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    In this paper, a fuzzy scheduling problem with triangular fuzzy numbers for processing 

times and due dates is provided. Each of the n operations is to be performed on a single 

machine without interruption and then becomes ready for processing at time zero. We 

generalized some ideas by giving a definition and a theorem to find a relation between the 

fuzzy lower bound and the fuzzy optimal solution for a problem with number of efficient 

solutions that minimizes total fuzzy completion time and maximum fuzzy tardiness. Also 

the results show how to choose the best defuzzification method in fuzzy scheduling 
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1. Introduction 

Fuzzy multi-objective scheduling problems are mainly focused on two criteria and they are occur oftenly in the real life 

situations. Solving multi-objective functions is difficult in the sense that we must deal with two various objectives 

without possessing any prior knowledge of their respective importance. Finding efficient solutions (Pareto set) is one of 

the approaches that solves this type of problems. From this set the decision maker will select one of these solutions 

(Heide and David, 2008). In the literature the Pareto set has been studied in the field of the optimization theory by many 

authors. In convex optimization, Ward looked at the construction of efficient sets (Ward, 1989) Lowe et al. Characterized 

the set of quasi-efficient solutions to a multiple objective problem (Lowe et al., 1984). For the minimum spanning tree 

problem, Steiner and Radzik determined all efficient solutions (Steiner and Radzik, 2008). In scheduling problems, the 

paper of Van Wassenhove and Gelders was the first one that dealt with finding the efficient solutions (Van Wassenhove 

and Gelders, 1980). Zinchenko studied the structure of Pareto set of some vector problems in scheduling (Zinchenko, 

2002). Using the standard boundary intersection technique, Jia and Ierapetritou found Pareto optimum solutions for 

scheduling difficulties (Jia and Ierapetritou, 2007)). For equal processing times Lazarev et al. Found the Pareto set for 
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jobs with respect of two criteria (Lazarev, 2015), and for a shop scheduling problem Nguyen and Bao computed an 

efficient solution by using genetic algorithm (Nguyen and Bao, 2016). Some papers are related to this direction, starting 

with the non-fuzzy case  Jabbar and Ramadhan  firstly introduced  such  relation. Later  Ramadan  and Begard  introduced 

a relatin  regarding the  bi-criteria  problem namely maximum tardines and maximum earliness ( Amin and Ramadan, 

2021). Hassan et al., generlized  the idea to three criteria to minimize the sum of total completion time, maximum 

earliness and maximum tardiness ( Dara et al., 2022). In the fuzzy environment  Ramadan presented  the same idea to 

minimize the sum of total fuzzy completion time and  maximum earliness in addition to find all  the efficient  solutions ( 

Ramadan, 2021). 

The focus of this paper is on the structure of efficient solutions where The processing times and deadlines are triangular, 

fuzzy numbers. The multi-objective problem is to minimize total fuzzy completion time and maximum fuzzy tardiness. 

We introduce a new definition for fuzzy numbers which is called q-strongly positive fuzzy numbers, and a theorem which 

finds a relation between the fuzzy lower bound and the fuzzy optimal solution with number of efficient solutions. This 

relation restricts the fuzzy lower bound through number of efficient solutions. 

 

1. Definitions and Notations 

Definition 1: A triangular fuzzy number K̃ = (kL, k, kU) can be represented by three components  , where kL represents 

the lower bound of the fuzzy number, ku  the upper bound for the number. Μk̃(x) specifies a membership function for a 

triangular fuzzy number K̃, where 

μK̃(x) =

{
 
 

 
 0            ,  x < kL,
x−kL

k−kL
     , kL ≤ x ≤ k,

kU−x

kU−k
     , k < x ≤ kU.

  

Assume K̃ and G̃ be two triangular fuzzy numbers, with K̃ = (kL, k, kU) and G̃ = (gL, g, gU), then the addition of two 

fuzzy nymbers is 

３) K̃ ⊕ G̃ = (kL + gL, k + g, kU + gU), which is also triangular fuzzy number, 

and the subtraction is  

 ii) K̃ ⊖ G̃ = (kL − gU, k − g, kU − gL), which is also triangular fuzzy number (Hsien, 2010). 

Definition 2: The procedure that converts a fuzzy number to its crisp value is called defuzzification. For a triangular 

fuzzy number K̃ = (k1, k2, k3). A triangular fuzzy number's centroid point is D(K̃) =
k1+k2+k3

3
  (Cheng, 1998). 

