

Iraqi Journal of Statistical Sciences

http://stats.uomosul.edu.iq

$oldsymbol{g}_*^* - oldsymbol{\mathcal{I}} ext{-Closed Sets}$ and Their Properties in in Ideal Topological Space

Rughzai, Shwan Mahamood¹ Darwesh, Halgwrd Mohammed²

1,2 Department of Mathematics, College of Science, University of Sulaimani, Sulaimani, Iraq

Article information

Article history:

Received July 25, 2024 Revised: December 1, 2024 Accepted: December 12, 2024 Available online June 1, 2025

Keywords:

Ideal topological space, g^* -closed set, g^*-I -closed set, g^*_*-I -open set

Correspondence: Rughzai, Shwan Mahamood shwanmath91@gmail.com

Abstract

There are many research papers that deal with different types of generalized closed sets. Levine [4] introduced generalized closed (briefly, g-closed) sets and studied their basic properties and Veera Kumar [5] introduced g^* -closed sets in topological spaces. The purpose of this present paper is to define a new class of generalized idea closed sets called $g^*_* - I$ -closed sets by using g^* -open set. In this paper, we introduce the $g^*_* - J$ -closed sets, characterizations and properties of $g^*_* - J$ -closed sets and its complement and other related sets. We prove that the class of $g^*_* - J$ -closed sets lies between the class of Jg-closed sets and the class of g^* -closed sets. Also, we find some relations between $g^*_* - J$ -closed sets and already existing closed sets. $g^*_i - J$ -open neighborhood is introduced and their properties are investigated.

DOI $\underline{10.33899/iqjoss.2025.187753}$, @Authors, 2025, College of Computer Science and Mathematics University of Mosul. This is an open access article under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The subject of ideals in topological spaces has been studied by Kuratowski [1] and Vaidyanatha swamy [2]. In 1990, Jankovic and Hamlett [3] once again investigated applications of topological ideals. The concept of generalized closed sets plays a significant role in topology. There are many research papers that deal with different types of generalized closed sets. Levine [4] introduced generalized closed (briefly, g-closed) sets and studied their basic properties and Veera Kumar [5] introduced g^* -closed sets in topological spaces. The purpose of this present paper is to define a new class of generalized idea closed sets called g^* – I-closed sets by using g^* -open set (which is a complement of g^* -closed set) and also we obtain the basic properties of called g^* – I-closed set in ideal topological spaces.

2. Preliminaries

An ideal I on a non-empty set X is a collection of subsets of X which satisfies the following properties [1], [2]. (i) $A \in I, B \in I \Rightarrow A \cup B \in I$

(ii) $A \in I, B \subset A \Rightarrow B \in I$

A topological space (X, τ) with an ideal I on X is called an ideal topological space and is denoted by (X, τ, I) . Let Y be a subset of X. $I_Y = \{I \cap Y/I \in I\}$ is an ideal on Y and by $(Y, \tau/Y, I_Y)$ we denote the ideal topological subspace. Let P(X) be the power set of X, then a set operator $()^*: P(X) \to P(X)$ called the local function [1] of X with respect to X and X is defined as follows:

For $A \subset X$, $A^*(I, \tau) = \{x \in X/U \cap A \notin I \text{ for every open set } U \text{ containing } x\}$.

We write A^* instead of $A^*(I, \tau)$ in case there is no confusion. A Kuratowski closure operator $cl^*()$ for a topology $\tau^*(I, \tau)$, called the τ^* - topology is defined by $cl^*(A) = A \cup A^*$ [6]

A subset A of a space (X, τ) is said to be semi-open [7] if $A \subset cl(\text{int }(A))$. A set operator $()^{*S}: P(X) \to P(X)$ called a semi-local function and $cl^{*S}()$ [7] of A with respect to τ and I are defined as follows:

For $A \subset X$, $A^{*S}(I,\tau) = \{x \in X/U \cap A \notin I \text{ for every semi open set } U \text{ containing } x\}$. and $Cl^{*S}(A) = A \cup A^{*S}$.

Note: A^{*S} defined in [7] and A_* defined in [8] are the same. For a subset A of X, cl (A) (resp scl (A)) denotes the closure (resp semi closure) of A in (X, τ) . Similarly $cl^*(A)$ and int $^*(A)$ denote the closure of A and interior of A in (X, τ^*) .

A subset A of X is called * closed (resp.* S - closed) if $A^* \subseteq A$ (resp $A^{*S} \subseteq A$) [3]. A is called * - dense in itself (resp .*S-dense) [3]. If $A \subseteq A^*$ (resp $\subseteq A^{*S}$) A is called * - perfect (resp .*s - perfect). If $A = A^*$ (resp $A = A^{*S}$) [3]. A subset A of a topological space (X, τ) is said to be generalized closed (briefly g-closed) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) [3]. The complement of g-closed set is said to be g = open.

