
Iraqi Journal of Statistical Sciences, Vol. 22, No. 1, 2025, pp (181-194) 

 

181 

 

 

 

 

Iraqi Journal of Statistical Sciences 

http://stats.uomosul.edu.iq 
 

 

Bayesian Time Series Modelling with Wavelet Analysis for Forecasting 

Monthly Inflation 

 
Taha Hussein Ali1  Heyam A. A. Hayawi2  Hunar Adam Hamza3  
 
1,3Department of Statistics and Informatics, College of Administration and Economics, Salahaddin University- Erbil, Iraq, 
2Department of Statistics and Informatics, College of Computer and Mathematical Science, Mosul University- Mosul, Iraq,  
 

 

Article information  Abstract 

Article history: 

Received March 2, 2024 

Revised: May 1,2025 

Accepted  May 4, 2025 

Available online June 1, 2025 

     This article treats data noise and outliers in Bayesian ARIMA models through wavelet 

analysis. Apply the discrete wavelet transformation using Daubechies and Symlets wavelets 

for orders 10 and 15 to decompose the data of Bayesian ARIMA models into their frequency 

components. Threshold the wavelet coefficients using a method like soft thresholding, with 

the threshold selected via Stein’s unbiased risk estimate and soft rule. Simulation 

experiments were used with real data representing the monthly inflation in the Kurdistan 

Region of Iraq (2009-2024) with a forecast for the next ten months. The proposed wavelet-

based Bayesian ARIMA method provides a robust framework for handling noisy time series 

data and offers significant improvements over classical methods, making it an appealing 

choice for practical applications in time series forecasting, particularly when dealing with 

outliers and noise. 

Keywords:  

ARIMA Model, Bayesian 

Approach, Wavelet, Forecasting, 

and Monthly Inflation. 

Correspondence: 

Taha Hussein Ali 

taha.ali@su.edu.krd  

   

DOI 10.33899/iqjoss.2025.187792   , ©Authors, 2025, College of Computer Science and  Mathematics, University of Mosul. 

This is an open access article under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0/). 
 

 

1. Introduction 

 

        One of the economic issues worthy of attention is the forecasting of monthly inflation, which is one of the basic 

problems that affect financial decisions and monetary policies, as it relies on traditional and classical methods of 

analyzing time series, including ARIMA models and exponential smoothing, which rely on static hypotheses that may 

not be appropriate in the presence of structural changes or complex dynamic characteristics (. Therefore, there is an urgent 

need for more flexible and accurate models in the forecasting process, such as time series modelling based on Bayesian 

theory after combining it with Wave analysis, to improve the accuracy of forecasts. (Box et al., 2016; Heyam et al.,2025) 

The use of wavelet analysis to show time-varying patterns within a time series makes it a powerful and effective tool for 

analyzing monthly inflation. The role of wavelets in breaking up the time series into its various components is highlighted, 

so that it allows dealing with structural and seasonal changes that may be unclear when using traditional methods by 

relying on Bayesian theory using probability distributions to extract future, predictive values, which allows dealing with 

uncertainty more flexibly than classical methods. Dynamic Bayes models can integrate previous information about 

inflation and gradually improve the estimation of parameters, which makes them suitable for forecasting under the 

instability of economic data. (Hayawi & Alsharabi, 2022; Muzahem & Hayawi, 2023) 

This article treats data noise and outliers in Bayesian ARIMA models through wavelet analysis. Apply the discrete 

wavelet transformation using Daubechies and Symlets wavelets for orders 10 and 15 to decompose the data of Bayesian 

ARIMA models into their frequency components. 
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2. Methods 

 

2.1. ARIMA 

     ARIMA models One of the important tools in analyzing and predicting time series are ARIMA model, which is called 

the model of self-integration and mean regression, which is one of the most famous Time Series models, which is 

characterized and characterized by its ability to clarify trends and self-reliance in time series data, (Hayawi et al., 2021) 

as it is suitable for predicting changes that occur in various phenomena, especially data characterized by periodic trends, 

and these models give more flexibility when dealing with Wave analysis and integrating them in an estimation method 

that relies on Bayesian theory to predict data that are rather complex and need some flexibility in analysis (Ali et al., 

2022). These ARIMA (p, d, q) models can be formulated by the differential equation defined in the following form: 