Consider two triangular fuzzy production time  p̃1 and p̃2 ( due dates) where p̃1 = (p1
L, p1, p1

U) and p̃2 = (p2
L, p2, p2

U). 

Using this method we say that p̃1 < p̃2 if D(p̃1) < D(p̃2). A special case will occur when p1
U < p2

L, in this case the two 

numbers are comparable and there is no need to use ranking methods to map them to crisp values. The majority of 

defuzzification procedures result in a rational number, So, let d be the rational number's denominator, which plays an 

important part in this paper. Consider a problem 𝑝 with two any criteria f and g to be minimized simultaneously, then  

Definition 3: A sequence π∗ ∈ Π is efficient solution for p if   no π ∈ Π s.t. f(π) ≤ f(π∗) and h(π) ≤ h(π∗), where at 

least one relation holds with dtrict inequality.  

Definition 4: A set of all the efficient solutions for a problem is called  Pareto set. 

The notations used in this paper are as follows: 

N: {1, 2, 3,..., n}, 



                    Iraqi Journal of Statistical Sciences, Vol. 20, No. 1,2023,  Pp. (1-8) 
 

 

 

 

3 

 

Π: all possible schedules, 

p̃j = (pj
L, pj, pj

U): fuzzy processing time for job j, and they are triangular fuzzy number (TFN), 

d̃j = (dj
L, dj, dj

U): fuzzy due date for job j, and they are triangular fuzzy number (TFN), 

c̃j: fuzzy completion time for job j, 

L̃j = c̃j⊖ 𝑑̃𝑗: fuzzy lateness for job j, 

T̃j = max̃ {c̃j⊖ d̃j, 0̃}: fuzzy tardiness of job j, where 0̃ = (0,0,0), 

T̃max = max̃ {T̃j}: maximum fuzzy tardiness, 

Kc: the crisp value of the fuzzy number K̃, 

d: the denominator of a rational number, 

EDD (early due date): tasks are arranged in ascending order of dj, 

SPT (Shortest processing time): tasks are sequenced in ascending order of pj, 

The fuzzy lower bound (LB̃) is a value of the objective function that is less than or equal to the fuzzy optimum value. 

UB̃ (Fuzzy upper bound): an objective function value larger than or equal to the fuzzy optimum value.   

 

2. Background of the Problem 

A set N of n jobs to be processed on a one- machine. Each one has a fuzzy processing time p̃j which is a triangular fuzzy 

number p̃j = (pj
L, pj, pj

U), and a triangular fuzzy due date d̃j = (dj
L, dj, dj

U), for j = 1,2, . . . , n. At time zero, all jobs are 

accessible, and the machine can only process one task at a time, and a job's execution cannot be stopped. A schedule is 

made by placing tasks in a certain sequence such that the fuzzy completion time c̃j of each job j may be calculated. In 

fact, employment processing timelines are unpredictable. As a result, each job's completion time is unknown. 

Smith proposed an approach for solving a single machine scheduling issue that reduced overall completion time while 

ensuring that all tasks were finished on time (Smith, 1965). Van Wassenhove extended the idea to find the Pareto set of 

the simultaneous problem 1//F(γ1, γ2) which is a function of two cost criteria where γ1 = ∑nj=1 cj and γ2 = Tmax  and 

without constrants on jobs. The solution of this problem is difficult and sometimes is not possible, this means, there is in 

general no π which minimizes γ1 and γ2, as a result, we're looking for a sequence that provides a fair solution to both 

goals. (if such a sequence exists). To define such a sequence, Van Wassenhove and Gelders introduced the concept of 

efficiency in scheduling problems (Van Wassenhove and Gelders, 1980). 

 

3. Needed Calculations 

Consider a scheduling problem with n-jobs with one machine and processing times that are considered to be fuzzy. Let p̃j 

be the job j fuzzy processing time. The following formulas can be used to compute the fuzzy completion time of jobs: 

c̃1 = p̃1, 

                                                         c̃2 = c̃1⊕ p̃2,                                                                                     (1) 

c̃j = c̃j−1⊕ p̃j,   for    j = 1, . . . , n. 

