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 The K-means clustering algorithms (Random, K-means++, Canopy, and Farthest First) are 

unsupervised machine learning techniques designed to group data points based on their 

similarities. The study examined the effects of clustering algorithms and distance metrics 

on climate data analysis from meteorological stations in the Kurdistan Region of Iraq (2020–

2022). 8-attribute dataset with 1,095 cases was clustered using Random, K-means++, 

Canopy, and Farthest First methods, evaluated with Euclidean and Manhattan distance 

metrics via the WEKA tools, which is a versatile and accessible open-source tool for 

machine learning and data mining. It features a user-friendly interface, a wide range of 

algorithms, robust pre-processing and visualization tools, and cross-platform 

compatibility.Focusing on efficiency and reducing variation within clusters, the results 

revealed that within Euclidean distance, all algorithms formed two clusters. Canopy 

required the most iterations, Farthest First the fewest. K-means++ was the fastest, Canopy 

the slowest. WCSS values were similar, with Random and Canopy scoring lowest, but 

within Manhattan Distance, all algorithms again formed two clusters. Canopy had the 

highest iterations, Farthest First the fewest and fastest, while Random was slowest. WCSS 

differences were negligible, with Random, Canopy, and Farthest First performing 

best.Graphs illustrate the highlighted differences in cluster distribution, iterations, execution 

time, and WCSS. Euclidean distance yielded lower WCSS, while interactive maps revealed 

clearer cluster distributions for most attributes compared to Manhattan distance. produced 

the lowest within-cluster sum of squared errors compared to the Manhattan distance.  
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1. Introduction 

 In today's world, driven by big data, businesses and individuals strive to make sense of the massive amounts of available 

data. Data mining employs analysis tools to unearth previously unknown relationships between data objects. Clustering, a 

prevalent data mining technique, entails grouping similar data points to reveal hidden patterns and insights. Clustering 

algorithms are instrumental in data organization and analysis, offering valuable insights for decision-making and 

comprehending complex datasets. (Gupta, et al., 2021) 
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    Clustering algorithms are critical in today's data-driven society, enabling precise analysis and organization of massive 

datasets. Selecting clustering algorithm that can adapt to the quality and quantity is crucial.  The k-means clustering algorithm 

is widely used in industries such as marketing, healthcare, and image processing. 

   The k-means clustering algorithm is one of many clustering algorithms used in machine learning. Each algorithm has 

advantages, disadvantages, and specific applications based on the similarities and differences between the K-means and other 

prominent clustering methods. Overall, K-means clustering is an effective and simple unsupervised learning approach with 

a wide range of applications. It is important to consider its limitations and select appropriate number of clusters for optimal 

outcomes  (Karthikeyan, et al., 2020). 

   It partitions data points into clusters, enabling consumer segmentation, trend analysis in patient data, and image 

compression, and more. The k-means algorithm maximizes intra-cluster similarity while minimizing inter-cluster similarity. 

Understanding and utilizing the full potential of the k-means algorithm is essential for uncovering hidden insights within 

data. (Mohammed Elhassan & Ahamed, 2020). 

   This paper delves into various clustering algorithms, including Random, K-means++, Canopy, and Farthest First. It 

examines their methodologies and advantages in data analysis. Understanding these techniques is crucial for effectively 

extracting valuable insights from large datasets. 

.K-means clustering   algorithm: 

K-means clustering is an unsupervised machine learning method that groups data points into clusters based on similarities. 

The "k" in K-means represents the number of clusters to identify. It aims to minimize variation within each cluster using the 

within-cluster sum of squares metric (Karthikeyan, et al., 2020). The algorithm works iteratively by: 

1. Determining the number of clusters "k". 

2. Assigning data points to their closest centroid can be done randomly or using approaches such as k-means++, canopy,      

and farthest first. 

3. Recalculating cluster centers, the process repeats until cluster stability is achieved. 

Using k-means clustering, a set of observations (x1, x2, ..., xn)is partitioned into with in cluster sum squares (WCSS) (i.e., 

variance) (Hochreiter, 2014). Formally, the objective is to find: 

wcss = arg 𝑚𝑖𝑛 
𝑠

 ∑ ∑ ‖x − μ𝑖‖2 
𝑥∈𝑆𝑖

𝑘

𝑖=1

                                                                                                                                (1)         

Where  μi is the mean (also called centroid) of points in 𝑆𝑖, i.e. 