(Ibrahim, & Hayawi, 2021; Muzahem et al.,2023) 

𝑌𝑡 = 𝐶 + ∑ 𝜑𝑖𝑌𝑖 + ∑ 𝜃𝑗𝑎𝑗 + 𝜀𝑡                                                                                                                                                      (1)

𝑞

𝑗=1

𝑝

𝑖=1

 

Where: 𝑌𝑡 : the time series variable in time t,  𝐶 The Model constant, 𝜑𝑖  Parameters of auto-regression, 𝜃𝑗 Moving 

average parameters, 𝜀𝑡 Random error at time t 

 

 
2.2. Bayesian Approach 

Bayesian Time Series Modelling offers a powerful and flexible framework for analyzing and forecasting data that evolves 

and handles complex dependencies. Unlike classical frequentist methods, Bayesian time series modelling treats 

parameters as random variables, updating beliefs through Bayes’ theorem as new data is observed (Gelman and Shalizi, 

2013). This framework is particularly powerful for forecasting, anomaly detection, and parameter estimation in non-

stationary (West and Harrison, 1997). 

The essence of the Bayesian approach lies in Bayes' Theorem, which mathematically dictates the transformation of prior 

beliefs into posterior beliefs through the integration of data:  

𝑃(θ|𝑦) =
𝑃(𝑦|θ)𝑃(θ)

𝑃(𝑦)
                                                                                                                                                            (2 ) 

where: 

• P(θ∣y): Posterior distribution of parameters θ given data y, 

• P(y∣θ): Likelihood function of the time series model, 

• P(θ): Prior distribution encoding domain knowledge, 

• P(y): Marginal likelihood (normalizing constant). 

Bayesian time series models can provide a versatile toolkit for model complexities, including non-stationarity, structural 

changes, and latent variables. One of the widely adopted models in time series models is Bayesian ARIMA, which stands 

for Autoregressive Integrated Moving Average. This approach is the extension of the conventional ARIMA methodology 

by integrating prior probability distributions over the model parameters, allowing for a fully probabilistic analysis. 

 

2.3.  Wavelet Analysis (Daubechies and Symlets) 

Wavelet analysis is used to extract hidden information within the data by analyzing it in the time and frequency domains. 

One of the most prominent types of wavelets that have a strong impact in the field of time series is Daubechies and 

Symlets wavelets, as they are one of the most widely used wavelets due to their ability to provide an accurate and effective 

analysis of unstable and time-varying signals, which makes them suitable in many applications used in the field of time 

series data, including monthly inflation (Ali and Jwana, 2022). 
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Daubechies wavelets, developed by the scientist Ingrid Daubechies, are named after her and are characterized as 

orthogonal wavelets that provide a high degree of smoothing and are widely used in data compression, signal analysis, 

and time series forecasting. It is also characterized by being based on short-wave functions, but it provides an accurate 

representation of the signal. This type of wave is used in the analysis and construction of time series models, especially 

in the field of Economics, to detect hidden patterns in the data and remove noise from them (Elias and Ali, 2025). The 

Symlets waveform is a modified version of the Daubechies waveform, as it was developed and some modifications were 

made to it to achieve a balance between symmetry and continuity, making it more suitable for some applications that 

require smoother signals. These wavelets have a higher continuity than Daubechies wavelets, which makes them more 

accurate in analyzing signals with slow changes. It is also used to purify economic data from noise to obtain more accurate 

forecasts, especially time series and financial data (Omer et al., 2024; Ali and Dlshad, 2021). 

3. Efficiency Criteria 

The efficiency criteria of the models estimated and used in this article are as follows: 

Mean Square Error (MSE) is the metric for evaluating the performance of predictive models by calculating the average 

squared difference between observed values and forecasted model values (Hyndman and Athanasopoulos, 2018) 

Although MSE is interpretable and scale-dependent, it fails to incorporate regularization against model complexity and 

risks overfitting (Wulff, 2017).  

MSE =
1

𝑛
∑(𝑦𝑡 − 𝑦̂𝑡)2

𝑛

𝑡=1

                                                                                                                                                             (3) 

Where:   𝑦𝑡 = Actual value at time t. 

• 𝑦̂𝑡 = Predicted value at time t. 

• n = Number of observations. 

