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1. Introduction

One of the economic issues worthy of attention is the forecasting of monthly inflation, which is one of the basic
problems that affect financial decisions and monetary policies, as it relies on traditional and classical methods of
analyzing time series, including ARIMA models and exponential smoothing, which rely on static hypotheses that may
not be appropriate in the presence of structural changes or complex dynamic characteristics (. Therefore, there is an urgent
need for more flexible and accurate models in the forecasting process, such as time series modelling based on Bayesian
theory after combining it with Wave analysis, to improve the accuracy of forecasts. (Box et al., 2016; Heyam et al.,2025)
The use of wavelet analysis to show time-varying patterns within a time series makes it a powerful and effective tool for
analyzing monthly inflation. The role of wavelets in breaking up the time series into its various components is highlighted,
so that it allows dealing with structural and seasonal changes that may be unclear when using traditional methods by
relying on Bayesian theory using probability distributions to extract future, predictive values, which allows dealing with
uncertainty more flexibly than classical methods. Dynamic Bayes models can integrate previous information about
inflation and gradually improve the estimation of parameters, which makes them suitable for forecasting under the
instability of economic data. (Hayawi & Alsharabi, 2022; Muzahem & Hayawi, 2023)

This article treats data noise and outliers in Bayesian ARIMA models through wavelet analysis. Apply the discrete
wavelet transformation using Daubechies and Symlets wavelets for orders 10 and 15 to decompose the data of Bayesian
ARIMA models into their frequency components.
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2. Methods

2.1. ARIMA

ARIMA models One of the important tools in analyzing and predicting time series are ARIMA model, which is called
the model of self-integration and mean regression, which is one of the most famous Time Series models, which is
characterized and characterized by its ability to clarify trends and self-reliance in time series data, (Hayawi et al., 2021)
as it is suitable for predicting changes that occur in various phenomena, especially data characterized by periodic trends,
and these models give more flexibility when dealing with Wave analysis and integrating them in an estimation method
that relies on Bayesian theory to predict data that are rather complex and need some flexibility in analysis (Ali et al.,
2022). These ARIMA (p, d, q) models can be formulated by the differential equation defined in the following form:
(Ibrahim, & Hayawi, 2021; Muzahem et al.,2023)

14 q
i=1 j=1

Where: Y, : the time series variable in time t, C The Model constant, ¢; Parameters of auto-regression, 8; Moving
average parameters, €, Random error at time t

2.2. Bayesian Approach

Bayesian Time Series Modelling offers a powerful and flexible framework for analyzing and forecasting data that evolves
and handles complex dependencies. Unlike classical frequentist methods, Bayesian time series modelling treats
parameters as random variables, updating beliefs through Bayes’ theorem as new data is observed (Gelman and Shalizi,
2013). This framework is particularly powerful for forecasting, anomaly detection, and parameter estimation in non-
stationary (West and Harrison, 1997).

The essence of the Bayesian approach lies in Bayes' Theorem, which mathematically dictates the transformation of prior
beliefs into posterior beliefs through the integration of data:

P(y|6)P(0)

P(ly) = e

()
where:

e P(Aly): Posterior distribution of parameters @ given data y,

e P(yl0): Likelihood function of the time series model,

e P(9): Prior distribution encoding domain knowledge,

e P(y): Marginal likelihood (normalizing constant).

Bayesian time series models can provide a versatile toolkit for model complexities, including non-stationarity, structural
changes, and latent variables. One of the widely adopted models in time series models is Bayesian ARIMA, which stands
for Autoregressive Integrated Moving Average. This approach is the extension of the conventional ARIMA methodology
by integrating prior probability distributions over the model parameters, allowing for a fully probabilistic analysis.