Definition 2.1. A subset A of a topological space (X, τ) is said to be g^* -closed set if $Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X, τ) [5].

Definition 2.2. of be Α subset space (X, τ, I) is said to $A^{*S} \subseteq U$ closed [9] wherever $A \subseteq U$ and Χ. (i) is open in (ii) $\mathcal{I}g$ – closed [10] if $A^* \subseteq U$ wherever $A \subseteq U$ and U is open in X.

Definition 2.3. A space (X, τ, I) is said to be a T_I -space if every I-generalized closed subset of X is τ^* -closed [10] [14].

Definition 2.4. A subset *A* of an ideal topological space (X, τ, I) is said to be *I*- compact if for every τ -open cover $\{\omega_{\alpha}: \alpha \in \Delta\}$ of *A*, there exists a finite subset Δ_0 of Δ such that $(X - \cup \{\omega_{\alpha}: \alpha \in \Delta_0\}) \in I$ [11], [12].

Lemma 2.5. [13] Let (X, τ, \mathcal{I}) be an ideal space and $W \subseteq X$. If $W \subseteq W^*$, then $W^* = Cl(W^*) = Cl(W) = Cl^*(W)$.

Theorem 2.6. Let (X, τ, \mathcal{I}) be an ideal space. If W is an $\mathcal{I}g$ -closed subset of X, then W is \mathcal{I} -compact [14], Theorem 2.17].

Note: In general the intersection of g-closed sets need not be g-closed.

Definition 2.7. [7] A topological space (X, τ) is said to be a g-multiplicative space if the arbitrary intersection of g-closed sets in X is g-closed.

Remark 2.8. [7]

- 1. In g-multiplicative spaces, gCl(W) which is the intersection of all g-closed sets in X containing W is also g-closed.
- 2. Any indiscrete topological space (X, τ) is *g*-multiplicative.
- 3. If $X = \{x, y, z\}$ and $\tau = \{X, \emptyset, \{x\}\}$ then $\{x, z\}$ and $\{x, y\}$ are g-closed but $\{x\}$ is not g-closed and hence $\{x, \tau\}$ is not g-multiplicative.

Theorem 2.9. [10] (Theorem 3.20). Let (X, τ, \mathcal{I}) be an ideal space and $W \subset Y \subset X$ where Y is α -open in X. Then $W^*(\mathcal{I}_Y, \tau_Y) = W^*(\mathcal{I}, \tau) \cap Y$.

Lemma 2.11. [3] Let (X, τ) be a space, I and J be ideals on X, and let A and B be subsets of X. Then

- (1) $A \subseteq B \Rightarrow A^* \subseteq B^*$.
- (2) If $I \subseteq J$, then $A^*(I) \supseteq A^*(J)$.
- (3) $A^*(I) = Cl(A^*) \subseteq Cl(A)$ (i.e, A^* is a closed subset of (A)).
- (4) If $A \subseteq A^*$, then $A^* = Cl(A^*) = Cl(A) = Cl^*(A)$.
- $(5) (A^*)^* \subseteq A^*.$
- (6) $(A \cup B)^* = A^* \cup B^*$.
- (7) If $U \in \tau$, then $U \cap A^* = U_x(U_x \cap A)^* \subseteq (U \cap A)^*$.
- (8) If $A \in I$, then $A^* = \emptyset$.

Lemma 2.12. [3] For any two sets A and B of an ideal topological space (X, τ, \mathcal{I}) , $Cl^*(A \cup B) = Cl^*(A) \cup Cl^*(B)$.

3. Methodology

Definition 3.1: A subset W of an ideal space (X, τ, \mathcal{I}) is said to be

- 1. $g_*^* \mathcal{I}$ -closed, if $Cl^*(W) \subset U$ whenever $W \subset U$ and U is g^* -open in X.
- 2. $g_*^* \mathcal{I}$ -open, if its complement is $g_*^* \mathcal{I}$ -closed set.

The collection of all $g_*^* - \mathcal{I}$ -closed sets (resp $g_*^* - \mathcal{I}$ -open sets) is denoted by $(g_*^* \mathcal{C}(X))$ (resp $g_*^* \mathcal{O}(X)$).

Remark 3.2: In any ideal topological space (X, τ, \mathcal{I}) ,

- 1. Every $g_*^* \mathcal{I}$ -closed set is $\mathcal{I}g$ -closed set.
- 2. Every $\mathcal{I}g$ -closed set is $g\mathcal{I}$ -closed set.
- 3. Every $g_*^* \mathcal{I}$ -closed set is $g\mathcal{I}$ -closed set.
- 4. The converse of part (3) is not true in general, see the following example.