To resolve this issue, the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) incorporate both 

goodness-of-fit and parsimony. AIC (Akaike, 1974) minimizes information loss by balancing model likelihood and 

parameter count, favoring simpler models unless additional parameters significantly improve fit. BIC (Schwarz, 1978) 

applies a stricter penalty tied to sample size, making it more conservative for large datasets (Burnham and Anderson, 

2004). Empirical studies suggest AIC excels in smaller samples, while BIC is asymptotically consistent (Claeskens and 

Hjort, 2008). Generally, a model with lower BIC and AIC values is chosen as it indicates a better balance between model 

fit and complexity. The model showing the minimum BIC and AIC is typically selected as the most suitable model among 

other models (Sedeeq and Meran, 2022). 

AIC = −2𝑘 ln(𝐿̂) + 2𝑝                                                                                                                                                             (4) 

BIC = −2 ln(𝐿̂) + 𝑝 ln(𝑛)                                                                                                                                                        (5) 

• 𝐿̂ is the maximized value of the likelihood function for the model.  

• p is the number of parameters in the model.  

• n is the number of data points.  

• k is a constant that depends on the distribution of the errors 

Together, these metrics guide modelers in selecting specifications that generalize well (Acquah, 2010). For example, in 

ARIMA modelling, AIC/BIC compare lag structures, while MSE validates point forecasts (Brockwell & Davis, 2016). 

Their joint application ensures models are both accurate and interpretable. 
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4. Proposed Method   

The proposed method includes processing the data noise and outliers of Bayesian ARIMA models based on wavelet 

analysis as follows: 

- Apply the discrete wavelet transformation using Daubechies and Symlets wavelets for orders 10 and 15 to decompose 

the data of Bayesian ARIMA models into their frequency components. 

- Threshold the wavelet coefficients using a method like soft thresholding, with the threshold selected via Stein’s 

Unbiased Risk Estimate (SURE). 

- SURE is a method used to choose the threshold value in wavelet denoising. SURE is an unbiased estimator of the mean 

squared error (MSE) between the original data and the denoised signal. It helps in determining the threshold λ that 

minimizes the MSE. The formula is: 

𝑀𝑆𝐸(𝜆) =
1

𝑛
∑ ((𝑦𝑖 − 𝑦̂𝑖(𝜆))2 − 𝜎2) 

𝑛

𝑖=1
                                                                                                                       (6) 

 Where yi is the observed noise data for Bayesian ARIMA models, 𝑦̂𝑖(𝜆) is denoising data and 𝜎2 is the noise variance. 

- Reconstruct the data using the inverse discrete wavelet transformation. The result is a denoised version of the original 

data, with reduced noise and preserved important data characteristics. 

- Using denoised data in estimating parameters of Bayesian ARIMA models. Where AR and MA coefficients have a 

normal distribution, and the variance 𝜎2 has a Half-Normal distribution 𝜎0
2 

- Since the posterior distribution does not have an analytical form, we typically use Markov Chain Monte Carlo (MCMC) 

methods such as Metropolis-Hastings to sample from the posterior and estimate the parameters. 

- The classical Bayesian approach to ARIMA models allows for the estimation of parameters as probability distributions, 

with uncertainty quantified through the posterior distribution. The Metropolis-Hastings MCMC algorithm is used to 

sample from the posterior distribution, followed by forecasting using the sampled parameter values.  

5. Simulation Study 

To illustrate the proposed method for handling data noise and outliers, Bayesian ARIMA model data were generated 

using the Metropolis-Hastings algorithm for parameter estimation, with p and q set to 1, 2, and 3. Sample size (100, 300, 

and 500). The log-prior function imposes priors on the parameters. The AR and MA parameters are assumed to have a 

normal prior, while the variance parameter follows a half-normal distribution. The MCMC sampling loop uses the 

Metropolis-Hastings algorithm to generate posterior samples for the model parameters. The algorithm proposes new 

parameter values based on a random walk and then calculates the acceptance ratio (using the log-posterior) to decide 

whether to accept the new values. The values of the assumed parameters of the models are shown in Table 1: 

