
Iraqi Journal of Statistical Sciences, Vol. 22, No. 1, 2025, pp (88-100) 

 

 

88 

 

 

 

 

Iraqi Journal of Statistical Sciences 

http://stats.uomosul.edu.iq 
 

 

Estimating Outliers Using the Iterative Method in Partial Least Squares 

Regression Analysis for Linear Models 

 

Mahammad Mahmoud Bazid1  Taha Hussein Ali2  
 

1,2Department of Statistics and Informatics, College of Administration & Economics, Salahaddin University, Erbil, Iraq 
 

 

Article information  Abstract 

Article history: 

Received  October 28,2024 

Revised: April 25,2025 

Accepted: May 8,2025 

Available June 1, 2025  

 Outliers affect the accuracy of the estimated parameters of the partial least squares 

regression model and give unacceptably large residual values. Traditional robust methods 

(used in ordinary least squares) cannot be used to treat outliers in estimating partial least 

squares regression model, due to the number of independent variables greater than the 

sample size, therefore, it was proposed to use an iterative method to treat outliers and 

estimation of partial least squares regression model parameters. The iterative method relies 

on identifying outliers and then estimating them using the initial estimated values and the 

residual and determining the optimal value that gives the least sum of squares error for the 

partial least square regression model. To illustrate the proposed method, simulated and real 

data were used based on a program MATLAB designed for this purpose. The proposed 

method provided accurate results for the partial squares regression model parameters 

depending on MSE criteria and addressed the problem of outliers. 
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1. Introduction 

Partial least squares analysis (PLS) is a statistical method used in multivariate analysis to compare many response variables 

with the corresponding explanatory factors. PLS is a representative statistical technique referred to as structural equation 

modelling. Its purpose was to address the challenges of multiple regression in cases where the data has a limited sample 

size, missing values, or multicollinearity (Kalivas, 1997). This method has gained immense popularity in hard science fields, 

particularly chemistry and chemometrics, where there is a significant issue of many correlated variables and a restricted 

number of observations. Wright pioneered path analysis and causal modelling in the 1920s. Partial least squares regression 

was first designed for econometrics but later adopted by the chemistry sector for analytical, physical, and clinical chemistry 

research (Pirouz, 2006). PLS is an abbreviation which initially stood for partial least squares regression, however, recently, 

some writers have decided to develop this term as a projection of latent structures. PLS regression integrates information 

from and generalizes principal component analysis (PCA) and multiple linear prediction in every scenario. Its purpose is to 

assess or predict a collection of dependent variables from a set of independent variables or predictors. This determination 

is made possible by identifying from the predictors a group of orthogonal factors termed hidden variables that have the best 

predictive ability (Abdi, H., 2010).  PLS is still a very active study subject from a theoretical point of view; see for instance 

for new advances on the links of PLS with subspaces and conjugate gradients. PLS began to catch the attention of 

statisticians only approximately 28 years ago. This was mainly owing to the capacity of PLS to operate extremely well for 

data with relatively small sample sizes and many factors. Thus, it is only natural that in the past several years this paradigm 

has been successfully applied to difficulties in genomics and proteomics. PLS approaches are in general characterized by 

strong computational and statistical efficiency. They also provide significant flexibility and adaptability in terms of the 
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analytical issues that may be handled. However, the scientific discussion of PLS is quite different because of the presence 

of a huge number of algorithmic versions of PLS, which made it exceedingly difficult to comprehend the principles behind 

PLS. This paper aims to address this hole by re-estimating and getting SSE for a new PLS model and so on until the residual 

is less than (0.001), giving a comprehensive review of the various PLS techniques (Boulesteix and Strimmer, 2007). 

2. Partial Least Squares Regression 

Partial Least Squares is a broad category of techniques used to represent relationships between sets of observable data 

indirectly via hidden variables. The methodology includes regression and classification tasks, along with decreasing 

dimension methods and modelling tools. 

The fundamental premise of all Partial Least Squares (PLS) approaches is that the observable data is produced by a system 

or process that is influenced by a limited number of latent variables. The PLS method may be inherently expanded to 

regression issues. Each of the predictor and forecast (response) variables is regarded as a constituent block of variables. 

