R)$ complete bipartite graph and R not regular ring.

Proposition 3.4: Let R be a finite ring, then R is regular ring satisfying condition (*) if and only if R is reduced with $\Gamma(R)$ is complete bipartite

<u>Proof</u>: Suppose that R is regular ring satisfying (*)condition, then obviously R is reduced and by Theorem 2.3, $\dim(\Gamma(R)) \le 2$ and by Theorem 2.1 we have $R \cong F_1 \times F_2$ which implies that $\Gamma(R)$ is complete bipartite.

Conversely, assume R be a reduced ring with $\Gamma(R)$ complete bipartite, then by Theorem 3.3, R is regular satisfying condition (*).

References

- [1] D.D. Andersen and P. S. Livingston, "The zero divisor graph of a commutative ring". Journal of Algebra 217, (1999), pp. 434-447.
- [2] M. Axtell, J. Stickles and W. Trampbachls, "Zero-divisor ideals and realizable zero-divisor graphs", Involve a journal of Mathematics. Vol. 2, No. 1, (2009) pp.17–27
- [3] I. Beck, "Coloring of commutative ring". Journal of Algebra 116, (1988), pp. 208-226.
- [4] G. Carbas and D. Williams, , "Rings of Order p⁵.I Nonlocal Rings", Journal of Algebra 231(2), (2000)pp. 677-690.
- [5] F. R. De Meyer T. Mckanzie and K. Schneider, 'The Zero Divisor Graph of a Commutative Semigroups", Semigroup Forum Vol. 65, (2002) pp. 206-214.