Table 1. The values of the assumed parameters of the models  

Model AR MR Variance 

ARIMA (1, 0, 1) 0.5 0.3 0.5 

ARIMA (2, 0, 1) 0.5 0.3 0.3 0.5 

ARIMA (1, 0, 2) 0.5 0.4 0.2 0.5 

ARIMA (2, 0, 2) 0.5 0.3 0.4 0.2 0.5 

ARIMA (3, 0, 2) 0.5 0.3 0.2 0.4 0.2 0.5 

ARIMA (3, 0, 3) 0.5 0.3 0.2 0.4 0.2 0.1 0.5 

Simulation experiments were conducted 1,000 times, and the averages of the criteria (MSE, AIC, and BIC) for both the 

classical Bayesian ARIMA and the proposed methods (Daubechies 10, 15, and Symlets 10, 15) are presented in Tables 

2-7. 
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Table 2. The results of the criteria for the ARIMA (1, 0, 1) Model 

Method Sample Size MSE AIC BIC 

Classical 

100 

0.8688 -301.8327 -294.0172 

Daubechies 10 0.6480 -399.1264 -391.3109 

Daubechies 15 0.2013 -393.8501 -386.0346 

Symlets 10 0.4284 -395.0623 -387.2468 

Symlets 15 0.3034 -379.1231 -371.3076 

Classical 

300 

0.4925 -1084.5042 -1073.3928 

Daubechies 10 0.4320 -3308.0035 -3296.8922 

Daubechies 15 0.3903 -1379.0454 -1367.9341 

Symlets 10 0.3948 -1419.0067 -1407.8953 

Symlets 15 0.3640 -3497.6115 -3486.5001 

Classical 

500 

0.6682 -1494.9011 -1482.2573 

Daubechies 10 0.4120 -1540.1903 -1527.5464 

Daubechies 15 0.4581 -1537.4481 -1524.8043 

Symlets 10 0.3307 -1706.7786 -1694.1348 

Symlets 15 0.4253 -1811.4462 -1798.8023 

Table 3. The results of the criteria for the ARIMA (2, 0, 1) Model 

Method Sample Size MSE AIC BIC 

Classical 

100 

0.9168 -2041.7150 -2031.2944 

Daubechies 10 0.6475 -2132.1766 -2121.7559 

Daubechies 15 0.4977 -2112.0655 -2101.6448 

Symlets 10 0.4955 -2132.6631 -2122.2424 

Symlets 15 0.6072 -2118.7471 -2108.3264 

Classical 

300 

0.8075 -10202.7425 -10187.9274 

Daubechies 10 0.3788 -11039.0046 -11024.1894 

Daubechies 15 0.3406 -10551.3354 -10536.5203 

Symlets 10 0.3739 -10292.0650 -10277.2499 

Symlets 15 0.3726 -10937.4372 -10922.6220 

Classical 

500 

0.5114 -11356.6000 -11339.7416 

Daubechies 10 0.4113 -12377.3786 -12360.5202 

Daubechies 15 0.3523 -12388.1471 -12371.2886 

Symlets 10 0.3769 -12548.7368 -12531.8783 

Symlets 15 0.3719 -12340.7826 -12323.9242 

Table 4. The results of the criteria for the ARIMA (1, 0, 2) Model 

Method Sample Size MSE AIC BIC 

Classical 

100 

0.7140 -155.6016 -145.1809 

Daubechies 10 0.3623 -234.0992 -223.6785 

Daubechies 15 0.3847 -241.8868 -231.4661 

Symlets 10 0.3878 -244.7666 -234.3459 

Symlets 15 0.4612 -244.0669 -233.6462 

Classical 

300 

1.1977 -2585.3395 -2570.5243 

Daubechies 10 0.8912 -3669.7764 -3654.9612 

Daubechies 15 0.9049 -3966.3979 -3951.5828 

Symlets 10 0.9929 -3987.1387 -3972.3236 

Symlets 15 0.8276 -3590.3261 -3575.5109 

Classical 

500 

0.7752 -882.3624 -865.5040 

Daubechies 10 0.4240 -1259.6261 -1242.7677 

Daubechies 15 0.2412 -1185.4212 -1168.5628 
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Symlets 10 0.2462 -1167.3151 -1150.4567 