PLS therefore separates the score vectors that act as a newer predictor representation and goes back to the answer variables 

on these new predictors. The inherent imbalance among predictor and responder variables is mirrored in the method in 

which score vectors are produced. This variety is known under the designations of PLS1 (one response variable) and PLS2 

(a minimum of two response variables). Previously disregarded by statisticians, PLS regression is still seen more as an 

algorithm than a serious statistical model. However, there has been a surge in interest in PLS's statistical characteristics in 

recent years.  PLS has been linked to other regression techniques such as Ridge Regression (RR) and Principal Component 

Regression (PCR), and these techniques may all be grouped under a common concept known as continuum regression 

(Rosipal and Krämer, 2005). The partial least-squares regression approach (PLS) is gaining relevance in many sectors of 

chemistry; analytical, physical, clinical chemistry and industrial process control may benefit from the usage of the method. 

The pioneering work in PLS was done in the final years of the sixties by Wold in the discipline of econometrics. The 

employment of the PLS approach for chemical applications was pioneered by the groups of S. Wold and H. Martens in the 

late seventies following an initial application. The nonlinear iterative partial least squares (NIPALS) algorithm’s 

characteristics serve as the foundation for the PLS model. The data matrix may be represented by the scoring matrix. A 

regression between the scores for the X and Y blocks would make up a simpler model. An inner relation (connecting both 

blocks) and outside relations (X and Y blocks separately) can make up the PLS model. The fundamental underlying structure 

of multivariate PLS with l component is: 

𝑋 = 𝑇𝑃𝑇 + 𝐸                                                                                                                                                                          (1) 

𝑌 = 𝑈𝑄𝑇 + 𝐹                                                                                                                                                                         (2) 

 

Where: 

 

• X is a n x m predictor matrix.  

• Y is a n x p response matrix.  

• T and U are n x l matrices that are, as well, projectors of X (the X score, component or factor matrix) and 

projectors of Y (the Y scores). 

• P and Q are, accordingly, m x l and p x l loading matrices. 

• matrices E and F are the error terms, supposed to be independent and symmetrically distributed random normal 

variables. 

The breakdown of Y is done to optimize the covariance between T and U. 

The covariance of column i of T (length n) with column i of U (length n) is maximized. Take note that this covariance is 

determined pair by pair. Furthermore, there is zero covariance between column i of T and column j of U (with i ≠ j). 

For PLSR, the scores constitute an orthogonal basis, so the loadings are selected accordingly. When orthogonality is 

applied upon loadings (and not the scores) in PCA, there is a significant difference.  

The sums range from one to the a. It is possible to define every component and determine whether E = F = 0. We go into 

how and why this is done below. The goal is to achieve as helpful a relationship between X and Y as feasible while also 
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describing Y as well as practical and minimizing𝑃𝐹𝑃. A graph of the Y block score, u, versus the X block score, t, for each 

component may be used to determine the inner relation. A linear model is the most basic for this relation: 

𝑢̂ℎ = 𝑏ℎ𝑘ℎ                                                                                                                                                                                 (3) 

                  

 Where 𝑏ℎ = 𝑢′ℎ𝑡ℎ 𝑡′ℎ𝑡ℎ⁄   . In the MLR and PCR models, the𝑏ℎ function as the regression coefficients b. This model is 

not optimal. The principal components are estimated for each block independently, resulting in a weak relationship between 

them, which explains the rationale. It would be preferable if they knew more about one another, resulting in components 

that are slightly rotated and closer to the regression line (Geladi and Kowalski, 1986). 

The procedure of separating each factor of the matrix X. determines the initial vector it is multiplied by the matrix X to 

discover the linear structures t, that is: 

𝑡 = 𝑋𝑊                                                                                                                                                                             (4) 

Where W is a vector of random values or it is the first eigenvector equal to the first eigenvalue for the matrix (𝑋′𝑌𝑌′𝑋), in 

the same manner, the linear combination of the matrix Y, which is with vector U as follows: 

𝑈 = 𝑌𝐶                                                                                                                                                                        (5) 

                                                        

You may determine that (𝑋′𝑌) is the covariance matrix between X and Y if C is a vector of random values or the first 

eigenvector corresponding to the first eigenvalue for the matrix (𝑋′𝑌𝑌′𝑋). This approach looks for a collection of elements 

known as latent vectors, which attempt to explain as much of the covariance between X and Y as they can. The following 

equation may be used to analyze the independent variables: 

𝑋 = 𝑇𝑃𝑡                                                                                                                                                                        (6) 

Whereas (P) is a loaded vector and is a linear combination between the orthogonal factors t and the original matrix of the 

independent variables, that is: where (T) is a linear combination of predictive variables, but in the form of orthogonal 

factors, that is, each column contains all the independent variables present in (X), but in the form of a linear combination 

of weights. 

