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 The common issues of high dimensional gene expression data for survival analysis are that 

many of genes may not be relevant to their diseases. Gene selection has been proved to be 

an effective way to improve the result of many methods. The Cox regression model is the 

most popular model in regression analysis for censored survival data. In this paper, a new 

adaptive elastic net penalty with Cox regression model is proposed, with the aim of 

identification relevant genes and provides high classification accuracy, by combining the 

Cox regression model with the weighted L1-norm. Experimental results show that the 

proposed method significantly outperforms two competitor methods in terms of the area 

under the curve and the number of the selected genes.  
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1. Introduction 

The problem of analyzing time to event data arises in a number of applied fields, such as medicine, biology, public health, 

and epidemiology (Cockeran et al., 2019; Emura et al., 2012). Nowadays, high dimensional gene expression data are 

increasingly used for modeling various clinical outcomes to facilitate disease diagnosis, disease prognosis, and prediction 

of treatment outcome (Jian Huang et al., 2014). Regression modeling is a standard practice to study jointly the effects of 

multiple predictors on a response. The Cox regression model is ubiquitous in the analysis of time-to-event data. When the 

number of predictors is large, building a Cox regression model including all of them is undesirable because it has low 

prediction accuracy and is hard to interpret (Karabey & Tutkun, 2017; Leng & Helen Zhang, 2006). For these reasons, 

variable selection has become an important focus in Cox regression modeling. Penalized methods are very effective 

variable selection methods. These methods combine the Cox regression model with a penalty to perform variable selection 

and estimation simultaneously. 

 

With deferent penalties, several Cox regression models can be applied, among which are, LASSO, which is called the least 

absolute shrinkage and selection operator (Tibshirani, 1996), smoothly clipped absolute deviation (SCAD) (Fan & Li, 

2001), elastic net (Zou & Hastie, 2005), adaptive LASSO (Zou, 2006), and adaptive elastic net (Zou & Zhang, 2009). 

Unquestionably, elastic net is considered to be one of the most popular procedures in the class of penalized methods. 

However, elastic net has a limitation: It applies the same amount of the penalty to all variables. Thus it is an inconsistent 

variable selection method (Algamal & Lee, 2015; Zou & Zhang, 2009). To increase the power of informative gene 

selection, in the present study, a new adaptive elastic net with Cox regression model is proposed. More specifically, a new 

weight inside L1-norm is proposed, which can correctly reduce the estimation error. This weight will reflect the importance 

amount of each gene. Experimentally, comparisons between our proposed gene selection method and other competitor 

mailto:odayesam@gmail.com
https://stats.mosuljournals.com/article_167386.html
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-0229-7958


Iraqi Journal of Statistical Sciences, Vol. 17, No. 2, 2020, Pp (19-25) 

20 

 

methods are performed. The experimental results prove that the proposed method is very effective for selecting the relevant 

genes with high prediction accuracy. 

  

2. Panelized Cox regression model 

Survival analysis is the statistical branch studying time-to-event data, or 

more precisely the time elapsing from a well-defined initiating event to 

some particular endpoint. The Cox regression model is one of the most popular and useful models in survival analysis 

(Cox, 1972). Consider an analysis with time-to-event outcome, we denote the observed triplet as 

{( , , ) : 1,......, }i i it x i n =  where 
it  is the survival time if 1i =  and censored time if 0i =  and 

1( ,...... )i i ipx x x=  is 

a p-dimensional explanatory variables. Under the proportional hazards framework, the Cox regression model (CRM) can be 

defined as 

( ) ( ) ( )0| exp ,
T

i i i ih t x h t x=                         (1) 

where ( )0 ih t  is the baseline hazard function and 1( ,..., )T

p  =  is a 1p   vector of unknown regression 

coefficients. Assuming that the subjects are statistically independent of each other, the joint probability of all realized 

events is the following partial likelihood  
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where iR  is the set of subjects that are at risk just before time it .  