Symlets 15 0.2079 -1283.8547 -1266.9962 

Table 5. The results of the criteria for the ARIMA (2, 0, 2) Model 

Method Sample Size MSE AIC BIC 

Classical 

100 

0.6131 -1244.0193 -1230.9934 

Daubechies 10 0.4228 -1929.2745 -1916.2487 

Daubechies 15 0.3719 -1454.4839 -1441.4581 

Symlets 10 0.4613 -2174.6927 -2161.6669 

Symlets 15 0.3676 -1292.0689 -1279.0431 

Classical 

300 

1.1191 -20119.5890 -20101.0701 

Daubechies 10 0.9488 -20789.4230 -20770.9041 

Daubechies 15 0.9088 -21154.5231 -21136.0042 

Symlets 10 0.9418 -21141.7011 -21123.1822 

Symlets 15 0.9106 -20349.7621 -20331.2431 

Classical 

500 

0.2839 -19587.9303 -19566.8572 

Daubechies 10 0.2436 -29312.1618 -29291.0888 

Daubechies 15 0.2456 -31973.9770 -31952.9039 

Symlets 10 0.2485 -31381.2063 -31360.1333 

Symlets 15 0.2484 -31545.2856 -31524.2126 

Table 6. The results of the criteria for the ARIMA (3, 0, 2) Model 

Method Sample Size MSE AIC BIC 

Classical 

100 

3.5139 -15455.3094 -15439.6784 

Daubechies 10 2.0614 -16765.6416 -16750.0105 

Daubechies 15 2.1475 -16797.7117 -16782.0807 

Symlets 10 2.1301 -16777.0134 -16761.3824 

Symlets 15 2.2219 -16696.6014 -16680.9703 

Classical 

300 

3.9076 -76683.6305 -76661.4078 

Daubechies 10 2.8844 -78752.2730 -78730.0503 

Daubechies 15 3.7755 -79032.9418 -79010.7191 

Symlets 10 3.2006 -78711.6962 -78689.4735 

Symlets 15 3.2271 -78589.5016 -78567.2789 

Classical 

500 

2.5609 -217500.2641 -217474.9764 

Daubechies 10 1.3406 -234328.9620 -234303.6744 

Daubechies 15 1.2229 -234532.9764 -234507.6888 

Symlets 10 1.7459 -225824.6071 -225799.3194 

Symlets 15 2.3524 -233592.6507 -233567.3631 

Table 7. The results of the criteria for the ARIMA (3, 0, 3) Model 

Method Sample Size MSE AIC BIC 

Classical 

100 

1.4966 -20243.8571 -20225.6209 

Daubechies 10 1.2041 -21469.2715 -21451.0353 

Daubechies 15 1.2385 -21404.5678 -21386.3316 

Symlets 10 1.1067 -21331.9679 -21313.7317 

Symlets 15 1.0233 -21347.6333 -21329.3971 

Classical 

300 

0.5562 -19667.6536 -19641.7272 

Daubechies 10 0.5398 -28921.7521 -28895.8257 

Daubechies 15 0.5558 -28377.6263 -28351.6998 

Symlets 10 0.5325 -27989.9125 -27963.9860 

Symlets 15 0.5227 -28426.6715 -28400.7450 

Classical 500 0.7763 -32125.5211 -32122.5709 
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Daubechies 10 0.7080 -33052.5155 -33049.5653 

Daubechies 15 0.7081 -33064.9835 -33062.0332 

Symlets 10 0.7376 -33067.9337 -33064.9834 

Symlets 15 0.7171 -33030.1221 -33027.1719 

6. Discussion of simulation results 

Figures 2-7 show that the proposed methods dealt with data noise. Daubechies (10 and 15) and Symlets (10 and 15) 

consistently outperform the classical Bayesian ARIMA method in terms of MSE, AIC, and BIC for most models and 

sample sizes. Daubechies 15 and Symlets 15 generally show the best performance in terms of MSE, achieving the lowest 

error values for many combinations of models and sample sizes (e.g., ARIMA (1,0,1) with sample size 100, ARIMA 

(3,0,2) with sample size 500). This suggests that higher-order wavelets (such as Daubechies 15 and Symlets 15) are more 

effective at denoising the data, improving the model's forecasting accuracy. 

Symlets 10 and Daubechies 10 perform similarly, but in general, Symlets tend to slightly outperform Daubechies, 

particularly for larger models like ARIMA (3, 0, 3). These wavelet methods also demonstrate better performance in terms 

of AIC and BIC for models with more parameters. 