𝑃 = 𝑋′𝑡                                                                                                                                                                    (7) 

                                                          

In the matrix (T), are represented by the columns (t). 𝑇′𝑇 = 𝐼    𝑎𝑛𝑑   𝑃′𝑃 = 1 

The process is repeated after determining the first eigenvector, which is then subtracted from both X and Y. Continue until 

X turns into a zero matrix (Omer et al. 2024). 

3. Outliers 

In the context of model construction, outliers refer to data points (vectors) that deviate significantly from the rest of the 

data, therefore causing substantial distortion in the obtained finding. Every extensive dataset usually has outliers that must 

be detected and removed from the training set before the modelling process. The basic techniques of trimming the data 

eliminate most or all the major outliers and should consequently be an essential step in the preparation of large data sets. 

The techniques require the ranking of each variable and removing it or changing a tiny fraction of the extreme values of the 

variable. Normally this proportion is round one and five. Note that only the extreme parts of one variable have been changed 

at each step the complete observation is never eliminated. With trimming, the most extreme components are set to missing, 

and thus 2 percentage and 10 percentage missing data are interested in the data, which typically has no detrimental effect 

on future data analysis. the most extreme components are instead assigned a value nearer to the mean, frequently 3% points 

(calculated in a rigorous method), or the last acceptable value in data processing (Kettaneh and Wold, 2005). 
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3.1.  Outliers' Effect on Parameter Estimation 

Outliers may have a significant influence on statistical studies, particularly those that depend on the assumption of normally 

distributed data or that are sensitive to high values (Ali, 2017).  

• Bias parameter estimates: Outliers may affect the mean, inflating or deflating the estimate of central tendency. For 

example, in regression models, outliers may significantly alter both the slope and intercept. 

• Increase variability: Outliers may artificially inflate standard deviation and variance estimates, creating the 

mistaken impression that the data is more widely distributed. 

• Influence hypothesis testing: Because skewed test results may result in incorrect conclusions, such as the inaccurate 

rejection or acceptance of null hypotheses, outliers can have this effect. 

• Distort model predictions: Outliers have a disproportionately large impact on predictions in machine learning and 

regression models, which makes it harder for the models to generalize to fresh data. 

3.2. Finding and Classifying Outliers: 

Finding observations that differ considerably from the rest of the data requires using statistical techniques to identify 

outliers. Several methods may be applied (Ali et al. 2024): 

3.3. Methods of Statistics and Visualization: 

• Z-scores, also known as standard scores, are used to express how much a data point deviates from the mean in 

standard deviations. Values that deviate more than three standard deviations from the mean are usually regarded as outliers. 

𝑍 =
𝑋−𝜇

𝜎
                                                                                                                                                                         (8)  

Where the data point is X. μ represents the mean and σ represents the standard deviation. 

• Boxplots: The interquartile range (IQR) is shown as a boxplot, with outliers being identified as points that are more 

than 1.5 times the IQR from the quartiles. 

• Scatterplots: Outliers in multivariate data may be visually identified via scatterplots, sometimes called pair plots, as 

points that are distant from data clusters. 

• Histograms: Outliers may be identified as solitary bars at extreme values by using the frequency distribution of the 

data to visualize them. 

• Cook’s Distance: This regression analysis metric gauges a data point's impact on the regression parameters. Large 

Cook's distance points represent significant observations or possible outliers (Kareem et al. 2019). 

3.4. Strategies for Handling Outliers: 

Outliers are treated differently depending on their cause and context once they have been recognized. Typical methods 

include: 

I. Eliminating Outliers: 

• Case by case: Removal of outliers on a case-by-case basis is possible if they result from measurement mistakes, data 

entry problems, or abnormalities unrelated to the research. 

• Automated removal: Methodically eliminating outliers using statistical criteria like IQR, Z-scores, or visual 

examination (like boxplots). Removing data should be done carefully, however, to prevent losing crucial information (. 

II. Data transformation: 

• Logarithmic transformation: By condensing the range of extreme values, log transformation may lessen the effect 

of significant outliers (Omer et al. 2024). 

• Square root transformation: This method is effective with somewhat skewed data and is comparable to log 

transformation. 
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• Winsorizing: This technique reduces the impact of outliers without eliminating them by substituting them with the 

closest non-outlier value or a predetermined threshold. 