Example 3.3. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\},$ and $\mathcal{I} = \{\emptyset, \{c\}\}.$ Put $A = \{b\}$ and the only open sets containing A are $\{a, b\}$ and X, then $A_* = \{b\} \subseteq \{a, b\}$, whenever $\{a, b\}$ is open and $\{b\} \subseteq \{a, b\}$. So A is $g\mathcal{I}$ -closed set. But, since $A^* = \{b\}^* = \{b, c\}$, so $Cl^*(\{b\}) = \{b, c\} \nsubseteq \{a, b\},$ whenever $\{b\} \subseteq \{a, b\}$ and $\{a, b\}$ is also g^* -open.

Theorem 3.4. Every *-closed set is $g_*^* - \mathcal{I}$ -closed but not conversely. Proof. Let W be a *-closed, then $W^* \subseteq W$. Let $W \subseteq U$ where U is g^* -open. Hence $Cl^*(W) \subseteq U$ whenever $W \subseteq U$ and U is g^* -open. Therefore W is $g_*^* - \mathcal{I}$ -closed.

Example 3.5. Let $X = \{x, y, z\}$ with a topology $\tau = \{\emptyset, X, \{x\}, \{y, z\}\}$ and an ideal $\mathcal{I} = \{\emptyset, \{z\}\}$. Then $g_*^* - \mathcal{I}$ -closed sets are the power set of X and *-closed sets are $\emptyset, X, \{x\}, \{z\}, \{x, z\}, \{y, z\}$. It is clear that $\{y\}$ is $g_*^* - \mathcal{I}$ -closed set but it is not *-closed.

Theorem 3.6. If (X, τ, \mathcal{I}) is an ideal topological space and $W \subset X$. Then the following are equivalent.

- 1. W is $g_*^* \mathcal{I}$ -closed,
- 2. For all $x \in Cl^*(W)$, $g^*Cl(\{x\}) \cap W \neq \emptyset$,
- 3. $Cl^*(W) W$ contains no nonempty g^* -closed set,
- 4. $W^* W$ contains no nonempty g^* -closed set,

Proof. (1) \Rightarrow (2) Suppose $x \in Cl^*(W)$. If $g^*Cl(\{x\}) \cap W = \emptyset$, then $W \subseteq X - g^*Cl(\{x\})$. By Definition 3.1, $Cl^*(W) \subseteq X - g^*Cl(\{x\})$, which is a contradiction, since $x \in Cl^*(W)$.

- (2) \Rightarrow (3) Suppose $F \subseteq Cl^*(W) W$, F is g^* -closed and $x \in F$. Since $F \subseteq X W$ and F is g^* -closed, then $W \subseteq X F$ and F is g^* -closed, $g^*Cl(\{x\}) \cap W = \emptyset$. Which is a contradiction. Since $x \in Cl^*(W)$ by (3), $g^*Cl(\{x\}) \cap W \neq \emptyset$. Therefore $Cl^*(W) W$ contains no nonempty g^* -closed set.
- (3) \Rightarrow (4) Since $l^*(W) W = (W \cup W^*) W = (W \cup W^*) \cap W^c = (W \cap W^c) \cup (W^* \cap W^c) = W^* \cap W^c = W^* W$. Therefore $W^* W$ contains no nonempty g^* -closed set.
- (4) ⇒ (1) Let $W \subseteq U$ where U is a g^* -open set. Therefore $X U \subseteq X W$ and so $Cl^*(W) \cap (X U) \subseteq Cl^*(W) \cap (X W) = W^* W$. Therefore $Cl^*(W) \cap (X U) \subseteq W^* W$.

Since $Cl^*(W)$ is always *-closed set, so $Cl^*(W)$ is g^* -closed set and so $Cl^*(W) \cap (X - U)$ is a g^* -closed set contained in $W^* - W$. Therefore $Cl^*(W) \cap (X - U) = \emptyset$ and hence $Cl^*(W) \subseteq U$. Therefore W is $g^*_* - \mathcal{I}$ -closed.

Theorem 3.7. If (X, τ, \mathcal{I}) is an ideal space, then W^* is always $g_*^* - \mathcal{I}$ -closed for every subset W of X.

Proof. Let $W^* \subseteq U$ where U is g^* -open. Since $(W^*)^* \subseteq W^*$ so by Lemma 2.11, we have $Cl^*(W^*) \subseteq U$ whenever $W^* \subseteq U$ and U is g^* -open. Hence W^* is $g^*_* - \mathcal{I}$ -closed.

Theorem 3.8. Let (X, τ, \mathcal{I}) be an ideal space. For every $W \in \mathcal{I}$, W is $g_*^* - \mathcal{I}$ -closed.