The significant improvement in MSE, AIC, and BIC when utilizing wavelet-based methods indicates that these techniques 

effectively mitigate noise in the data. The Daubechies and Symlets wavelets, especially those with higher orders, excel 

at filtering outliers and reducing noise while maintaining strong predictive power, as evidenced by the lower MSE and 

more negative AIC and BIC values. 

Daubechies 15 and Symlets 15 outperform the classical method by a significant margin across several models and sample 

sizes, especially for models with higher-order AR and MA coefficients. This indicates that wavelet-based denoising is 

beneficial for more complex time series with intricate dynamics. 

The performance of Daubechies 10 and Symlets 10 shows improvements in MSE compared to the classical method, but 

they do not perform as well as their higher-order counterparts, indicating that denoising effectiveness improves with 

wavelet order. 

ARIMA (1,0,1) and ARIMA (1,0,2), proposed methods significantly outperform classical Bayesian ARIMA, especially 

when the sample size is small (100). This indicates that wavelet analysis methods can help enhance the model’s fitness 

and reduce overfitting, especially in cases where the data is noisy or limited. 

The complex models like ARIMA (3, 0, 3) and proposed wavelet methods continue to show an advantage, but the 

performance gap is narrower compared to simpler models (such as ARIMA (1, 0, 1) and ARIMA (2, 0, 1)). This is likely 

because the higher number of parameters in these models means that denoising might not always lead to substantial 

improvements in forecast accuracy, though wavelet methods still help reduce the error. 

The proposed methods show their greatest strength in larger sample sizes (300 and 500). As the dataset grows, the ability 

of wavelet-based methods to capture the true underlying data becomes more pronounced, leading to greater improvements 

in model performance. The classical Bayesian ARIMA model tends to show higher MSE, AIC, and BIC values compared 

to the proposed methods as the sample size increases. This suggests that the classical method is more sensitive to noise, 

while the proposed methods offer superior noise reduction and modelling efficiency. 

MSE tends to decrease with larger sample sizes for both classical and proposed methods, indicating that larger datasets 

provide more reliable and stable parameter estimates. This trend is particularly noticeable for the ARIMA models with 

higher order (ARIMA (2, 0, 2), ARIMA (3, 0, 3)). 

AIC and BIC improve (i.e., become more negative) with larger sample sizes, suggesting that the models perform better 

as more data is available for estimation. This is expected, as larger sample sizes allow for more precise estimates, reducing 

the potential for overfitting and increasing the reliability of model selection criteria. 
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7. Real Data 

The time series data represents the monthly inflation in the Kurdistan Region of Iraq for the period (2009-2024), taken 

from the Kurdistan Region Statistics Office and represents 192 months as shown in Figure 1: 

 
Figure 1. Monthly Inflation in the Kurdistan Region  

The stationarity of the time series of the original and transformed data was tested using the proposed method (Symlets 

15) based on the Augmented Dickey-Fuller (ADF) test, as shown in Table 8: 

 

Table 8. ADF Test for Monthly Inflation in the Kurdistan Region  

Method ADF Test Statistic Critical Values p-value Decision 

Classical -15.5638 -1.9423 0.001 The series is stationary 

Symlets 15 -15.1006 -1.9423 0.001 The series is stationary 

The Monthly Inflation in the Kurdistan Region time series is stationary based on both the Classical and Symlets 15 

methods of the ADF test, as the p-values are very small (0.001), and the test statistics (-15.5638 and -15.1006) are much 

smaller (more negative) than the critical value (-1.9423). Therefore, it is concluded that the series does not exhibit a unit 

root and that its properties (such as mean and variance) are constant over time. 

Bayesian ARIMA models of the classical and proposed method (Symlets 15) with different orders (p and q = 1, 2, 3) 

were estimated and the ARIMA (1, 0, 1) model was chosen based on the least significant AIC and BIC for two methods 

and the significance of the estimated coefficients of those models as in Table 9. 