𝜇𝑖 =
1

|𝑆𝑖|
∑ 𝑥𝑖                                                                                                                                                                                     𝑥∈𝑆𝑖

   (2) 

The size of 𝑆𝑖 , denoted as ‖𝑆𝑖‖, represents the standard L2 norm. This standard minimizes the pairwise squared deviations 

of points within the same cluster. 

wcss = arg 𝑚𝑖𝑛 
𝑠

∑
1

|𝑆𝑖|
∑ ‖𝑥 − 𝑦‖2

                                                                                                                                        𝑥,𝑦∈𝑠𝑖
𝑘
𝑖=1 (3) 

Because the overall variance remains constant, this is equivalent to maximizing the sum of squared deviations between points 

in distinct clusters.  

The k-mean clustering algorithm has various advantages that make it a useful tool for data analysis. It offers a quick and 

effective method for analyzing huge datasets. By grouping comparable data points together, the method decreases data 

complexity and simplifies interpretation. This is especially valuable in exploratory data analysis, which requires a grasp of 

the underlying patterns and structure (Syakur, et al., 2018). 

K-means clustering is an indispensable tool for data scientists exploring unsupervised machine learning and/or for data 

analysts seeking insights from unlabeled data, especially when acquiring labeled data is expensive and/or time-consuming. 

The ability to effectively employ this potent strategy will depend on comprehension of the inner workings of the k-mean 

clustering algorithm, careful feature selection, data preparation, and clustering result analysis. The k-means clustering 

algorithm provides multiple initialization methods for cluster centroids, including random, k-means++, canopy, and farthest 

first.  

These techniques are used to position the initial centroids in a way that increases the convergence and overall quality of the 

clustering. Here's a summary of each method: 

 

 

1.1.1 Random clustering Algorithm: 

The k-means clustering algorithm assigns data points to clusters based on their similarity. It randomly selects cluster centers 

and iteratively updates them until convergence is achieved. The steps involve choosing cluster centers, measuring distances 
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to data points, assigning points to clusters, and calculating new centroids. The steps in the k-means clustering algorithm are 

as follows: 

1. Cluster centers 'c' are randomly chosen. 

2. Calculate the separation between each data point and cluster center. 

3. Allocate data points to cluster centers that are as close together as possible. 

4. Calculate the new centroids using the assigned locations. 

5. Repeat steps 2-4 until convergence is attained.   

The algorithm tries to minimize the squared error function, which is given by  

sse = ∑ min𝑣𝑖𝜖𝑉‖𝑥𝑖 − 𝑣𝑖‖
2𝑛

𝑖=1                                                                                                                                                              (4) 

Where  𝑥𝑖  is a data point, 𝑣𝑖  is a cluster center, and 𝑆 is the set of centers.This clustering algorithm is widely used in 

unsupervised machine learning to group observations into clusters. It is important to recognize that the algorithm's outcomes 

can be influenced by the initial cluster assignments. Hence, it is common practice to run the algorithm multiple times with 

different starting conditions (Edsa & Chandra, 2023). 

1.1.2 k-means++ clustering Algorithm:  

The K-means++ technique is an intelligent centroid that initializes centroids randomly in this algorithm. The goal is to 

position the centroids as far apart as possible, ensuring maximum distance between them. There are basic procedures to 

initialize centroids with K-means++: 

1. Randomly select the initial centroid (C₁). 

2. Calculate the separation between all data points and the first cluster center: 

𝐷𝑖 = 𝑀𝑎𝑥 𝑗:1≥𝑘‖𝑥𝑖 − 𝑐𝑗‖
2

                                                                                                                                                                  (5) 

This formula represents the distance between the farthest centroid 𝑐𝑗 and data point 𝑥𝑖.  

3. Assign the data point 𝑥𝑖 as a new centroid. 

4.  Re-initialize the centroids by determining the average of all the data points in that cluster. 

𝑪𝒋 =
𝟏

|𝑵𝒋|
∑ 𝒙𝒋                                                                                                                                                                                            (6)                                                                       

Repeat steps 3 and 4 until all of the defined K clusters have been found (Arthur & Vassilvitskii, 2007).  

1.1.3  Canopy Clustering Algorithm: 

Proposed by Andrew et al. (2000), the unsupervised pre-clustering method accelerates clustering operations on large datasets 

and is often used as a preliminary step for the K-means technique, also known as hierarchical clustering. The algorithm 

consists of two phases: 

1. Phase 1: Use an "non-expansive" distance measurement to approximately divide the data into overlapping subsets 

known as canopies. This is done using two thresholds, T1 (the loose distance) and T2 (the tight distance), where T1>T2. 