2.3. Wavelet Analysis (Daubechies and Symlets)

Wavelet analysis is used to extract hidden information within the data by analyzing it in the time and frequency domains.
One of the most prominent types of wavelets that have a strong impact in the field of time series is Daubechies and
Symlets wavelets, as they are one of the most widely used wavelets due to their ability to provide an accurate and effective
analysis of unstable and time-varying signals, which makes them suitable in many applications used in the field of time
series data, including monthly inflation (Ali and Jwana, 2022).
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Daubechies wavelets, developed by the scientist Ingrid Daubechies, are named after her and are characterized as
orthogonal wavelets that provide a high degree of smoothing and are widely used in data compression, signal analysis,
and time series forecasting. It is also characterized by being based on short-wave functions, but it provides an accurate
representation of the signal. This type of wave is used in the analysis and construction of time series models, especially
in the field of Economics, to detect hidden patterns in the data and remove noise from them (Elias and Ali, 2025). The
Symlets waveform is a modified version of the Daubechies waveform, as it was developed and some modifications were
made to it to achieve a balance between symmetry and continuity, making it more suitable for some applications that
require smoother signals. These wavelets have a higher continuity than Daubechies wavelets, which makes them more
accurate in analyzing signals with slow changes. It is also used to purify economic data from noise to obtain more accurate
forecasts, especially time series and financial data (Omer et al., 2024; Ali and Dlshad, 2021).

3. Efficiency Criteria
The efficiency criteria of the models estimated and used in this article are as follows:

Mean Square Error (MSE) is the metric for evaluating the performance of predictive models by calculating the average
squared difference between observed values and forecasted model values (Hyndman and Athanasopoulos, 2018)
Although MSE is interpretable and scale-dependent, it fails to incorporate regularization against model complexity and
risks overfitting (Wulff, 2017).

1 n
MSE == (e = 9, )
t=1

Where: y, = Actual value at time t.
e ., =Predicted value at time t.
e n=Number of observations.

To resolve this issue, the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) incorporate both
goodness-of-fit and parsimony. AIC (Akaike, 1974) minimizes information loss by balancing model likelihood and
parameter count, favoring simpler models unless additional parameters significantly improve fit. BIC (Schwarz, 1978)
applies a stricter penalty tied to sample size, making it more conservative for large datasets (Burnham and Anderson,
2004). Empirical studies suggest AIC excels in smaller samples, while BIC is asymptotically consistent (Claeskens and
Hjort, 2008). Generally, a model with lower BIC and AIC values is chosen as it indicates a better balance between model
fit and complexity. The model showing the minimum BIC and AIC is typically selected as the most suitable model among
other models (Sedeeq and Meran, 2022).

AIC = =2kIn(L) + 2p 4
BIC = —2In(L) + pIn(n) ()

e [ is the maximized value of the likelihood function for the model.
e pis the number of parameters in the model.

e nis the number of data points.

e ks a constant that depends on the distribution of the errors

Together, these metrics guide modelers in selecting specifications that generalize well (Acquah, 2010). For example, in
ARIMA modelling, AIC/BIC compare lag structures, while MSE validates point forecasts (Brockwell & Davis, 2016).
Their joint application ensures models are both accurate and interpretable.
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4. Proposed Method

The proposed method includes processing the data noise and outliers of Bayesian ARIMA models based on wavelet
analysis as follows:

- Apply the discrete wavelet transformation using Daubechies and Symlets wavelets for orders 10 and 15 to decompose
the data of Bayesian ARIMA models into their frequency components.

- Threshold the wavelet coefficients using a method like soft thresholding, with the threshold selected via Stein’s
Unbiased Risk Estimate (SURE).

- SURE is a method used to choose the threshold value in wavelet denoising. SURE is an unbiased estimator of the mean
squared error (MSE) between the original data and the denoised signal. It helps in determining the threshold A that
minimizes the MSE. The formula is:

n

1
MSEQ) =) (=i = o) ©)

Where yiis the observed noise data for Bayesian ARIMA models, ; (1) is denoising data and o2 is the noise variance.

- Reconstruct the data using the inverse discrete wavelet transformation. The result is a denoised version of the original
data, with reduced noise and preserved important data characteristics.