A penalty is charged if a task is done beyond its due date; nevertheless, if a job is performed before its due date, it is 

deemed early (Hsien, 2010). The difference between the fuzzy completion time and the fuzzy due date of this job is a 

fuzzy maximum of zero, and the fuzzy tardiness of a work in a given sequence is a fuzzy maximum of zero, which 

implies  



                    Iraqi Journal of Statistical Sciences, Vol. 20, No. 1,2023,  Pp. (1-8) 
 

 

 

 

4 

 

                                                   T̃j = max̃ {c̃j⊖ d̃j, 0̃},                                                                              (2) 

where the fuzzy completion time c̃j = (cj
L, cj, cj

U), (1) may be achieved for each job j, and maximum fuzzy tardiness is 

                                                   T̃max = max̃ {max̃ {c̃j⊖ d̃j, 0̃}}                                                               (3) 

 

4. Efficient Solutions and Optimal Solution 

With the number of effective solutions, Jabbar and Ramadhan discovered a relationship between the lower bound and the 

optimization method for a problem which was minimizing total completion time and maximum tardiness (Jabbar and 

Ramadhan, 2006).  In the case where all the inputs data are are fuzzy numbers, we generalized the case by introducing 

new definition. The problem is  

                                                      1//F(γ1, γ2),                                                                                           (4) 

 where γ1 = ∑nj=1 c̃j and γ2 = T̃max. This problem is in simultaneously form and has efficient solutions, one of the 

efficient solutions will be fuzzy optimal for the sum of the problem, i.e.,  

                                                   1//(∑nj=1 c̃j + T̃max).                                                                               (5) 

For the problem (5) let the fuzzy lower bound LB̃ = ∑nj=1 c̃j(SPT) ⊕ T̃max(EDD) , the fuzzy upper bound UB̃ =

∑nj=1 c̃j(SPT)⊕ T̃max(SPT) and opt̃ be the fuzzy optimal value. To find our results we introduce the following.  

Definition 5: If (kL+k+kU) – (gL+g+gU) ≥ m, where m may be any positive integer greater than or equal to one, two fuzzy 

numbers K̃ = {kL, k, kU} and G̃ = {gL, g,  gU} are q-strongly positive.  

Think of the sets of maximum fuzzy tardiness S = {T̃max(i)} and total fuzzy completion time S1 = {∑
n
j=1 c̃j(i)}, where 

i  is an efficient solution for each i = 1, . . . , k, and both sets have two components that are q-strongly positive. Implying 

that T̃max(i) and T̃max(i+1) are q-strongly positive numbers, and ∑nj=1 c̃j(i+1) and ∑nj=1 c̃j(i) are q-strongly positive 

numbers too. 

Theorem 1 ( New): If the problem has 3-strong positive numbers efficient solutions for problem (4), then there exists a 

fuzzy number r̃ such that LB̃⊕ r̃ = opt̃ and rc ∈ [Q1 − 1, (Q̃2⊕
1

d
)c] where Q1=number of  efficient solutions and Q̃2 =

T̃max(SPT)⊖ T̃max(EDD).  

Proof. Since LB̃ ≤ opt̃ , so there exists r̃ such that LB̃⊕ r̃ = opt̃ this proves the first part. Now, to show that rc ∈ [Q1 −

1, (Q̃2⊕
1

d
)c] or Q1 − 1 ≤ r

c ≤ (Q̃2⊕
1

d
)c. We have r̃ = opt̃ ⊖ LB̃ ≤ UB̃ ⊖ LB̃  

= T̃max(SPT) ⊖ T̃max(EDD) 

= Q̃2 ≤ Q̃2⊕
1

d
 , 

 implies that rc ≤ (Q̃2⊕
1

d
)c. 

 For Q1 − 1 ≤ r
c use mathematical induction on Q1. 

 If Q1 = 1, In other words, there is just one effective solution, which is SPT then  

r̃ = ∑

n

j=1

c̃j(SPT)⊕ T̃max(SPT) ⊖∑

n

j=1

c̃j(SPT) ⊖ T̃max(EDD), 

= T̃max(SPT) ⊖ T̃max(EDD),  since T̃max(SPT) and T̃max(EDD) are equal , so  rc = 0. 

Thus rc = 0 = Q1 − 1, which proves the case Q1 = 1. 
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If Q1 = 2, Such that, there are only two effective solutions, that are SPT and σ, instance. Since Q1 = 2, so Q1 − 1 = 1. 