 

Table 9. Results of Time Series Analysis  

Method AR MR Variance MSE AIC BIC 

Classical 
0.440 

(p = 0.043) 

-0.130 

(p = 0.029) 

0.067 

(p = 0.560) 
0.2382 -4435.345 -4425.573 

Symlets 15 
0.491 

(p = 0.020) 

0.308 

(p = 0.021) 

0.074 

(p = 0.018) 
0.2145 -4539.277 -4529.505 
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Classical AR coefficient (0.440) with p-value = 0.043 and Symlets 15 AR coefficient (0.491) with p-value = 0.020. Both 

AR coefficients are statistically significant, as their p-values (0.043 and 0.020) are less than the significance level of 0.05. 

This means both models have strong autoregressive effects. Classical MR coefficient (-0.130) with p-value = 0.029 and 

Symlets 15 MR coefficient (0.308) with p-value = 0.021. Both MR coefficients are statistically significant, as their p-

values (0.029 and 0.021) are also less than 0.05, indicating that the moving average effect is meaningful for both methods.  

Classical variance (0.067) with p-value = 0.560 and Symlets 15 variance (0.074) with p-value = 0.018. The Symlets 15 

model has a statistically significant variance (p-value = 0.018), suggesting that the variability in the residuals is explained 

significantly better by the Symlets 15 model than the Classical model. The Classical model has a higher p-value (0.560), 

meaning the variance of its residuals isn't statistically significant, implying that the residuals might not be well-explained 

by the model. 

Classical MSE (0.2382) and Symlets 15 MSE (0.2145). The Symlets 15 model has a lower MSE (0.2145), indicating that 

it makes better predictions with less error compared to the Classical model (MSE = 0.2382). Classical AIC (-4435.345) 

and Symlets 15 AIC (-4539.277). The Symlets 15 model has a significantly lower AIC, indicating a better fit relative to 

its complexity compared to the Classical model. Classical BIC (-4425.573) and Symlets 15 BIC (-4529.505). Again, the 

Symlets 15 model has a lower BIC, indicating that it is a more optimal model compared to the Classical model. 

The Classical method is still a valid model but does not perform as well as the Symlets 15 method in terms of predictive 

accuracy and model efficiency. Therefore, Symlets 15 would be the preferred model for forecasting the time series data. 

 

 
Figure 2. Comparison of Original Time Series and Fitted Values Using Classical Method 
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Figure 3. Comparison of Original Time Series and Fitted Values Using Proposed Method 

Figures 2 and 3 illustrate the classical and proposed (Symlets 15) methods for the original time series data and the 

estimates derived from these models. The red forecasted mean line aligns with the black original data, demonstrating that 

the forecasted values closely match the actual data. The plot indicates that both the Bayesian ARIMA model and the 

proposed model effectively capture the trends and patterns in historical data, with the forecasted mean following the 

general direction of the series. 

 

Figure 4. Residuals and ACF of Classical Model 
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Figure 5. Residuals and ACF of Proposed Model 

Figures 4 and 5 show that the residual plot is like random noise (white noise). This means there is no discernible pattern 

or trend over time. If you observe a trend or cyclical pattern in the residuals, this could indicate that the model hasn't fully 

captured the underlying structure of the data. Residuals are uncorrelated with each other, meaning there are no significant 

patterns or peaks in the residual plot. ACF plot of the residuals. If the residuals are uncorrelated, all autocorrelation values 

should be near zero. The results show that all autocorrelation coefficients fall within the confidence bands (blue lines), 

meaning that no significant autocorrelation exists among the residuals. 

 
Figure 6. Forecasting Monthly Inflation Using Classical Method 
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Figure 7. Forecasting Monthly Inflation Using Proposed (Symlets 15) Method 

 

Figures 6 and 7 display the original series in black and the forecasted values (the predicted future values) in red, indicating 

a decrease in monthly inflation in the Kurdistan Region based on two methods. 

 

Table 10. Forecasting Monthly Inflation in the Kurdistan Region 

Method Classical Symlets 15 

1 -0.0480 -0.0809 

2 -0.0387 -0.0807 

3 -0.0369 -0.0760 

4 -0.0450 -0.0842 

5 -0.0438 -0.0613 

6 -0.0423 -0.0880 

7 -0.0348 -0.0396 

8 -0.0424 -0.0653 

9 -0.0412 -0.0619 

10 -0.0362 -0.0540 

 

Table 10 shows the forecasted monthly inflation values for the Kurdistan Region, comparing two methods: Classical 