2. Phase 2: Perform elaborate clustering within each canopy by using an "expensive" distance measurement. 

The canopy clustering algorithm is a faster and simpler algorithm commonly used as an early stage in more stringent 

clustering algorithms. (Andrew, et al., 2000)  

1.1.4 Farthest first clustering algorithm: 

The farthest first clustering, also known as complete-linkage clustering, is a hierarchical clustering technique. It entails 

identifying the most distant pair of items, one from each group, and utilizing the distance between these two objects to 

calculate the distance between the groups. In complete-linkage clustering, the following formula can be used to get the 

distance between clusters X and Y: 

𝐃(𝐗, 𝐘) = 𝐌𝐚𝐱𝐱∈𝐗,𝐲∈𝐘𝐝(𝐱, 𝐲)                                                                                                                                                          (7) 
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𝑑(𝑥, 𝑦) It represents the distance between the elements 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌. 𝑋 and  𝑌 represent two groups of items (clusters). 

The farthest neighbor strategy is part of the agglomerative hierarchical approach, which classifies each data point as a cluster 

before gradually joining the closest clusters. In   which the distance between groups is presented as the distance between the 

most distant pair of clusters (Jayakameswaraia, et al., 2017). 

   

1.2  Distance Metric: 

Distance metrics are crucial in clustering algorithms such as K-means clustering because they determine the similarity 

between data points. The choice of distance metric has a significant impact on clustering outcomes. The Euclidean distance 

is typically employed in k-means clustering, but alternative measures may be preferable based on the data's characteristics. 

Study measures include: 

1. Euclidean distance: Euclidean distance measures the straight-line distance between two points in Euclidean space 

and is commonly used as a distance metric. It is calculated using the square root of the sum of squared coordinate differences 

and determined using the formula (Edsa & Chandra, 2023): 

𝒅(𝒙,𝒚) = √∑ (𝒙𝒊 − 𝒚𝒊)𝟐𝒏
𝒊=𝟏                                                                                                                                                                     (8) 

Where 𝑑 is dimensional space for the similarity calculation distance, 𝑥𝑖 , 𝑦𝑖  𝑖𝑡ℎ  attribute of  𝑥 𝑎𝑛𝑑 𝑦 data points, and this 

distance measure is appropriate when the measurements are comparable and the data is continuous. (Amira , et al., 2023) 

2. Manhattan Distance: Commonly referred to as the city block distance, it is appropriate for categorical 

or ordinal data. It calculates the total of the absolute coordinate differences, determined by summing the values of x and y. 

The formula is: 

 𝑑𝑚𝑎𝑛(𝑥, 𝑦) = ∑ |𝑥𝑖
𝑛
𝑖=1 − 𝑦𝑖|                                                                                                                                                             (9) 

 𝑥𝑖 and 𝑦𝑖 are the variables of vectors 𝑋 and 𝑌 in the two-dimensional vector space. (Gan, et al., 2021). 

 

2. Literature review: 

First proposed by Andrew in 1967, the K-means clustering technique was introduced as a simple, unsupervised learning 

clustering system. Over time, researchers have proposed various enhancements and modifications to the K-means algorithm 

to address its limitations and improve its effectiveness (Andrew, et al., 2000). 

 

Arthur and  Vassilvitskii (2007) studied the selecting initial centroids of k-means algorithm that are far apart, the algorithm 

delivers better clustering outcomes than random initialization. 

Furthermore, Jain (2008) discussed the k-mean algorithm's history, modifications, and applications across numerous areas.  

Rodriguez and Luciano da F.'s (2019) study, “Clustering algorithms: A comparative approach” evaluates and contrasts 

various performance metrics for clustering algorithms, including the K-means approach. The study highlights the merits and 

weaknesses of the K-means algorithm and its performance across different dataset variants. 

Sinaga & Yang (2020) suggested that the unsupervised K-means algorithm does not require any initializations or parameters. 

The U-k-means algorithm can determine the ideal number of clusters automatically. The approach was adaptable to various 

cluster sizes and forms. Experimental results show that the U-k-means algorithm outperforms other known algorithms. 

Ghazal et al. (2021) assessed the K-means clustering method using both Euclidean and Manhattan distances. The 

performance of the K-means algorithm was measured in terms of execution time and the number of clusters formed. The 

results indicated that using Manhattan distance measurement metrics yielded the best outcomes. 