III. robust Estimation Techniques: These techniques exhibit reduced sensitivity to outliers in contrast to conventional 

parametric techniques: 

• Robust regression: reduces the impact of outliers on parameter estimations by using techniques like Huber 

regression or Least Absolute Deviations (Ali et al. 2022). 

• Median-based estimators: The median may be substituted for the mean in robust parameter estimation since it is 

less impacted by extreme values than the mean. 

V. Cutting or Capping: In cases where outliers are expected (such as in finance with extreme returns), they can be capped 

at a certain threshold. For example, setting extreme values to the 1st and 99th percentiles ensures that no value lies beyond 

these points (Ali. 2018). 

VI. Making Use of Models with Inbuilt Outlier Resistance: Certain algorithms are more resilient to outliers by nature, 

like: 

• Random Forests: Individual outliers have less of an impact on decision trees in random forests since the trees are 

constructed using subsets of the data. 

• Ridge and Lasso Regression: By decreasing coefficients, regularization approaches like Lasso (L1) and Ridge (L2) 

regression may lessen the impact of outliers (Cousineau and Chartier, 2010). 

4. Mean square error and Coefficient of Determination: 

Outliers may be limited to a certain level in situations where they are anticipated, such as in finance with extraordinary 

returns. To guarantee that no value is beyond the first and 99th percentiles, for instance, extreme values should be assigned 

to these locations (Ali et al. 2023). When the MSE is lower, the model's predictions are more accurate than the real data. 

MSE is always positive; therefore, a value near zero is preferable. larger mistakes are penalized more than smaller ones 

since they square the discrepancies. 

MSE =
1

m
∑ (yj − ŷj)

2m
j=1                                                                                                                                                  (𝟗)  

• j
y :  The real data. 

• j
ŷ :  The estimated data. 

• :m  Number of observations.  

Coefficient of Determination R2 quantifies the percentage of the dependent variable's variation that can be predicted based 

on the independent variables. It provides insight into how well the regression model matches the available data. R2 has a 

range of 0 to 1. A model that fully explains the variance in the data and accurately predicts it has an R2 of 1. When a model's 

R2 is zero, it is as poor at explaining variance in data as it is at forecasting the data mean. When the model performs worse 

than just forecasting the mean, negative R2 values might appear (Ali et al. 2023). 

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝑆𝑆𝑔𝑒𝑛𝑒𝑟𝑎𝑙
                                                                                                                                                         (10)  

𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙The total error may be defined as the sum of squared discrepancies between the expected and actual values.  

𝑆𝑆𝑔𝑒𝑛𝑒𝑟𝑎𝑙the total squared discrepancies between the mean of the real values and their actual values. 

5. Proposed Method 

The proposed method for treating outliers is summarized in the following steps: 

- Identifying outliers y(o) from the standard residuals of a partial least squares regression model that are outside an 

interval (∓2.5). 

- Calculate the initial Sum of Squares Error (ISSE) of the model from the following formula: 
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𝐼𝑆𝑆𝐸 =  𝑆𝑆𝐸 =  𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠𝑇 × 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠                                                                                                  (11) 

The residuals from the classical PLS model. 

- Estimate outliers using the following equation: 

𝑌(𝑜) =  𝑦̂(𝑜) −  𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙(𝑜)                                                                                                                        (12) 

Residual (o) is the outlier residual, using Y(o) to estimate a PLS model and compute SSE.  

- Calculate the absolute difference E between the SSE of the previous and current.   

- If the residual value is greater than (0.001), then the outlier in equation (12) will be re-estimated and get SSE for a 

new PLS model and so on until the residual is less than (0.001). 

- Finally, the estimated values of the outliers that give the least sum of squares error are used to get the PLS model. 

6. Simulation Study 

To measure the efficiency of the proposed method, and its handling of outliers in partial least squares regression analysis, 

the simulation study. The spectral and octane data of the gasoline experiment (Kalivas, 1997, p. 256) were used in the 

simulation by using the estimated parameters as the assumed parameter values (402 parameters for 401 independent 

variables), and (60) observations. This experiment was simulated with a random error having a standard normal distribution 

for several different sample sizes (10, 20, …, 60) and different numbers of independent variables (15, 20, 30, …, 180). Also, 

two outliers were added to the dependent variable and the experiment was repeated a thousand times. The MSE average of 

the PLSR models for classical and proposed methods with the average number of times the outlier is estimated is 

summarized in Tables 1 and 2 based on five and ten factors. 