ARIMA and Symlets 15 (a type of wavelet transformation method used for forecasting). The table lists the forecasted 

inflation values for each of the next 10 months (labelled 1 to 10). The classical method (likely a standard ARIMA 

model) shows forecasted inflation values that are relatively stable, hovering around -0.04 to -0.05 for most months. The 

values are negative, which could imply that inflation is expected to decrease slightly over the forecast period. The 

Symlets 15 method, which incorporates wavelet transformations, produces forecasts that generally fluctuate a bit more 

than the classical method. The values are also negative but appear to vary more, ranging from -0.08 to -0.04 across the 

forecast horizon. 
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8. Conclusion 

1.In this research, the effectiveness of the proposed methods was demonstrated, particularly the use of high-order wavelets 

that reduce noise and improve the performance of Bayesian models. These methods help lower the average error measures 

and information criteria, facilitating the selection of the best model by mitigating noise and extreme values. This makes 

them well-suited for time series forecasting through simulation. 

1. When the sample size is small (e.g., n = 100), reducing the influence of wavelets proves to be beneficial. However, 

when the sample size is large, wavelet-based methods perform significantly better than the traditional approach, namely, 

the Bayes method. 

2. Higher-order wavelets, such as the Daubechies and Symlets wavelets at rank 15, yield better results in terms of both 

accuracy and forecasting, as shown by the model selection criteria. This indicates that the more complex wavelet-based 

method provides superior results compared to traditional methods. 

3. The Bayesian and ARIMA method proposed in this study, which are based on wavelets, presents a robust framework 

for handling time series data. It offers considerable improvements over traditional techniques, particularly in practical 

applications involving outliers and noise, making it the most effective approach for time series prediction in such cases. 

4. Based on the significance of coefficients (AR, MR, and variance) and the model fit metrics (MSE, AIC, and BIC) for 

monthly inflation in the Kurdistan Region time series, the Symlets 15 method is the superior model for this time series 

analysis. It provides a better fit with statistically significant results, lower MSE, and more favourable AIC and BIC 

values. 

5. There is a decrease in monthly inflation in the Kurdistan Region. 
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 بالتضخم الشهري  كهن المويجات للتالنمذجة البايزية للسلاسل الزمنية مع تحليل 
 

 ³مزەح آدم   ەر، هون²عبد المجيد حياوي، هيام ¹طه حسين علي
قسم لإحصاء والمعلوماتية، كلية علوم الحاسوب والرياضيات، جامعة 2أربيل،   -قسم الإحصاء والمعلوماتية، كلية الإدارة والاقتصاد، جامعة صلاح الدين  .1،3

  .العراقالموصل،  -الموصل 
الشاذة في نماذج:  الخلاصة البايزية من خلال تحليل المويجات. حيث يتم تطبيق تحويل   ARIMA تتناول هذه الدراسة معالجة مشكلتي الضوضاء والقيم 

البايزية إلى مكوناتها الترددية.     ARIMA لتحليل بيانات نماذج  15و  10من الرتبتين   (Symlets) و  (Daubechies) المويجات المنفصل باستخدام مويجات  
، مع اختيار قيمة العتبة باستخدام تقدير ستاين غير  (soft thresholding) معاملات المويجات باستخدام طريقة مثل العتبة الناعمةلعتبة  تطبيق قطع الثم يتم  

رب محاكاة باستخدام بيانات حقيقية تمثل التضخم الشهري في إقليم  تم إجراء تجا .والقاعدة الناعمة   (Stein's unbiased risk estimate) المتحيز للمخاطرة
البايزي القائم على المويجات إطاراً قوياً لمعالجة بيانات   ARIMA بالقيم للعشرة أشهر القادمة. يقدم نموذج  كهن(، مع الت2024- 2009كردستان العراق للفترة )

ت كبيرة مقارنة بالطرق الكلاسيكية، مما يجعله خياراً جذاباً للتطبيقات العملية في التنبؤ بالسلاسل الزمنية، السلاسل الزمنية المليئة بالضوضاء، كما يوفر تحسينا 
 .خاصة عند التعامل مع القيم الشاذة والضوضاء

 ة، التضخم الشهري.البايزية، تحليل المويجات، معالجة الضوضاء، القيم الشاذة، التنبؤ بالسلاسل الزمني ARIMAنماذج  الكلمات المفتاحية:
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