Tabianan et al. (2022) conducted a study on clustering analysis using the K-means algorithm and the Elbow method to 

determine the optimal number of clusters. The study employed pre-processing techniques for data cleaning on repository 

questionnaires for a quantitative study, utilizing Malaysia's e-commerce dataset. 

Hamad (2023) developed a predictive model for variables impacting evaporation, using climatic data from meteorological 

stations in Iraq's Kurdistan Region from January 2020 to December 2022. The study utilized cluster analysis and regression 

to highlight the strengths of each technique. It also explored the application of hierarchical cluster analysis using Euclidean 

and Manhattan distances. Two clusters were created, and the results were used to compare K-means clustering algorithms in 

the current study. 
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The body of work on the K-means clustering algorithm demonstrates the research community's dedication to enhancing and 

refining its capabilities. These efforts aim to improve the algorithm's adaptability and effectiveness across various disciplines. 

By expanding its capabilities and addressing its limitations, researchers are making K-means a more powerful tool for data 

analysis. 

3. Experiments and Results:    

The variables impacting evaporation rate were discovered in this study utilizing climate data from meteorological stations in 

the Kurdistan Region of Iraq from January 2020 to December 2022.  

A series of experiments were conducted on an 8-attribute dataset consisting of 1,095 cases. The dataset was divided into a 

predetermined number of clusters using the Random, K-means++, Canopy, and Farthest First methods. 

The initial centroids for the K-means approach were randomly determined using Euclidean and Manhattan distance metrics. 

Clustering accuracy and algorithmic proficiency were evaluated. The testing examined the accuracy and speed of simple K-

means algorithms using the Weka tool, version 3.8.6, with predefined datasets. This includes a data mining document that 

outlines and thoroughly explains all the techniques covered. The attributes used in the K-means algorithm analysis are 

displayed in Table 1. 

Table 1: Attributes of the Climate Data Set 

3.1 Result Analysis:  

The following table represents the analysis process of all algorithms, displays the findings for the dataset, which has 8 

attributes and 1,095 instances, and compares the clustering algorithms using Euclidean distance metrics. The parameters 

chosen were the number of clusters produced, the number of iterations, the time (seconds) required to construct the model, 

and the within cluster sum of squared errors (WCSS). 

Table 2 shows that the number of clusters for each algorithm was two (2) when using the Euclidean distance metric. The K-

means++ and Canopy techniques required the most iterations, while the Farthest First algorithm required the fewest. 

The k-means++ approach takes the least amount of time, while the canopy algorithm takes the most. The within-cluster sum 

square (WCSS) of errors showed no significant variations, there is a slight difference between the lowest value and the 

highest value of WCSS. The random and canopy algorithms had the lowest WCSS scores, while the k-means++ and farthest 

first algorithms had the highest. 

Table 2: Clustering algorithms result for Climate Dataset with Euclidean distance 

Algorithm 

 

No. of 

Clusters 

Cluster 

instance 

No. of 

Iteration 

Time taken 

( seconds) 

WCSS 

Random 2 513 (47%) 

582 (53%) 

8 0.25 154.867 

K-means++ 2 515 (47%) 

580 (53%) 

9 0.10 154.869 

Canopy 2 582 (53%) 

513 (47%) 

9 0.31 154.867 

Farthest  First 2 515 (47%) 

580 (53%) 

6 0.14 154.869 

Variables No. Variables No. 

SP-Pressure at Sea Level 5 AE-Amount of Evaporation 1 

WD-Wind Direction 6 T-Temperature 2 

RT-Relative Humidity 7 WT-Wet Temperature 3 

WS-Wind Speed 8 SS-Sunshine 4 
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Table 3 presents the results for the same attributes using Manhattan distance metric to compare the clustering algorithms. 

The chosen parameters include the number of clusters formed, the number of iterations, the time (in seconds) taken to build 

the model, and the within-cluster sum of squared errors. 

  When using the Manhattan distance measure, the number of clusters for each algorithm was two (2). The Canopy algorithm 

exhibited the highest number of iterations, while the Farthest First algorithm required the fewest iterations. The Farthest First 

algorithm also had the shortest time to build the model, whereas the Random algorithm took the longest. There were no 

significant differences in the sum of squared errors within the clusters. The lowest within-cluster sum of squares (WCSS) 

values were observed for the Random, Canopy, and Farthest First algorithms, with the highest value for the K-means++ 

algorithm. 