The following are two scenarios: 

３- If SPT is optimal then  

r̃ = ∑nj=1 c̃j(SPT)⊕ T̃max(SPT) ⊖∑nj=1 c̃j(SPT) ⊖ T̃max(EDD), 

= T̃max(SPT) ⊖ T̃max(EDD), since T̃max(SPT) and T̃max(EDD) are 3-strongly positives , so the difference between 

 Tmax
c (SPT) and Tmax

c (EDD) is ≥ 1. Thus rc ≥ 1 ≥ Q1 − 1, As a result, the theorem holds for  Q1 = 2. 

b- If σ is optimal then  

r̃ = ∑nj=1 c̃j(σ)⊕ T̃max(σ)⊖ ∑nj=1 c̃j(SPT) ⊖ T̃max(EDD),  

= ∑nj=1 c̃j(σ)⊖ ∑nj=1 c̃j(SPT),  since they are 3-strongly positives , so  rc ≥ 2 ≥ Q1 − 1, 

 so it  is true for Q1 = 2. 

 If Q1 = 3, means we have three efficeient solutions namelly, SPT, σ and σ1.  Since  Q1 = 3, so Q1 − 1 = 2. We have the 

following three cases: 

３- If SPT is optimal then  

r̃ = ∑

n

j=1

c̃j(SPT)⊕ T̃max(SPT) ⊖∑

n

j=1

c̃j(SPT) ⊖ T̃max(EDD), 

= T̃max(SPT) ⊖ T̃max(EDD), since T̃max(SPT) and T̃max(EDD) are 3-strongly positives , so the difference between 

 Tmax
c (SPT) and Tmax

c (EDD) is ≥ 2. Thus rc ≥ 2 ≥ Q1 − 1, so it is true for Q1 = 3. 

 b- If σ is optimal then  

r̃ = ∑nj=1 c̃j(σ)⊕ T̃max(σ) ⊖∑nj=1 c̃j(SPT)⊖ T̃max(EDD), 

= ∑nj=1 c̃j(σ)⊖ ∑nj=1 c̃j(SPT)  ⊕ T̃max(σ)⊖ T̃max(EDD),  since each of the difference is 3-strongly positive , so rc ≥

2 ≥ Q1 − 1, so it is true for Q1 = 3. 

c- If σ1 is optimal then  

r̃ = ∑

n

j=1

c̃j(σ1)⊕ T̃max(σ1)⊖∑

n

j=1

c̃j(SPT) ⊖ T̃max(EDD), 

 = ∑nj=1 c̃j(σ1)⊖ ∑nj=1 c̃j(SPT)⊕ T̃max(σ1)⊖ T̃max(EDD), 

= ∑nj=1 c̃j(σ1)⊖ ∑nj=1 c̃j(SPT), since they are 3-strongly positives , so  

rc ≥ 2 ≥ Q1 − 1, so it is true for Q1 = 3. 

Assume that the theorem holds for Q1 = k, such that, for the k most efficient solutions SPT, σ, σ1, ..., σk−2. Let Q1 = k +

1 , that means , there are k + 1 efficient solutions SPT, σ, σ1, ..., σk−2, σk−1. Whether any of the first k optimal processes 

is the optimum, and the theorem holds fo Q1 = k  then we get Q1 − 1 ≤ r
c. 

If σk−1 is the most efficient solution, then 

r̃ = ∑

n

j=1

c̃j(σk−1)⊕ T̃max(σk−1) ⊖∑

n

j=1

c̃j(SPT)⊖ T̃max(EDD), 

 implies that  

r̃ = ∑nj=1 c̃j(σk−1) ⊖ ∑nj=1 c̃j(SPT), and then rc ≥ k. Thus it is true for Q1 = k + 1. ∎ 
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Corollary 1:  If the efficient solutions are not 3-strongly positive for the problem (4), then   a fuzzy number r̃ s.t.  

LB̃ ⊕  r̃ = opt̃ and rc ∈ [
Q1−1

d
, (Q̃2⊕

1

d
)c] where  Q1= number of  efficient solutions and Q̃2 = T̃max(SPT)⊖

T̃max(EDD).  

 Proof. We prove only the second part which is  Q1 − 1 ≤ r
c . 

This will be done by the same way of the above theorem. Since they are not q-strongly positive,  so the difference 

between each of any two one is less than m. If m = 1 which is the worst case, then rc ≥ Ki − 1, ∀i, i = 1, . . . , k.  