Proof. Let $W \subseteq U$ where U is g^* -open set. Since $W^* = \emptyset$ for every $W \in \mathcal{I}$, then $Cl^*(W) = W \cup W^* = W \subseteq U$. Therefore, W is $g_*^* - \mathcal{I}$ -closed.

Corollary 3.9. If (X, τ, \mathcal{I}) is an ideal space and W is a $g_*^* - \mathcal{I}$ -closed set, Then the following are equivalent:

- 1. W is a *-closed set,
- 2. $Cl^*(W) W$ is a g^* -closed set,
- 3. $W^* W$ is a g^* -closed set.

Proof. (1) \Rightarrow (2) If W is *-closed, then $W^* \subseteq W$ and so $Cl^*(W) - W = (W \cup W^*) - W = \emptyset$, so $Cl(\emptyset) = \emptyset \subseteq U$. Hence $Cl^*(W) - W$ is g^* -closed set.

(2) \Rightarrow (3) Since $Cl^*(W) - W = W^* - W$ and so $W^* - W$ is g^* -closed set. (3) \Rightarrow (1) If $W^* - W$ is a g^* -closed set, since W is $g^*_* - \mathcal{I}$ -closed set, by Theorem 3.6, $W^* - W = \emptyset$ and so W is *-closed.

Theorem 3.10. Let (X, τ, \mathcal{I}) be an ideal space. Then every $g_*^* - \mathcal{I}$ -closed, g^* -open set is *-closed set.

Proof. Since W is $g_*^* - \mathcal{I}$ -closed and g^* -open. Then $Cl^*(W) \subseteq W$ whenever $W \subseteq W$ and W is g^* -open. Hence W is *-closed.

Corollary 3.11. If (X, τ, \mathcal{I}) is a $T_{\mathcal{I}}$ ideal space and W is a $g_*^* - \mathcal{I}$ -closed set, then W is *-closed set.

Proof. Since every $g_*^* - \mathcal{I}$ -closed set is an $\mathcal{I}g$ -closed set in an ideal space (X, τ, \mathcal{I}) and X is $T_{\mathcal{I}}$ space, so every $\mathcal{I}g$ -closed set is *-closed. So W is *-closed.

Theorem 3.12. If (X, τ, \mathcal{I}) is an ideal space, Then every g^* -closed set is an $g_*^* - \mathcal{I}$ -closed set but not conversely.

Proof. Let W be a g^* -closed set. If $W \subseteq U$, whenever U is g^* -open. Since every g^* -open is g-open and W is g^* -open, so $Cl(W) \subseteq U$. But, since $Cl^*(W) \subseteq Cl(W) \subseteq U$, whenever $W \subseteq U$ and U is g^* -open, so W is $g_i^* - \mathcal{I}$ -closed.

Example 3.13. Let $X = \{x, y, z\}$ with a topology $\tau = \{\emptyset, X, \{x\}, \{x, z\}\}$ and an ideal $\mathcal{I} = \{\emptyset, \{x\}\}$. Then $g_*^* - \mathcal{I}$ -closed sets are $\emptyset, X, \{x\}, \{y\}, \{x, y\}, \{y, z\}$ and g^* -closed sets are $\emptyset, X, \{y\}, \{y, z\}$. It is clear that $\{x\}$ is a $g_*^* - \mathcal{I}$ -closed set but it is not g^* -closed in (X, τ) .

Example 3.14. Let $X = \{x, y, z\}$ with a topology $\tau = \{\emptyset, X, \{x\}, \{x\}, \{x\}\}\}$ and an ideal $\mathcal{I} = \{\emptyset, \{y\}, \{z\}, \{y\}, \{z\}\}\}$. Clearly, the set $\{z\}$ is a $g_*^* - \mathcal{I}$ -closed set but it is not g^* -closed in (X, τ, \mathcal{I}) .

Theorem 3.15. If (X, τ, \mathcal{I}) is an ideal space, and W is a *-dense in itself, $g_*^* - \mathcal{I}$ -closed subset of X, then W is g^* -closed.

Proof. Suppose W is a *-dense in itself, $g_*^* - \mathcal{I}$ -closed subset of X. Let $W \subseteq U$ where U is g-open. Then, $Cl^*(W) \subseteq U$ whenever $W \subseteq U$ and U is g-open. Since W is *-dense in itself, so every g^* -open is g-open and W is *-dense in itself, by Lemma 2.5, $Cl(W) = Cl^*(W)$. Therefore $Cl(W) \subseteq U$ whenever $W \subseteq U$ and U is g-open. Hence W is g^* -closed.