Table 3:  Clustering algorithms result for Climate Dataset with Manhattan distance 

Algorithm 

 

No. of 

Clusters 

Cluster 

instance 

No. of 

Iteration 

Time take 

( seconds) 

WCSS 

Random 2 547 (50%) 

548 (50%) 

7 0.14 835.429 

K-means++ 2 551 (50%) 

544 (50%) 

6 0.13 835.448 

Canopy 2 547 (50%) 

548 (50%) 

9 0.10 835.429 

Farthest  First 2 548 (50%) 

547 (50%) 

5 0.05 835.429 

 

 

Figure 1 shows a comparison graph for Euclidean distance between the first and second cluster instances for all K-means 

methods. The graph indicates that the Canopy algorithm produces different outcomes compared to the Random, K-means++, 

and Farthest First algorithms. The Canopy algorithm has 582 instances in the first cluster and 513 instances in the second 

cluster, as shown in Table 2, whereas the other algorithms have fewer instances in the first cluster and more instances in the 

second cluster. 

 

 

 

 

Figure 1:Comparison of First and Second Cluster Instance for Euclidean Distance 
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Figure 2 shows a comparison graph of the first and second cluster instances for all K-means algorithms using the Manhattan 

distance. The graph reveals that the K-means++ algorithm produces different outcomes compared to the Random, Canopy, 

and Farthest First algorithms. This algorithm has 551 instances in the first cluster and 544 instances in the second cluster, as 

shown in Table 3, whereas the other algorithms have fewer instances in the first cluster and more instances in the second 

cluster. 

 

 

 
Figure  2 :Comparison of First and Second Cluster Instance for Manhattan Distance 

 

Figure 3 shows a comparison graph of the number of iterations for Euclidean and Manhattan distances across all K-means 

algorithms. The Farthest First and Random algorithms have the fewest iterations for both distances, while the Canopy 

algorithm has the most iterations for both distances. The K-means++ algorithm exhibits clear differences in the number of 

iterations between the two distances metrics. 

  

 

Figure  3 :Comparison of Number of Iteration for Euclidean and Manhattan Distance 
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Figure 4 presents a comparison graph of the time (seconds) taken for Euclidean and Manhattan distances using all K-means 

algorithms. The K-means++ algorithm using Euclidean distance takes the shortest time, while the Canopy algorithm takes 

the longest. For Manhattan distance, the Farthest First algorithm takes the shortest time, while the Random algorithm takes 

the longest. 

 

 

 

 

Figure 4:Comparison for Time Taken by k-means algorithms Using Euclidean and Manhattan Distance 

 

 

Figure 5 shows a comparison graph of the sum of squared errors within each cluster for both Euclidean and Manhattan 

distances using all K-means algorithms. The graph indicates that Euclidean distance results in the lowest sum of squared 

errors within the clusters compared to Manhattan distance. 

 

 

Figure  5 :Comparison of Clustering Algorithms With in Sum Square Error (WCSSE) 
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Figure 6 illustrates insights into the clusters within the climate dataset using the K-means clustering technique with Euclidean 

distance. It visualizes the cluster data as an interactive map, offering an overview and detailed information on attributes and 

conceptually related clusters. The distribution of cluster instances for attributes (WT, RH, SP, SS, T) between the first and 

second clusters is clearer, while the distribution of attribute (RH) instances shows overlap compared to Manhattan distance, 

as depicted in Figure 7. 
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WS WT RH 

AE  AE AE 

SP SS   T 

Cluster Instance:  Cluster 1        Cluster 2                                                                 Euclidean Distance 

 

Figure 6: Distribution of Cluster Instances using Euclidean Distance 
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Figure 7: Distribution of Cluster Instances using Manhattan Distance 
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4. Conclusions:  

   In this study, a comparative analysis was conducted on the K-means clustering algorithms (Random, K-means++, Canopy, 

and Farthest First) using Euclidean and Manhattan distances. The climate dataset was analyzed using the WEKA tool, and 

the results are provided. 

 

   The comparative analysis focused on efficiency factors, including the number of iterations, time taken, and the within-

cluster sum of squared errors (WCSS). The K-means clustering algorithms demonstrated good performance in clustering 

datasets, with improved results using the Euclidean distance. This distance metric showed the lowest WCSS and the shortest 

time taken compared to the Manhattan distance. 

  

   For achieving high precision and speed with continuous data, the Farthest First algorithm paired with Euclidean distance 

is the most suitable option. It is particularly effective when efficiency and rapid processing are essential, such as in real-time 

analysis or handling large datasets. 

   

   Additionally, the Farthest First algorithm outperformed the Random, K-means++, and Canopy algorithms when the 

primary objective was to minimize the within-cluster sum of squared errors (WCSS), achieve the fastest time (in seconds), 

and reduce the number of iterations, ensuring superior clustering quality for both Euclidean and Manhattan distances. 