- Using denoised data in estimating parameters of Bayesian ARIMA models. Where AR and MA coefficients have a
normal distribution, and the variance a2 has a Half-Normal distribution ¢

- Since the posterior distribution does not have an analytical form, we typically use Markov Chain Monte Carlo (MCMC)
methods such as Metropolis-Hastings to sample from the posterior and estimate the parameters.

- The classical Bayesian approach to ARIMA models allows for the estimation of parameters as probability distributions,
with uncertainty quantified through the posterior distribution. The Metropolis-Hastings MCMC algorithm is used to
sample from the posterior distribution, followed by forecasting using the sampled parameter values.

5. Simulation Study

To illustrate the proposed method for handling data noise and outliers, Bayesian ARIMA model data were generated
using the Metropolis-Hastings algorithm for parameter estimation, with p and q set to 1, 2, and 3. Sample size (100, 300,
and 500). The log-prior function imposes priors on the parameters. The AR and MA parameters are assumed to have a
normal prior, while the variance parameter follows a half-normal distribution. The MCMC sampling loop uses the
Metropolis-Hastings algorithm to generate posterior samples for the model parameters. The algorithm proposes new
parameter values based on a random walk and then calculates the acceptance ratio (using the log-posterior) to decide
whether to accept the new values. The values of the assumed parameters of the models are shown in Table 1:

Table 1. The values of the assumed parameters of the models

Model AR MR Variance
ARIMA (1,0, 1) 0.5 0.3 0.5
ARIMA (2,0, 1) 05 | 03 0.3 05
ARIMA (1,0, 2) 0.5 0.4 0.2 0.5
ARIMA (2,0, 2) 05 03 0.4 0.2 0.5
ARIMA (3,0, 2) 05 03| 02 0.4 0.2 0.5
ARIMA (3,0, 3) 05 |03]02 04 | 02 | o1 05

Simulation experiments were conducted 1,000 times, and the averages of the criteria (MSE, AIC, and BIC) for both the
classical Bayesian ARIMA and the proposed methods (Daubechies 10, 15, and Symlets 10, 15) are presented in Tables
2-7.
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Table 2. The results of the criteria for the ARIMA (1, 0, 1) Model