Corollary 3.16. If (X, τ, \mathcal{I}) is an ideal space where $\mathcal{I} = \{\emptyset\}$, then W is $g_*^* - \mathcal{I}$ -closed if and only if W is g^* -closed

Proof. From the fact that for $\mathcal{I} = \{\emptyset\}$, $W^* = Cl(W) \supseteq W$. Therefore W is *-dense in itself. Since W is $g_*^* - \mathcal{I}$ -closed, by Theorem 3.15, W is g^* -closed.

Conversely, by Theorem 3.12, every g^* -closed set is a $g_*^* - \mathcal{I}$ -closed set.

Theorem 3.17. Let (X, τ, \mathcal{I}) be an ideal space and $W \subseteq X$. Then W is $g_*^* - \mathcal{I}$ -closed if and only if W = F - N where F is *-closed and N contains no nonempty g^* -closed set.

Proof. If W is $g_*^* - \mathcal{I}$ -closed, then by Theorem 3.6 (4), $N = W^* - W$ contains no nonempty g^* -closed set. If $F = Cl^*(W)$, then F is *-closed such that $F - N = (W \cup W^*) - (W^* - W) = (W \cup W^*) \cap (W^* \cap W^c)^c = (W \cup W^*) \cap ((W^*)^c \cup W) = (W \cup W^*) \cap (W \cup (W^*)^c) = W \cup (W^* \cap (W^*)^c) = W$.

Conversely, suppose W = F - N where F is *-closed and N contains no nonempty g^* -closed set. Let U be a g^* -open set such that $W \subseteq U$. Then $F - N \subseteq U$ which implies that $F \cap (X - U) \subseteq N$. Now $W \subseteq F$ and $F^* \subseteq F$ then $W^* \subseteq F^*$ and so $(W^* \cup W) \cap (X - U) \subseteq F^* \cap (X - U) \subseteq F \cap (X - U) \subseteq N$. By hypothesis, since $(W^* \cup W) \cap (X - U)$ is g^* -closed, $(W^* \cup W) \cap (X - U) = \emptyset$ and so $Cl^*(W) \subseteq U$. Hence W is $g^*_* - \mathcal{I}$ -closed.

Theorem 3.18. Let (X, τ, \mathcal{I}) be an ideal space and $W \subseteq X$. If $W \subseteq B \subseteq W^*$, then $W^* = B^*$ and B is *-dense in itself.

Proof. Since $W \subseteq B$, then $W^* \subseteq B^*$ and since $B \subseteq W^*$, then $B^* \subseteq (W^*)^* \subseteq W^*$. Therefore $W^* = B^*$ and $B \subseteq W^* \subseteq B^*$. Hence proved.

Theorem 3.19. Let (X, τ, \mathcal{I}) be an ideal space and $W \subseteq X$. If W and B are subsets of X such that $W \subseteq B \subseteq Cl^*(W)$ and W is $g_*^* - \mathcal{I}$ -closed, then B is $g_*^* - \mathcal{I}$ -closed.

Proof. Let $B \subseteq U$ and U is g^* -open. Since $W \subseteq B$ and W is $g_*^* - \mathcal{I}$ -closed, so $Cl^*(W) \subseteq U$. But, since $B \subseteq Cl^*(W)$, implies that $Cl^*(B) \subseteq Cl^*(Cl^*(W)) = Cl^*(W) \subseteq U$. Therefor $Cl^*(W) \subseteq U$, whenever $B \subseteq U$. And U is g^* -open. Thus B is $g_*^* - \mathcal{I}$ -closed.

Corollary 3.20. Let (X, τ, \mathcal{I}) be an ideal space. If W and B are subsets of X such that $W \subseteq B \subseteq W^*$ and W is $g_*^* - \mathcal{I}$ -closed, then W and B are g^* -closed sets.

Proof. Let W and B be subsets of X such that $W \subseteq B \subseteq W^*$ which implies that $W \subseteq B \subseteq W^* \subseteq Cl^*(W)$ and W is $g_*^* - \mathcal{I}$ -closed. By Theorem 3.19, B is $g_*^* - \mathcal{I}$ -closed. Since $W \subseteq B \subseteq W^*$, then $W^* = B^*$ and so W and B are *-dense in itself. By Theorem 3.15, W and B are g_*^* -closed.

Theorem 3.21. Let (X, τ, \mathcal{I}) be an ideal space and $W \subseteq X$. Then W is $g_*^* - \mathcal{I}$ -open if and only if $F \subseteq \text{int }^*(W)$ whenever F is g^* -closed and $F \subseteq W$.