 

    Graphs illustrate and emphasize significant differences in clustering outcomes, efficiency, and performance across 

algorithms and distance metrics. These variations are demonstrated through cluster distribution insights, the number of 

iterations, execution time, and within-cluster sum of squared errors for each algorithm. 

 

 

5. Recommendations: 

  

   The insights from this study on K-means clustering algorithms, specifically the effectiveness of the Farthest First approach 

and the application of Euclidean distance measures, have potential applications for enhancing weather forecasting or 

modeling in various ways: 

1- Integrating clustering results into hybrid models that combine machine learning with physical weather models to 

enhance forecasting precision and efficiency for sectors like agriculture, disaster planning, and water resource 

management. 

2- Selecting distance measures based on data characteristics, with Euclidean distance suitable for continuous, scaled 

attributes and Manhattan distance better for datasets with categorical or non-linear relationships. 

3- Using localized climate data clustering to improve region-specific forecasts and support cross-regional advancements 

in agriculture, water management, and environmental monitoring. 
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 باستخدام المسافة الإقليدية ومانهاتن لبيانات المناخ  K-meansدراسة مقارنة لخوارزميات التجميع طريقة  
 

 بخشان احمد حمد 
 جامعة صلاح الدين  ،كلية التربية  ،قسم الرياضيات

تقنيات تعلم آلي غير خاضعة للإشراف، مصممة لتجميع نقاط  هي   ، المظلة، والأبعد أولًا(++K-means)العشوائية،   K-means خوارزميات التجميع :الخلاصة
محطات الأرصاد الجوية في  البيانات بناءً على أوجه التشابه بينها. وقد تناولت الدراسة تأثير خوارزميات التجميع ومقاييس المسافة على تحليل بيانات المناخ من  

،  ++K-means)العشوائية،   حالة باستخدام طرق   1095سمات تحتوي على    8ات مكونة من  (. تم تجميع مجموعة بيان2022-2020إقليم كردستان العراق )
، وهي أداة مفتوحة المصدر ومتعددة الاستخدامات للتعلم الآلي  WEKA المظلة، والأبعد أولًا(، وتم تقييمها باستخدام مقاييس المسافة الإقليدية ومانهاتن عبر أدوات

مع  .ة سهلة الاستخدام، ومجموعة واسعة من الخوارزميات، وأدوات معالجة مسبقة قوية، بالإضافة إلى توافقها بين الأنظمة الأساسيةواستخراج البيانات. تتميز بواجه
لمظلة أكبر  ت خوارزمية االتركيز على الكفاءة وتقليل التباين داخل العناقيد، كشفت النتائج أنه ضمن المسافة الإقليدية، شكلت جميع الخوارزميات عنقودين. تطلب

الأسرع، في حين كانت خوارزمية المظلة الأبطأ. كانت قيم مجموع   ++K-means عدد من التكرارات، بينما تطلبت الأبعد أولًا أقل عدد من التكرارات. كانت
ن، فقد شكلت جميع الخوارزميات مرة أخرى  مربعات الأخطاء داخل العنقود متشابهة، حيث سجلت خوارزميتا العشوائية والمظلة أدنى القيم. أما ضمن مسافة مانهات

نت الاختلافات في مجموع  عنقودين. سجلت خوارزمية المظلة أعلى عدد من التكرارات، بينما كانت الأبعد أولًا الأقل والأسرع، في حين كانت العشوائية الأبطأ. وكا 
توضح الرسوم البيانية الفروقات المميزة في توزيع العناقيد، وعدد التكرارات،  .بعد أولاً مربعات الأخطاء داخل العنقود ضئيلة، مع أداء مميز للعشوائية والمظلة والأ 

لخرائط التفاعلية عن  ووقت التنفيذ، وقيم مجموع مربعات الأخطاء داخل العنقود. أظهرت المسافة الإقليدية القيم الأقل لمجموع مربعات الأخطاء، بينما كشفت ا
 .سمات مقارنة بمسافة مانهاتن. وأسفرت المسافة الإقليدية عن أقل مجموع مربعات أخطاء داخل العنقود مقارنة بمسافة مانهاتنتوزيعات عناقيد أوضح لمعظم ال

 . المسافة الإقليدية، مسافة مانهاتنالأبعد أولًا،  المظلة، ،means++-K، العشوائية، means -K خوارزميات الكلمات المفتاحية: 
 