Table 1.  The MSE average for 5 Factors 

Method Sample Size Number of Independent Variables N MSE 

Classical 

10 

15 
----- 90.6833 

Proposed 86 1.6526 

Classical 
20 

----- 86.1192 

Proposed 62 1.6522 

Classical 

20 

30 
----- 617.9439 

Proposed 37 9.9567 

Classical 
40 

----- 153.1791 

Proposed 40 10.2957 

Classical 

30 

50 
----- 268.0350 

Proposed 21 19.3367 

Classical 
60 

----- 290.7048 

Proposed 21 18.9583 

Classical 

40 

70 
----- 43.0301 

Proposed 13 28.8203 

Classical 
80 

----- 42.7187 

Proposed 13 28.5590 

Classical 

50 

90 
----- 185.0618 

Proposed 353 37.2553 

Classical 
100 

----- 127.9305 

Proposed 33 36.3577 

Table 2.  The MSE average for 10 Factors 

Method Sample Size Number of Independent Variables N MSE 

Classical 

20 
40 

----- 2.8818 

Proposed 100 1.6498 

Classical 60 ----- 3.5523 
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Proposed 91 1.3549 

Classical 

30 

70 
----- 10.2435 

Proposed 78 5.2328 

Classical 
90 

----- 14.5009 

Proposed 123 5.0256 

Classical 

40 

80 
----- 70.6633 

Proposed 294 9.9960 

Classical 
120 

----- 33.5776 

Proposed 34 8.9680 

Classical 

50 

100 
----- 559.7075 

Proposed 49 14.8587 

Classical 
150 

----- 57.0230 

Proposed 63 22.5774 

Classical 

60 

120 
----- 142.7310 

Proposed 17 19.8851 

Classical 
180 

----- 50.2524 

Proposed 127 34.5525 

7. Simulation Results Discussing 

For all simulation cases, the proposed method was highly efficient in handling the outlier problem, estimating the 

parameters of the PLSR model, and minimum the model residuals based on the efficiency criterion of MSE (it has the lowest 

MSE compared to the classical method). 

The number of times the outliers were estimated ranged between (13-353) times and was lowest at sample size (40) and 

number of independent variables (70 and 80) and highest at sample size (50) and number of independent variables (90), 

Sometimes, but not always, the repeat number of outlier estimates decreases as the number of observations and independent 

variables in the model increases. The MSE increases with the number of observations and independent variables. The MSE 

values decrease as the number of factors increases in the PLS model.  

The traditional method was greatly affected by the presence of outliers and presented a large MSE for the PLS model 

which cannot be handled using robust methods due to the presence of a large number of independent variables greater than 

the number of observations, the proposed method presented minimum MSE, the estimated values of the outliers were very 

close to their true values, fewer important variables were included in the model, and there was a significant increase in the 

coefficient of determination, which will be discussed in detail in the real data. 

8. Real Data 

The real data represents the spectral and octane data of gasoline (Kalivas, 1997, p. 256) so the predictor X is a numeric 

matrix that contains the near-infrared (NIR) spectral intensities of 60 samples of gasoline at 401 wavelengths (number of 

independent variables). The response y is a numeric vector that contains the corresponding octane ratings (with X data).  

Two outliers were added to the dependent variable data, and the traditional method (without processing outliers) was 

applied. Ten factors were used to obtain the largest cumulative percentage of explanation of the total variance as in Figure 

1: 
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Figure 1. Cumulative Percentage of explanation of the total variance for Classical Method 

Figure 1 shows that ten factors explain only 45.1295% of the total variance in the response variable (octane ratings) and 

represent determination coefficients R2 in the PLSR model, which is an unacceptably low percentage due to outliers. 

Compute the fitted response variable and display the residuals in Figures 2 and 3, respectively. 

 
Figure 2. Fitted Response Variable for Classical Method 
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Figure 3. Residuals PLS Model for Classical Method 

Figure 2 shows the actual response values (blue line) and the estimated values (red line) from the PLSR model. The 

estimated values were affected by outliers (y10 = 50 and y51= 150) and were unacceptably bad. Figure 3 shows the large and 

unacceptable residual values, especially Residual10 and Residual51 marked in red, with the sum of squared errors equal to 

(2993.4). 

Calculate variable importance in projection (VIP) scores for a PLS model. Use VIP to select predictor variables when 

multicollinearity exists among variables. Variables with a VIP score greater than 1 are considered important for the 

projection of the PLSR as in Figure 4 which shows that there are only (40) significant independent variables (red points are 

VIP) out of a total of (401). 