Proof. Suppose W is $g_*^* - \mathcal{I}$ -open. If F is g^* -closed and $F \subseteq W$, then $X - W \subseteq X - F$ and so $Cl^*(X - W) \subseteq X - F$. Therefore $F \subseteq X - Cl^*(X - W) = \operatorname{int}^*(W)$. Hence $F \subseteq \operatorname{int}^*(W)$.

Conversely, suppose the condition holds. Let U be a g^* -open set such that $X - W \subseteq U$. Then by hypothesis $X - U \subseteq W$ and so $X - U \subseteq \text{int}^*(W)$. Therefore $Cl^*(X - W) \subseteq U$. Thus, X - W is $g^*_* - \mathcal{I}$ -closed. Hence W is $g^*_* - \mathcal{I}$ -open.

Corollary 3.22. Let (X, τ, \mathcal{I}) be an ideal space and $W \subseteq X$. If W is a $g_*^* - \mathcal{I}$ -open, then $F \subseteq \text{int }^*(W)$ whenever F is closed and $F \subseteq W$.

Proof. Since every closed set is g^* -closed set, so by Theorem 3.21 we get the result.

The following theorem gives a property of $g_*^* - \mathcal{I}$ -closed.

Theorem 3.23. Let (X, τ, \mathcal{I}) be an ideal space and $W \subseteq X$. If W is $g_*^* - \mathcal{I}$ -open and int $^*(W) \subseteq B \subseteq W$, then B is $g_*^* - \mathcal{I}$ -open.

Proof. Since W is $g_*^* - \mathcal{I}$ -open, then X - W is $g_*^* - \mathcal{I}$ -closed. By Theorem 3.6 (4), $Cl^*(X - W) - (X - W)$ contains no nonempty g^* -closed set. Since int $(W) \subseteq int^*(B)$ which implies that $Cl^*(X - B) \subseteq Cl^*(X - W)$ and so $Cl^*(X - B) - (X - B) \subseteq Cl^*(X - W) - (X - W)$ by Theorem 3.6 we get, X - B is $g_*^* - \mathcal{I}$ -closed. Thus, B is $g_*^* - \mathcal{I}$ - open.

The following theorem gives a characterization of $g_*^* - \mathcal{I}$ -closed sets in terms of $g_*^* - \mathcal{I}$ -open sets.

Theorem 3.24. If (X, τ, \mathcal{I}) be an ideal topological space and $W \subseteq X$. Then the following are equivalent:

- 1. W is $g_*^* \mathcal{I}$ -closed,
- 2. $W \cup (X W^*)$ is $g_*^* \mathcal{I}$ -closed,
- 3. $W^* W$ is $g_*^* \mathcal{I}$ -open.

Proof. (1) \Rightarrow (2) Suppose W is $g_*^* - \mathcal{I}$ -closed. If U is any g^* -open set such that $\cup (X - W^*) \subseteq U$, then $X - U \subseteq X - U$ $(W \cup (X - W^*)) = X \cap (W \cup (W^*)^c)^c = W^* \cap W^c = W^* - W$. Since W is $q_*^* - \mathcal{I}$ -closed, by Theorem 3.6 (4), it follows that $X - U = \emptyset$ and so X = U. Therefore $W \cup (X - W^*) \subseteq U$ which implies that $W \cup (X - W^*) \subseteq X$ and so $Cl^*(W \cup (X - W^*)) \subseteq X = U.$ Hence $W \cup (X - W^*)$ $g_*^* - \mathcal{I}$ -closed. $(2) \Rightarrow (1)$ Suppose $W \cup (X - W^*)$ is $g_*^* - \mathcal{I}$ -closed. If F is any g^* -closed set such that $F \subseteq W^* - W$, then $F \subseteq W^*$ and $F \subseteq X \setminus W$ which implies that $X - W^* \subseteq X - F$ and $W \subseteq X - F$. Therefore $W \cup (X - W^*) \subseteq W \cup (X - F) = X - F$ and X - F is g^* -open. Since $Cl^*(W \cup (X - W^*)) \subseteq X - F$ and since $(W \cup (X - W^*))^* \subseteq Cl^*(W \cup (X - W^*)) \subseteq X - F$ F which implies that $W^* \cup (X - W^*)^* \subseteq X - F$ and so $W^* \subseteq X - F$ which implies that $F \subseteq X - W^*$. Since $F \subseteq W^*$, it $F = \emptyset$. Hence by Theorem 3.6 W is $g_*^* - \mathcal{I}$ $(2) \Rightarrow (3) \text{ Since } -(W^* - W) = X \cap (W^* \cap W^c)^c = X \cap ((W^*)^c \cup W) = (X \cap (W^*)^c) \cup (X \cap W) = W \cup (X - W^*).$ Therefore, $X - (W^* - W)$ is $g_*^* - \mathcal{I}$ -closed. Hence, $W^* - W$ is $g_*^* - \mathcal{I}$ open. The equivalence is clear.