The estimation of the regression parameters of Eq. (1) is commonly carried out by minimizing the partial log 

likelihood function (Eq. (2)) as 

( )
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ˆ arg min log ( ) log exp( ) .
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CRM i j
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

   
= 

 
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 
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Panelized Cox regression model (PCRM) adds a nonnegative penalty term to Eq. (1), such that the size of variable 

coefficients can be controlled. Several penalty terms have been discussed in the literature considering the Cox regression 

model (Du et al., 2010; Fu et al., 2017; Gui & Li, 2005; Hossain & Ahmed, 2014; Hou et al., 2013; H. H. Huang & Liang, 

2018; J. Huang et al., 2013; Jiang & Liang, 2018; Kauermann, 2005; Li et al., 2014; Lin & Halabi, 2017; Liu et al., 2014; 

Park & Ha, 2018; Shi et al., 2019; Suchting et al., 2019; Wang et al., 2019; Wu et al., 2012; Zhang & Lu, 2007). The 

LASSO method, proposed by Tibshirani (1996), is one of the popular penalty terms. The LASSO performs variable 

selection and estimation simultaneously by constraining the log-likelihood function of variable coefficients. Generally, the 

PCRM is defined as 

1

log exp( ) ( ),
i

n
T T

i j

i j R

PCRM x x P   
= 

 
= − − 

 
             (4) 

 

where ( )P   is the penalty term that regularized the estimates. The penalty term depends on the positive tuning 

parameter, 0  , which controls the tradeoff between fitting the data to the model and the effect of the regularization. In 

other words, it controls the amount of shrinkage. For the 0 = , we obtain the CRM solution in Eq. (3). In contrast, for 

large values of  , the influence of the penalty term on the coefficient estimates increases.  

Without loss of generality, it is assumed that the explanatory variables are standardized, 
1

0
n

iji
x

=
=  and 

 1 2
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( ) 1, 1,2,...,

n
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n x j p
−

=
=   . The estimation of the vector   using LASSO is obtained by minimizing Eq. 

(4) as (Bradic et al., 2011; Goeman, 2010; Tibshirani, 1997) 
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Equation (5) can be efficiently solved by the coordinate descent algorithm (Simon et al., 2011).  The LASSO has an 

advantage in that it is computationally feasible in high-dimensional data. On the other hand, the LASSO has a drawback. 
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The LASSO lacks the oracle properties, as stated in Fan and Li (Fan & Li, 2001) because it is equally penalize all the 

coefficients. In addition, the LASSO cannot handle the effect of grouping. When the pairwise correlations among a group 

of genes are very high, then the LASSO tends to select only one gene from the whole group and does not take into account 

which one is selected. To alleviate the first drawback, Zou (2006)  and proposed the adaptive LASSO in which adaptive 

weights are used for penalized different coefficients in the penalty. The basic idea behind the adaptive LASSO is that by 

assigning a higher weight to the small coefficients and lower weight to the large coefficients, it is possible to reduce the 

selection bias; therefore, it can consistently select the model. Furthermore, the adaptive LASSO solution is continuous from 

its definition, which enables it to enjoy oracle properties.  To deal with the second drawback, Zou and Hastie (2005) 

proposed the elastic net penalty. However, the elastic net does not enjoy the oracle property even though it performs much 

better in classification accuracy. As a result, the adaptive elastic net was proposed by Zou and Zhang (2009).  

In panelized Cox regression model, the elastic net (ELASTIC) (Suchting et al., 2019) and its adaptive version (AELASTIC) 

are defined, respectively, as 

2

1 2

1 1 1

ˆ arg min log exp( ) ,
i

p pn
ELASTIC T T

Cox i j j j

i j R j j

x x


      
=  = =

  
= − − + +  

   
            (6) 

2

1 2

1 1 1

ˆ arg min log exp( ) ,
i

p pn
AELASTIC T T

Cox i j j j j

i j R j j

x x w


      
=  = =

  
= − − + +  

   
       (7) 

where 1  and 2  are two non-negative tuning parameters and T

j 1 pw =(w ,...,w )  is 1p   data-driven weight vector. It 

depends on  the root n -consistent initial values of ̂  and ˆ(| |)j jw  −
= , where   is a positive constant. For the low 

dimensional data, initial values of ̂  can be the unpenalized maximum partial likelihood estimator. While in the case of 

the high dimensional data, initial values of ̂  can be the elastic net estimates.  