Tab

Tab

Method Sample Size MSE AIC BIC
Classical 0.8688 -301.8327 -294.0172
Daubechies 10 0.6480 -399.1264 -391.3109
Daubechies 15 100 0.2013 -393.8501 -386.0346
Symlets 10 0.4284 -395.0623 -387.2468
Symlets 15 0.3034 -379.1231 -371.3076
Classical 0.4925 -1084.5042 -1073.3928
Daubechies 10 0.4320 -3308.0035 -3296.8922
Daubechies 15 300 0.3903 -1379.0454 -1367.9341
Symlets 10 0.3948 -1419.0067 -1407.8953
Symlets 15 0.3640 -3497.6115 -3486.5001
Classical 0.6682 -1494.9011 -1482.2573
Daubechies 10 0.4120 -1540.1903 -1527.5464
Daubechies 15 500 0.4581 -1537.4481 -1524.8043
Symlets 10 0.3307 -1706.7786 -1694.1348
Symlets 15 0.4253 -1811.4462 -1798.8023
le 3. The results of the criteria for the ARIMA (2, 0, 1) Model
Method Sample Size MSE AlIC BIC
Classical 0.9168 -2041.7150 -2031.2944
Daubechies 10 0.6475 -2132.1766 -2121.7559
Daubechies 15 100 0.4977 -2112.0655 -2101.6448
Symlets 10 0.4955 -2132.6631 -2122.2424
Symlets 15 0.6072 -2118.7471 -2108.3264
Classical 0.8075 -10202.7425 -10187.9274
Daubechies 10 0.3788 -11039.0046 -11024.1894
Daubechies 15 300 0.3406 -10551.3354 -10536.5203
Symlets 10 0.3739 -10292.0650 -10277.2499
Symlets 15 0.3726 -10937.4372 -10922.6220
Classical 0.5114 -11356.6000 -11339.7416
Daubechies 10 0.4113 -12377.3786 -12360.5202
Daubechies 15 500 0.3523 -12388.1471 -12371.2886
Symlets 10 0.3769 -12548.7368 -12531.8783
Symlets 15 0.3719 -12340.7826 -12323.9242
le 4. The results of the criteria for the ARIMA (1, 0, 2) Model
Method Sample Size MSE AlC BIC
Classical 0.7140 -155.6016 -145.1809
Daubechies 10 0.3623 -234.0992 -223.6785
Daubechies 15 100 0.3847 -241.8868 -231.4661
Symlets 10 0.3878 -244.7666 -234.3459
Symlets 15 0.4612 -244.0669 -233.6462
Classical 1.1977 -2585.3395 -2570.5243
Daubechies 10 0.8912 -3669.7764 -3654.9612
Daubechies 15 300 0.9049 -3966.3979 -3951.5828
Symlets 10 0.9929 -3987.1387 -3972.3236
Symlets 15 0.8276 -3590.3261 -3575.5109
Classical 0.7752 -882.3624 -865.5040
Daubechies 10 500 0.4240 -1259.6261 -1242.7677
Daubechies 15 0.2412 -1185.4212 -1168.5628
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Symlets 10 0.2462 -1167.3151 -1150.4567
Symlets 15 0.2079 -1283.8547 -1266.9962
le 5. The results of the criteria for the ARIMA (2, 0, 2) Model
Method Sample Size MSE AIC BIC
Classical 0.6131 -1244.0193 -1230.9934
Daubechies 10 0.4228 -1929.2745 -1916.2487
Daubechies 15 100 0.3719 -1454.4839 -1441.4581
Symlets 10 0.4613 -2174.6927 -2161.6669
Symlets 15 0.3676 -1292.0689 -1279.0431
Classical 1.1191 -20119.5890 -20101.0701
Daubechies 10 0.9488 -20789.4230 -20770.9041
Daubechies 15 300 0.9088 -21154.5231 -21136.0042
Symlets 10 0.9418 -21141.7011 -21123.1822
Symlets 15 0.9106 -20349.7621 -20331.2431
Classical 0.2839 -19587.9303 -19566.8572
Daubechies 10 0.2436 -29312.1618 -29291.0888
Daubechies 15 500 0.2456 -31973.9770 -31952.9039
Symlets 10 0.2485 -31381.2063 -31360.1333
Symlets 15 0.2484 -31545.2856 -31524.2126
le 6. The results of the criteria for the ARIMA (3, 0, 2) Model
Method Sample Size MSE AIC BIC
Classical 3.5139 -15455.3094 -15439.6784
Daubechies 10 2.0614 -16765.6416 -16750.0105
Daubechies 15 100 2.1475 -16797.7117 -16782.0807
Symlets 10 2.1301 -16777.0134 -16761.3824
Symlets 15 2.2219 -16696.6014 -16680.9703
Classical 3.9076 -76683.6305 -76661.4078
Daubechies 10 2.8844 -78752.2730 -78730.0503
Daubechies 15 300 3.7755 -79032.9418 -79010.7191
Symlets 10 3.2006 -78711.6962 -78689.4735
Symlets 15 3.2271 -78589.5016 -78567.2789
Classical 2.5609 -217500.2641 | -217474.9764
Daubechies 10 1.3406 -234328.9620 | -234303.6744
Daubechies 15 500 1.2229 -234532.9764 | -234507.6888
Symlets 10 1.7459 -225824.6071 | -225799.3194
Symlets 15 2.3524 -233592.6507 | -233567.3631
le 7. The results of the criteria for the ARIMA (3, 0, 3) Model
Method Sample Size MSE AlIC BIC
Classical 1.4966 -20243.8571 -20225.6209
Daubechies 10 1.2041 -21469.2715 -21451.0353
Daubechies 15 100 1.2385 -21404.5678 -21386.3316
Symlets 10 1.1067 -21331.9679 -21313.7317
Symlets 15 1.0233 -21347.6333 -21329.3971
Classical 0.5562 -19667.6536 -19641.7272
Daubechies 10 0.5398 -28921.7521 -28895.8257
Daubechies 15 300 0.5558 -28377.6263 -28351.6998
Symlets 10 0.5325 -27989.9125 -27963.9860
Symlets 15 0.5227 -28426.6715 -28400.7450
Classical 500 0.7763 -32125.5211 -32122.5709
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Daubechies 10 0.7080 -33052.5155 -33049.5653
Daubechies 15 0.7081 -33064.9835 -33062.0332
Symlets 10 0.7376 -33067.9337 -33064.9834
Symlets 15 0.7171 -33030.1221 -33027.1719