Theorem 3.25. If (X, τ, \mathcal{I}) is an ideal topological space. Then every subset of X is $g_*^* - \mathcal{I}$ closed if and only if every g^* -open set is *-closed.

Proof. Suppose every subset of X is $g_*^* - \mathcal{I}$ -closed. If $U \subseteq X$ is g^* -open, then U is $g_*^* - \mathcal{I}$ closed and so $Cl^*(U) \subseteq U$, then $U^* \subseteq Cl^*(U) \subseteq U$. Hence U is *-closed.

Conversely, suppose that every g^* -open set is *-closed. If U is g^* -open set such that $\subseteq U \subseteq X$, then $W^* \cup W = Cl^*(W) \subseteq U^* \cup U = U$ and so W is $g_*^* - \mathcal{I}$ -closed.

Corollary 3.26. Let (X, τ, \mathcal{I}) be an ideal space. If W is a $g_*^* - \mathcal{I}$ -closed subset of X, then W is \mathcal{I} -compact.

Proof. The proof follows from the fact that every $g_*^* - \mathcal{I}$ -closed is $\mathcal{I}g$ -closed.

Definition 3.27. Let *N* be a subset of (X, τ, \mathcal{I}) and $x \in X$. The subset *N* of *X* is called a $g_*^* - \mathcal{I}$ -open neighbourhood of *x* if there exists $g_*^* - \mathcal{I}$ -open set *U* containing *x* such that $U \subset N$.

Theorem 3.28. For each (X, τ, \mathcal{I}) either $\{x\}$ is g^* -closed or $\{x\}^c$ is $g_*^* - \mathcal{I}$ -closed in X. Proof. $\{x\}$ is not g^* -closed, then $\{x\}^c$ is not g^* -open. Therefore the only g^* -open set containing $\{x\}^c$ is X and $Cl^*(\{x\}^c) \subseteq X$ which proves that $\{x\}^c$ is $g_*^* - \mathcal{I}$ -closed.

Theorem 3.29. If W and B are $g_*^* - \mathcal{I}$ -closed sets in an ideal space (X, τ, \mathcal{I}) , then $W \cup B$ is also a $g_*^* - \mathcal{I}$ -closed set.

Proof. Let U be a g^* -open subset of (X, τ, \mathcal{I}) containing $W \cup B$. Then $W \subset U$ and $G \subseteq U$. Since $G \subseteq U$ and $G \subseteq$

Theorem 3.30. Let (X, τ, \mathcal{I}) be a g-multiplicative ideal space and let W be $g_*^* - \mathcal{I}$ -closed. Then W is τ^* -closed $\iff W^* - W$ is closed.

Proof. Necessity: W is τ^* -closed $\Rightarrow W^* \subset W \Rightarrow W^* - W = \emptyset$ which is closed. Sufficiency: Let $W^* - W$ be closed. Then it is g-closed By (4) of theorem 3.6, $W^* - W = \emptyset$ which implies $W^* \subset W$.

Theorem 3.31. Let (X, τ, \mathcal{I}) be a g-multiplicative ideal space and $W \subset X$. If W is $g_*^* - \mathcal{I}$ closed then $W \cup (X - W^*)$ is $g_*^* - \mathcal{I}$ -closed.

Proof. Let U be g^* -open and $W \cup (X - W^*) \subset U$ Then $X - U \subset X - [W \cup (X - W^*)] = W^* - W$. Since W is $g_*^* - \mathcal{I}$ -closed, $W^* - W$ contains no non-empty g^* -closed set. Therefore $X - U = \emptyset$ which implies X = U. Thus X is the only g^* -open set containing $W \cup (X - W^*)$, then $Cl^*(W \cup (X - W^*)) \subseteq X$, which proves $W \cup (X - W^*)$ is $g_*^* - \mathcal{I}$ -closed.

Theorem 3.32. Let W be a subset of a g-multiplicative ideal space (X, τ, \mathcal{I}) . If W is $g_*^* - \mathcal{I}$ closed then $W^* - W$ is $g_*^* - \mathcal{I}$ -open

Proof. Since $X - (W^* - W) = W \cup (X - W^*)$, the proof follows from Theorem 3.30.

Theorem 3.33. Let (X, τ, \mathcal{I}) be an ideal space and $W \subset Y \subset X$. If W is $g_*^* - \mathcal{I}$ -closed in $(Y, \tau_Y, \mathcal{I}_Y)$, Y is α -open and τ^* -closed in X. Then W is $g_*^* - \mathcal{I}$ -closed in X.