 

3. The proposed weight 

In the context of gene expression data problems, the goal of gene selection is to improve prediction performance, to provide 

faster and more cost-effective genes, and to achieve a better knowledge of the underlying problem. High dimensionality 

can negatively influence the performance of the Cox regression model by increasing the risk of overfitting and lengthening 

the computational time. Therefore, removing irrelevant and noisy genes from the original microarray gene expression data 

is essential for applying Cox regression model to analyze the microarray gene expression data. It is worthwhile to highlight 

that our contribution of this paper comes from the following issues. First, although PCRM with ELASTIC can be applied 

directly to the high dimensional gene expression data, this method may select irrelevant genes because ELASTIC has the 

inconsistent property in gene selection. In other words, the estimates of the PCRM with ELASTIC can be biased for large 

coefficients because larger coefficients will take larger penalties. Second, in PCRM, the genes are usually standardized. 

However, the standardization process may be unreasonable when the variances of genes showing important effect.  

Motivated by these issues, a consistent identification of the true underlying genes is essential to improve the classification 

accuracy. As a result, the standard deviation for each gene is proposed as a weight inside L1-norm, where  

1
, 1,2,..., ,

ˆj

j

w j p
sd

= =     (8) 

where ˆ
jsd  is the standard deviation for each gene. According to Eq. (8), the gene with low value of standard deviation 

will receive relatively large amount of weight, while the gene with high value of standard deviation will receive small 

amount of weight. By this weighting procedure, the ELASTIC can reduce the inconsistent property in gene selection. 

The detailed of the our proposed weight computation is described in as 
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4. Real Application 

To evaluate the performance of the proposed method, three real gene datasets were used. A brief introduction and summary 

of the used datasets are given in Table 1. The first dataset is the Diffuse large B-cell lymphoma dataset (DLBCL) 

(Rosenwald et al., 2002). There are 240 lymphoma patients’ samples. Each patient’s data consists 7399 gene expression 

measurements, and its survival time, including censored or not. The second dataset is the Dutch breast cancer dataset 

(DBC) (van Houwelingen et al., 2006). In this dataset, there was 295 breast cancer patients’ information collected in this 

dataset. Each patient’s data consist 4919 gene expression measurements. 

The third dataset is the Lung cancer dataset (LC) (Beer et al., 2002). This dataset contains 86 lung cancer patients’ 

information including 7129 gene expression measurements, survival time and whether the survival time is censored. 

 

Table 1: The detail of the used three real microarray datasets 

Dataset Sample Gene Censored 

DLBCL 240 7399 102 

DBC 295 4919 207 

LC 86 7129 62 

 

To demonstrate the usefulness of the proposed method, comparative experiments with the ELASTIC and AELASTIC are 

conducted. To do so, each gene expression dataset is randomly partitioned into the training dataset and the test dataset, 

where 70% of the sample are selected for training dataset and the rest 30% are selected for testing dataset. For a fair 

comparison and for alleviating the effect of the data partition, all the used methods are evaluated, for their classification 

performance metrics using 10 folds cross validation, averaged over 100 partitioned times. Depending on the training 

dataset, the tuning parameter value,  , for each used method was fixed as 1 20 , 50   . To assess how well the 

model predicts the outcome, the idea of time-dependent receiver-operator characteristics (ROC) curves for censored data 

and area under the curve (AUC) as our criteria. The real application results are summarized in Tables 2 – 4.  