6. Discussion of simulation results

Figures 2-7 show that the proposed methods dealt with data noise. Daubechies (10 and 15) and Symlets (10 and 15)
consistently outperform the classical Bayesian ARIMA method in terms of MSE, AIC, and BIC for most models and
sample sizes. Daubechies 15 and Symlets 15 generally show the best performance in terms of MSE, achieving the lowest
error values for many combinations of models and sample sizes (e.g., ARIMA (1,0,1) with sample size 100, ARIMA
(3,0,2) with sample size 500). This suggests that higher-order wavelets (such as Daubechies 15 and Symlets 15) are more
effective at denoising the data, improving the model's forecasting accuracy.

Symlets 10 and Daubechies 10 perform similarly, but in general, Symlets tend to slightly outperform Daubechies,
particularly for larger models like ARIMA (3, 0, 3). These wavelet methods also demonstrate better performance in terms
of AIC and BIC for models with more parameters.

The significant improvement in MSE, AIC, and BIC when utilizing wavelet-based methods indicates that these techniques
effectively mitigate noise in the data. The Daubechies and Symlets wavelets, especially those with higher orders, excel
at filtering outliers and reducing noise while maintaining strong predictive power, as evidenced by the lower MSE and
more negative AIC and BIC values.

Daubechies 15 and Symlets 15 outperform the classical method by a significant margin across several models and sample
sizes, especially for models with higher-order AR and MA coefficients. This indicates that wavelet-based denoising is
beneficial for more complex time series with intricate dynamics.

The performance of Daubechies 10 and Symlets 10 shows improvements in MSE compared to the classical method, but
they do not perform as well as their higher-order counterparts, indicating that denoising effectiveness improves with
wavelet order.

ARIMA (1,0,1) and ARIMA (1,0,2), proposed methods significantly outperform classical Bayesian ARIMA, especially
when the sample size is small (100). This indicates that wavelet analysis methods can help enhance the model’s fitness
and reduce overfitting, especially in cases where the data is noisy or limited.

The complex models like ARIMA (3, 0, 3) and proposed wavelet methods continue to show an advantage, but the
performance gap is narrower compared to simpler models (such as ARIMA (1, 0, 1) and ARIMA (2, 0, 1)). This is likely
because the higher number of parameters in these models means that denoising might not always lead to substantial
improvements in forecast accuracy, though wavelet methods still help reduce the error.

The proposed methods show their greatest strength in larger sample sizes (300 and 500). As the dataset grows, the ability
of wavelet-based methods to capture the true underlying data becomes more pronounced, leading to greater improvements
in model performance. The classical Bayesian ARIMA model tends to show higher MSE, AIC, and BIC values compared
to the proposed methods as the sample size increases. This suggests that the classical method is more sensitive to noise,
while the proposed methods offer superior noise reduction and modelling efficiency.

MSE tends to decrease with larger sample sizes for both classical and proposed methods, indicating that larger datasets
provide more reliable and stable parameter estimates. This trend is particularly noticeable for the ARIMA models with
higher order (ARIMA (2, 0, 2), ARIMA (3, 0, 3)).