Proof. Let $W \subset U$ and U be g^* -open in X. Then $W^*(\mathcal{I}_Y, \tau/Y) = W^*(\mathcal{I}, \tau) \cap Y \subset U \cap Y$. Then $Y \subset U \cup (X - W^*(\mathcal{I}, \tau))$. Since Y is τ^* -closed, $Y^* \subset Y$. Therefore $W^* \subset Y^* \subset Y \subset U \cup (X - W^*(\tau, \mathcal{I}))$. This implies $W^* \subset U$ and hence $Cl^*(W) \subset U$. So W is $g^*_* - \mathcal{I}$ -closed in X.

Theorem 3.34. Let (X, τ, \mathcal{I}) be an ideal space. If every g^* -open set is τ^* -closed, then every subset of X is $g_*^* - \mathcal{I}$ -closed.

Proof. Let $W \subset U$ and U be a g^* -open set in X. Then $Cl^*(W) \subset Cl^*(U) = U$ which proves W is $g^*_* - \mathcal{I}$ -closed.

References

- 1. K. Kuratowski, (1966.) Topology. Academic Press, Vol. 1. New York.
- 2. R. Vaidyanathaswamy, (1960.) Set topology. Chelsea Publishing Company.
- 3. D. Janković and T. R. Hamlett, (1990) "New topologies from old via ideals," *Am. Math. Mon.*, vol. 97, no. 4, pp. 295–310.
- 4. N. Levine, (1970) "Generalized closed sets in topology," Rend. del Circ. Mat. di Palermo, vol. 19, pp. 89–96.
- 5. M. V. Kumar, (2006) "Between g*-Closed Sets in Topological Spaces," Antarct. J. Math., vol. 3, no. 1, pp. 43-65.
- 6. B. Y. R. Vaidyanathaswamy, (1945) "The Localization theory in set-topology," *Proc. Indian Acad. Sci.*, vol. 20, pp. 51–61.
- 7. and V. V. Pauline Mary Helen M, Ponnuthai Selvarani, (2012) "g**- closed sets in topological spaces," *Int. J. Math. Arch.*, vol. 3, no. 5.
- 8. N. Levine, (1963) "Semi-open sets and semi-continuity in topological spaces," *Am. Math. Mon.*, vol. 70, no. 1, pp. 36–41.
- 9. M. Khan and T. Noiri, (2010) "On gI-closed sets in ideal topological spaces," J. Adv. Stud. Topol., vol. 1, pp. 29–33.
- 10. J. Dontchev, M. Ganster, and T. Noiri, (1999) "Unified operation approach of generalized closed sets via topological ideals," *Math. Jpn.*, vol. 49, pp. 395–402.
- 11. R. L. Newcomb, (1967) "Topologies which are compact modulo an ideal," Ph. D. Diss. Univ. Cal. St. Barbar.
- 12. D. V Rancin, (1973) "Compactness modulo an ideal," in Soviet Mathematics Doklady, vol. 13, pp. 193-197.
- 13. V. R. Devi, D. Sivaraj, and T. T. Chelvam, (2005) "Codense and completely codense ideals.," *Acta Math. Hungarica*, vol. 108, no. 3.
- 14. M. Navaneethakrishnan and J. Paulraj Joseph, (2008) "g-Closed sets in ideal topological spaces," *Acta Math. Hungarica*, vol. 119, no. 4, pp. 365–371.

مجموعات مغلقة وخصائصها في الفضاء الطوبولوجي المثالي $g_*^* - \mathcal{I}$

 2 رغزاي ، شوان محمود 1 ، درويش ، هقلطورد محمد

^{2,1}قسم الرياضيات ، كلية العلوم ، جامعة السليمانية ، السليمانية ، العراق

الخلاصة: في هذه الورقة ، ونحن نقدم ز ا _أست ا ^أست ا حماثكال}أنا - {مجموعات مغلقة ، التوصيفات وخصائص ز ا _ أست ا ^أست ا حماثكال}أنا - {مجموعات مغلقة ومكملة لها ومجموعات أخرى ذات الصلة .نثبت أن فئة ز ا _أست ا ^أست ا حماثكال}أنا - _ {مجموعات مغلقة وفئة ز الست-مجموعات مغلقة .أيضا ، نجد بعض العلاقات بين ز ا _أست ا ^أست ا حماثكال}أنا - {مجموعات مغلقة ومجموعات مغلقة موجودة بالفعل .يتم تقديم الحي المفتوح ويتم التحقيق في ممتلكاتهم.

الكلمات المفتاحية: الفضاء الطوبولوجي المثالي ، ز \ ^هو -مجموعة مغلقة ، ز \ ^أستي-مجموعة مغلقة ، ز \ _أست \ ^أست-أنا-مجموعة مفتوحة