It's vital to note that the q and 𝑑 values are the same, so the theorem depends  strongly on the defuzzification method.∎ 

 

To illustrate the theorem we give here an example.   

Consider the following data. For simple calculation we  have the due dates as cris number. 

 

J 1 2 3 

pj̃ (2, 3, 4) (4, 5, 7 (4, 5, 9) 

dj̃ 7 5 2 

 

There are three efficient solutions for the problem, and by using the mentioned defuzzification method the fficient 

solutions for this problem are: sequence (1, 2, 3) with ∑3j=1 c̃j= (18, 26, 35) and T̃max = (8, 13, 18) which is SPT- rule, 

sequence (1, 3, 2) with ∑3j=1 c̃j= (18, 28, 37) and  T̃max = (5, 10, 15), and sequence (3, 2, 1) ) with ∑3j=1 c̃j= (22, 34, 45) 

and T̃max = (3, 8, 13). Now 

LB̃ = ∑3j=1 c̃j(SPT) ⊕ T̃max(EDD)= (18,26, 35) ⊕ (3,8, 13)= (21, 34, 48), 

UB̃ = ∑3j=1 c̃j(SPT)⊕ T̃max(SPT) = (18,26, 35) ⊕ (8,13, 18)= (26, 39, 53), 

opt̃= (18, 28, 37) ⊕ (5, 10, 15) = (23, 38, 52), it is the sum of one the efficient solutions for  ∑nj=1 c̃j⊕ T̃max which is the 

sequence (1, 2, 3), and  r̃ = opt̃ − LB̃= (23, 38, 52) ⊖ (21, 34, 48)= (-25, 4, 31), r̃ = 
10

3
 . Q1= number of efficient 

solutions, Q1-1= 3-1= 2, and Q̃2= T̃max(SPT)- T̃max(EDD)= (8, 13, 18) ⊖ (3, 8, 13) = (-5, 5, 15).  (Q̃2⊕
1

d
)c = (

−14

3
, 
16

3
,
46

3
 

)c= 
48

 3
 . So, for this example 

10

3
 ∈ [2, 

48

 3
 ]. 

 

5. Conclusions 

The fuzzy lower bound and the fuzzy optimum solution with the number of efficient solutions were discovered to have a 

significant relationship in this paper. This relationship conceptually explains the difference between a fuzzy optimum 

solution and a fuzzy lower bound, allowing new algorithms and approaches to be developed to discover heuristic 

solutions to these issues. Furthermore, the defuzzification approach has an important role in limiting the gap between the 

fuzzy optimum solution and the fuzzy lower bound. For a given theorem, multiple approaches provide different intervals. 
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 تقنيات  لتحديد فترة الحد الادنى في مسائل الجدولة الضبابية 

   ناسیار حسین قادر1 ، حسین    زگار فریق محمود2 ، میديا باوەخان مراخان3 ،و4 اياد محمد رمضان 
، إقلیم كردستان ، جامعة كرمیان ، كلیة العلوم ، قسم الریاضیات 2،3.العراقزارة التربیة ، المدیریة العامة لتربیة کرمیان ، معهد الاعداد والتطویر التربوي ، 1

 العراق ، إقلیم كردستان ، جامعة السلیمانیة ، كلیة العلوم ، قسم الریاضیات 4 .العراق
ى  البحث تم دراسة  مسالة جدولة الماكنة الضبابیة مع  اعداد ضبابیة مثلثیة لاوقات البدء واوقات الانتهاء.  كل عمل من الاعمال تنجز علفي هذا  :  لخلاصةا

الضبابي     دنىماكنة واحدة بدون انقطاع و تكون  حاضرة للبدء في الوقت الصفري.  عممنا بعض الافكار باعطاء تعریف ونظریة لايجاد علاقة بین  الحد الا
ائج تظهر  كیفیة والحل الامثل الضبابي للمسالة مع  عدد الحلول الكفوءة والتي  تصغر  مجموع   اوقات الاتمام الضبابي و اكبر تاخیر ضبابي. ايضا  النت

 اختیار افضل طریقة للترتیب في  الجدولة الضبابیة. 
 حقاق غیر الواضحة ، الحد الأقصى للتأخیر الضبابي ، الحدود الدنیا ، الحلول الفعالة. : أوقات المعالجة الضبابیة ، تواریخ الاست ةالكلمات المفتاحي 