AIC and BIC improve (i.e., become more negative) with larger sample sizes, suggesting that the models perform better
as more data is available for estimation. This is expected, as larger sample sizes allow for more precise estimates, reducing
the potential for overfitting and increasing the reliability of model selection criteria.
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7. Real Data

The time series data represents the monthly inflation in the Kurdistan Region of Iraq for the period (2009-2024), taken
from the Kurdistan Region Statistics Office and represents 192 months as shown in Figure 1:

Real Time Series Data

Value

0 20 40 60 80 100 120 140 160 180 200
Time

Figure 1. Monthly Inflation in the Kurdistan Region

The stationarity of the time series of the original and transformed data was tested using the proposed method (Symlets
15) based on the Augmented Dickey-Fuller (ADF) test, as shown in Table 8:

Table 8. ADF Test for Monthly Inflation in the Kurdistan Region

Method ADF Test Statistic | Critical Values | p-value Decision
Classical -15.5638 -1.9423 0.001 The series is stationary
Symlets 15 -15.1006 -1.9423 0.001 The series is stationary

The Monthly Inflation in the Kurdistan Region time series is stationary based on both the Classical and Symlets 15
methods of the ADF test, as the p-values are very small (0.001), and the test statistics (-15.5638 and -15.1006) are much
smaller (more negative) than the critical value (-1.9423). Therefore, it is concluded that the series does not exhibit a unit
root and that its properties (such as mean and variance) are constant over time.

Bayesian ARIMA models of the classical and proposed method (Symlets 15) with different orders (p and q = 1, 2, 3)
were estimated and the ARIMA (1, 0, 1) model was chosen based on the least significant AIC and BIC for two methods
and the significance of the estimated coefficients of those models as in Table 9.

Table 9. Results of Time Series Analysis

Method AR MR Variance MSE AlC BIC
. 0.440 -0.130 0.067
Classical (b = 0.043) (p = 0.029) (b = 0.560) 0.2382 -4435.345 | -4425.573
0.491 0.308 0.074
Symlets 15 (b = 0.020) (p = 0.021) (b= 0.018) 0.2145 -4539.277 | -4529.505
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Classical AR coefficient (0.440) with p-value = 0.043 and Symlets 15 AR coefficient (0.491) with p-value = 0.020. Both
AR coefficients are statistically significant, as their p-values (0.043 and 0.020) are less than the significance level of 0.05.
This means both models have strong autoregressive effects. Classical MR coefficient (-0.130) with p-value = 0.029 and
Symlets 15 MR coefficient (0.308) with p-value = 0.021. Both MR coefficients are statistically significant, as their p-
values (0.029 and 0.021) are also less than 0.05, indicating that the moving average effect is meaningful for both methods.

Classical variance (0.067) with p-value = 0.560 and Symlets 15 variance (0.074) with p-value = 0.018. The Symlets 15
model has a statistically significant variance (p-value = 0.018), suggesting that the variability in the residuals is explained
significantly better by the Symlets 15 model than the Classical model. The Classical model has a higher p-value (0.560),
meaning the variance of its residuals isn't statistically significant, implying that the residuals might not be well-explained
by the model.

Classical MSE (0.2382) and Symlets 15 MSE (0.2145). The Symlets 15 model has a lower MSE (0.2145), indicating that
it makes better predictions with less error compared to the Classical model (MSE = 0.2382). Classical AIC (-4435.345)
and Symlets 15 AIC (-4539.277). The Symlets 15 model has a significantly lower AIC, indicating a better fit relative to
its complexity compared to the Classical model. Classical BIC (-4425.573) and Symlets 15 BIC (-4529.505). Again, the
Symlets 15 model has a lower BIC, indicating that it is a more optimal model compared to the Classical model.

The Classical method is still a valid model but does not perform as well as the Symlets 15 method in terms of predictive
accuracy and model efficiency. Therefore, Symlets 15 would be the preferred model for forecasting the time series data.

Comparison of Original Time Series and Fitted Values using Classical Method
| | |
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Figure 2. Comparison of Original Time Series and Fitted Values Using Classical Method
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Comparison of Original Time Series and Fitted Values using Symlet 15
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Figure 3. Comparison of Original Time Series and Fitted Values Using Proposed Method

200

Figures 2 and 3 illustrate the classical and proposed (Symlets 15) methods for the original time series data and the
estimates derived from these models. The red forecasted mean line aligns with the black original data, demonstrating that
the forecasted values closely match the actual data. The plot indicates that both the Bayesian ARIMA model and the
proposed model effectively capture the trends and patterns in historical data, with the forecasted mean following the

general direction of the series.