Table 2 shows the average results of different used methods applied to the three real datasets. It is obviously that the 

numbers of genes selected by the proposed method are much more than those of the AELASTIC and the ELASTIC 

method. Among the other two methods, the proposed method selected the largest subset of genes. For example, in DBC 

dataset, the proposed method selected 97 gens out of 4919 genes comparing to 89 and 91 selected genes by ELASTIC and 

AELASTIC, respectively.  

 

Table 2: The selected genes results 

 ELASTIC AELASTIC Proposed 

DLBCL 126 133 147 

DBC 89 91 97 

LC 79 88 101 

 

In order to test the prediction accuracy of the different used methods, their average values of AUC for both the training and 

testing dataset were given in Tables 3 and 4, respectively. In the observation of Table 3, in terms of AUC, the proposed 

method achieved a maximum accuracy of 96.1%, 95.8% and 97.8% for DLBCL, DBC, and LC datasets, respectively. 

Furthermore, it is clear from the results that the proposed method outperformed the AELASTIC for all datasets. This 

improvement in AUC is mainly due to the proposed method ability in taking into account the new weight. Moreover, the 

proposed method improved the classification accuracy compared to ELASTIC. The improvements were 7.9%, 6.7%, and 

6.7% for the DLBCL, DBC, and LC datasets, respectively. 

 

Table 3: The AUC results for the training dataset 

 ELASTIC AELASTIC Proposed 

DLBCL 0.882 0.922 0.961 

DBC 0.891 0.929 0.958 

LC 0.911 0.939 0.978 

 

It can also be seen from Table 4 that the proposed method has the best results in terms of the AUC for the testing dataset. 

The proposed method has the largest AUC of 94.1%, 94.0%, and 95.2% for the DLBCL, DBC, and LC datasets, 

respectively. This indicated that the proposed method significantly succeeded in identifying the patients who are in fact 

having the cancer with a probability of greater than 0.94.  
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Table 4: The AUC results for the testing dataset 

 ELASTIC AELASTIC Proposed 

DLBCL 0.861 0.917 0.941 

DBC 0.825 0.918 0.940 

LC 0.891 0.927 0.952 

 

5. Conclusion 

This paper presents a new adaptive penalized Cox regression model by combining the Cox regression model with the 

weighted elastic net penalty to identify the relevant genes in gene expression data. Our proposed method was 

experimentally tested and compared with other existing methods. The superior prediction performance of the proposed 

method was shown through the AUC. Meeting this criterion nominates the proposed method as a promising gene selection 

method.  
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 اختيار الجينات في نموذج انحدار كوكس بناءً على عقوبة صافي مرنة تكيفية جديدة 
 

 ل ا زكريا يحيى الجم    و     صقالعدي عصام ال

 قسم الاحصاء والمعلوماتية/ كلية علوم الحاسوب والرياضيات/ جامعة الموصل/ الموصل / العراق

 

لقد ثبت أن    تتمثل المشكلات الشائعة لبيانات التعبير الجيني عالي الأبعاد لتحليل البقاء في أن العديد من الجينات قد لا تكون ذات صلة بأمراضهم.:خلاصةال
الان تحليل  النموذج الأكثر شيوعًا في  هو  انحدار كوكس  نموذج  الطرق.  العديد من  نتيجة  لتحسين  فعالة  الجينات طريقة  الخاضعة  اختيار  البقاء  لبيانات  حدار 

تصنيف عالية ،   للرقابة. في هذا البحث ، تم اقتراح عقوبة صافي مرنة تكيفية جديدة مع نموذج انحدار كوكس ، بهدف تحديد الجينات ذات الصلة وتوفير دقة
الطريقة المقترحة تتفوق بشكل كبير على طريقتين منافستين من  المرجح. تظهر النتائج التجريبية أن   L1 من خلال الجمع بين نموذج انحدار كوكس مع معيار

 .حيث المساحة الواقعة تحت المنحنى وعدد الجينات المختارة
 .: نموذج انحدار كوكس. طريقة معاقبة شبكة مرنة ، اختيار الجيناتالكلمات المفتاحية