 

Figure 4. VIP Independent Variables Classical Method 
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The proposed iterative method depends on estimating outliers. This is done first by identifying outliers based on the 

residuals of the PLS model as in Figure 3. The two values (y10 and y51) are considered outliers thus they will be estimated 

using the proposed method. When the estimation of outliers was repeated (17) times, the iterative method provided the 

lowest sum of squared errors (1.0121) for the PLS model when y10 = 88.6852 and y51 = 88.0356. 

Figure 5 shows the actual response values (blue line) and the estimated values (red line) from the PLS model. The estimated 

values were unaffected by outliers and were acceptably good. Figure 6 shows the small and acceptable residual values (-

0.3-0.3), compared with the classical method (-38-28). 

 
Figure 5. Fitted Response Variable for Proposed Method 

 

Figure 6. Residuals PLS Model for Proposed Method 

Figure 7 shows that ten factors explain 99.2701% of the total variance in the response variable (octane ratings) and 

represent determination coefficients R2 in the PLS model, which is an acceptably high percentage compared with the 

classical method of 45.1295%.  
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Figure 7. Cumulative Percentage of explanation of the total variance for the Proposed Method 

Calculate variable importance in projection (VIP) scores for a PLS model as in Figure 8 which shows that there are (91) 

significant independent variables (red points are VIP) out of a total of (401). It is completely identical to the results of the 

traditional method before adding outliers. 

 
Figure 8. VIP Independent Variables Classical Method 

9. Conclusions 

1. For all simulation cases, the iterative method provided highly efficient outlier handling with the lowest sum of squares 

of the residuals of the PLSR model. 

2. The proposed method was more efficient than the traditional method depending on the MSE. 

3. The MSE increases with the number of observations and independent variables.  
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4. The MSE values decrease as the number of factors increases in the PLSR model. 

5. For real data, the proposed method provided a lower MSE, max VIP, and max explanation ratio (coefficient of 

determination), compared with the classical method. 

10. Recommendations  

1. Using the proposed method to address the problem of outliers when estimating a PLSR model. 

2. Comparison of the proposed method with wavelet shrinkage methods for handling data noise and outliers. 

3. Conduct a future study on handling outliers using modified robust methods consistent with the PLSR model's 

assumptions.  
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 دار الجزئي للمربعات الصغرى للنماذج الخطية تقدير القيم الشاذة باستخدام الطريقة التكرارية في تحليل الانح

 
 2طه حسين علي و 1ازيدمحمد محمود ب

 قسم الإحصاء والمعلوماتية، كلية الإدارة والاقتصاد، جامعة صلاح الدين، أربيل، العراق. 2,1
كبيرة بشكل غير مقبول. لا يمكن استخدام  بولقي  على دقة المعلمات المقدرة لنموذج الانحدار الجزئي للمربعات الصغرى وتعطي قيم    شاذةتؤثر القيم ال  الخلاصة:

بسبب  في تقدير نموذج الانحدار الجزئي للمربعات الصغرى، وذلك    شاذة)المستخدمة في المربعات الصغرى العادية( لمعالجة القيم ال  حصينةالطرق التقليدية ال
وتقدير معلمات نموذج الانحدار الجزئي للمربعات    شاذةعدد المتغيرات المستقلة الأكبر من حجم العينة، لذلك، تم اقتراح استخدام طريقة تكرارية لمعالجة القيم ال

وتحديد القيمة المثلى التي تعطي أقل خطأ لمجموع   بواقيالومن ثم تقديرها باستخدام القيم المقدرة الأولية و   شاذةالصغرى. تعتمد الطريقة التكرارية على تحديد القيم ال
المصمم لهذا   MATLABالمربعات لنموذج الانحدار الجزئي للمربعات الصغرى. لتوضيح الطريقة المقترحة، تم استخدام بيانات محاكاة وحقيقية بناءً على برنامج  

 .شاذةمشكلة القيم ال عالجتو  MSEحدار الجزئي للمربعات الصغرى اعتمادًا على معايير الغرض. قدمت الطريقة المقترحة نتائج دقيقة لمعلمات نموذج الان 
 . الانحدار الجزئي للمربعات الصغرى، النموذج الخطي، القيم الشاذة، البواقي، والطريقة التكرارية: الكلمات المفتاحية

 