Residuals of the Bayesian ARIMA Model using Classical Method
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Figure 4. Residuals and ACF of Classical Model
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Residuals of the Bnyeslan ARIMA Model using Symiets 15
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Figure 5. Residuals and ACF of Proposed Model

Figures 4 and 5 show that the residual plot is like random noise (white noise). This means there is no discernible pattern
or trend over time. If you observe a trend or cyclical pattern in the residuals, this could indicate that the model hasn't fully
captured the underlying structure of the data. Residuals are uncorrelated with each other, meaning there are no significant
patterns or peaks in the residual plot. ACF plot of the residuals. If the residuals are uncorrelated, all autocorrelation values
should be near zero. The results show that all autocorrelation coefficients fall within the confidence bands (blue lines),
meaning that no significant autocorrelation exists among the residuals.
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Figure 6. Forecasting Monthly Inflation Using Classical Method
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Bayesian ARIMA Forecasting with Uncertainty for Real Data using Symlets 15
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Figure 7. Forecasting Monthly Inflation Using Proposed (Symlets 15) Method

Figures 6 and 7 display the original series in black and the forecasted values (the predicted future values) in red, indicating
a decrease in monthly inflation in the Kurdistan Region based on two methods.

Table 10. Forecasting Monthly Inflation in the Kurdistan Region

Method Classical Symlets 15
1 -0.0480 -0.0809
2 -0.0387 -0.0807
3 -0.0369 -0.0760
4 -0.0450 -0.0842
5 -0.0438 -0.0613
6 -0.0423 -0.0880
7 -0.0348 -0.0396
8 -0.0424 -0.0653
9 -0.0412 -0.0619
10 -0.0362 -0.0540

Table 10 shows the forecasted monthly inflation values for the Kurdistan Region, comparing two methods: Classical
ARIMA and Symlets 15 (a type of wavelet transformation method used for forecasting). The table lists the forecasted
inflation values for each of the next 10 months (labelled 1 to 10). The classical method (likely a standard ARIMA
model) shows forecasted inflation values that are relatively stable, hovering around -0.04 to -0.05 for most months. The
values are negative, which could imply that inflation is expected to decrease slightly over the forecast period. The
Symlets 15 method, which incorporates wavelet transformations, produces forecasts that generally fluctuate a bit more
than the classical method. The values are also negative but appear to vary more, ranging from -0.08 to -0.04 across the
forecast horizon.
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8. Conclusion

1.In this research, the effectiveness of the proposed methods was demonstrated, particularly the use of high-order wavelets
that reduce noise and improve the performance of Bayesian models. These methods help lower the average error measures
and information criteria, facilitating the selection of the best model by mitigating noise and extreme values. This makes
them well-suited for time series forecasting through simulation.

1. When the sample size is small (e.g., n = 100), reducing the influence of wavelets proves to be beneficial. However,
when the sample size is large, wavelet-based methods perform significantly better than the traditional approach, namely,
the Bayes method.

2. Higher-order wavelets, such as the Daubechies and Symlets wavelets at rank 15, yield better results in terms of both
accuracy and forecasting, as shown by the model selection criteria. This indicates that the more complex wavelet-based
method provides superior results compared to traditional methods.

3. The Bayesian and ARIMA method proposed in this study, which are based on wavelets, presents a robust framework
for handling time series data. It offers considerable improvements over traditional techniques, particularly in practical
applications involving outliers and noise, making it the most effective approach for time series prediction in such cases.

4. Based on the significance of coefficients (AR, MR, and variance) and the model fit metrics (MSE, AIC, and BIC) for
monthly inflation in the Kurdistan Region time series, the Symlets 15 method is the superior model for this time series
analysis. It provides a better fit with statistically significant results, lower MSE, and more favourable AIC and BIC
values.

5. There is a decrease in monthly inflation in the Kurdistan Region.
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