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 In the context of Nadaraya-Watson kernel nonparametric regression, the curve estimation 

is fully depending on the smoothing parameter. At this point, the nature-inspired 

algorithms can be used as an alternative tool to find the optimal selection. In this paper, a 

firefly optimization algorithm method is proposed to choose the smoothing parameter in 

Nadaraya-Watson kernel nonparametric regression. The proposed method will efficiently 

help to find the best smoothing parameter with a high prediction. The proposed method is 

compared with four famous methods. The experimental results comprehensively 

demonstrate the superiority of the proposed method in terms of prediction capability.  
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1. Introduction 

The nonparametric regression model (NRM) and methods of estimation have been developed mainly in the last years (Ali, 

2019; Hazelton & Cox, 2016). Kernel regression estimates are one of the most popular nonparametric estimates. In a 

univariate case, these estimates depend on a bandwidth, which is a smoothing parameter controlling smoothness of an 

estimated curve and a kernel which is considered as a weight function (Schucany, 1995; Slaoui, 2016; Steland, 2012).  

The choice of the smoothing parameter is a crucial problem in the kernel regression. The literature on bandwidth selection 

is quite extensive, such as (Ali, 2019; Chen, 2015; C.-K. Chu & Marron, 1991; C. Chu, 1995; Dobrovidov & Ruds’ko, 

2010; Feng & Heiler, 2009; Francisco-Fernández & Vilar-Fernández, 2005; Gao & Gijbels, 2012; Kauermann & Opsomer, 

2004; Koláček & Horová, 2017; Lee & Solo, 1999; Leungi, Marriott, & Wu, 1993; Nychka, 1991; Opsomer & Miller, 

2007; Rice, 1984; Schucany, 1995; Zhang, Chan, Ho, & Ho, 2008; Zhou & Huang, 2018; Żychaluk, 2014).  

In this paper, a firefly optimization algorithm method, which is a natural-inspired continuous algorithm, is proposed to 

choose smoothing parameter in Nadaraya-Watson kernel nonparametric regression. The proposed method will efficiently 

help to find the best smoothing parameter with a high prediction. The superiority of the proposed method in different 

simulated examples and a real data application is proved. 

This paper is organized as follows. The description of the Nadaraya-Watson kernel nonparametric regression and the 

smoothing parameter selection are covered in Section 2. The details of the firefly optimization algorithm are covered in 

Section 3. Section 4 contains the details of our proposed method. The illustration of the proposed method through 

simulation studies and through real data application is given in Sections 5 and 6. In section 7, the conclusion is covered. 
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2. Smoothing parameter selection 

The nonparametric regression model, often estimated by estimators of the Nadaraya–Watson type, forms an attractive 

framework for diverse areas such as engineering, econometrics, environmetrics, social sciences, and biometrics (Steland, 

2012). In NRM, we have a set of univariate observations ( )  R
n

i i i =1
x , y   and the model can be defined as:  

( ) , 1, 2,...,i i iy m x i n= + =    (1) 

where   im(x ) is the function of unknown regression and i  are random errors with mean equal to zero and variance 

2

 . The nonparametric regression depend on weighted mean of the dependent variable, the weights are the distance 

between the observations of independent variable measured by a smoothing parameter.  

One of the techniques nonparametric regression estimate is the Nadaraya-Watson (NW) kernel function estimator which is 

more flexible than the other nonparametric techniques and it provides an accurate predictor of observations (Ali, 2019; 

Kyung Lee, Park, & Su Park, 2007; Li & Palta, 2009).  The kernel estimator of f(x) at the point x , in general, is defined 

as 

1

1ˆ ( ) ( ,   )
n

i

i
h

x x
f x K

nh h=

−
=     (2) 

where K represents kernel probability density function centered at each point ix , and the smoothing parameter 0h   is 

known as fixed bandwidth. The NW kernel function estimator with a fixed h  is defined as the following: 
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   (3) 

The NW kernel estimator depends on smoothing parameter h (bandwidth). It controls the amount of curve smoothing 

where large h  value leads to a smooth density estimate (Rice, 1984; Schucany, 1995; Utami, Haris, Prahutama, & 

Purnomo, 2020; Yoon Kim & Park, 2002).  

The optimal bandwidth of the NW kernel estimator is the value which minimized the mean integrated squared error and it 

is obtained by integration the mean squares of errors (IMSE). There are many different methods to select the value of h . 

Among them, in 1981, Friedman and Stuetzle used this strong reparability to identify the components of the nonparametric 

regression model when h  is unknown, and proposed a kernel-based consistent and asymptotically normal estimator 

(Friedman & Stuetzle, 1981). In 1982, the researcher Abramson suggested the law of inverse square root to estimate h  in 

variable kernel density function, which reduced the bias more than fixed h estimator (Abramson, 1982). In 1986, the 

researcher Silverman suggested an adaptation for the kernel function estimator by varying the h  as nonparametric 

estimation depends on geometric mean (Silverman, 1986). In 1987, the researchers Scott and Terrell discussed relationship 

between the biased and unbiased cross-validation and the variable h used instead than the fixed h  in the case of long-tail 

distribution (Scott & Terrell, 1987). There are several authors handling the problem of selection the smoothing parameter, 

such as (Ali, 2019; Chen, 2015; C.-K. Chu & Marron, 1991; C. Chu, 1995; Dobrovidov & Ruds’ko, 2010; Feng & Heiler, 

2009; Francisco-Fernández & Vilar-Fernández, 2005; Gao & Gijbels, 2012; Kauermann & Opsomer, 2004; Koláček & 

Horová, 2017; Lee & Solo, 1999; Leungi et al., 1993; Nychka, 1991; Opsomer & Miller, 2007; Rice, 1984; Schucany, 

1995; Zhang et al., 2008; Zhou & Huang, 2018; Żychaluk, 2014). 

3. Firefly optimization algorithm 

Nature has been an inspiration for the introduction of many meta-heuristic algorithms. Swarm intelligence is an important 

tool for solving many complex problems in scientific research. Swarm intelligence algorithms have been widely studied 

and successfully applied to a variety of complex optimization problems. The firefly algorithm (FFA), is one of the recent 

novel swarm intelligence methods and the most powerful optimization algorithms, which was developed by Yang (2013).  

Firefly algorithm has been proved to be a good performance and the effectiveness for solving various optimization 

problems (Fister, Fister, Yang, & Brest, 2013). The firefly algorithm has been inspired by the simulation of the social 

behavior of fireflies on the basis of the flashing lights or the flash attractiveness. By representing the advantage of some 
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flashing characteristics of fireflies and how fireflies interact with flashing lights, the firefly flash is a signal system which 

used to attract another firefly (Yelghi & Köse, 2018). 

For simplicity in the description and modeling of the FFA, Yang (2013) formulated the following three idealized important 

rules for the protocol to prefer the search process in FFA. The protocol standardizes certain firefly characteristics and 

describes the behavior of artificial fireflies as follows: 

(1) All fireflies are unisex, implying that all the fireflies of a population can attract each other regardless of their sex. 

(2) The degree of the attractiveness of a firefly is proportional to its brightness, therefore for any two flashing fireflies, the 

less bright one will move towards the brighter firefly and the more brightness means the less distance between two 

fireflies. Attractiveness is proportional to the brightness which decreases as the distance increase between tow fireflies. 

If there is no brighter firefly than a particular firefly, it will move randomly. 

(3) The brightness of each firefly is affected or determined by the value of the objective function to be optimized. In the 

maximization problem, the brightness of each firefly can be directly proportional to the value of the fitness function. In 

the case of a minimization problem, the brightness of each firefly is inversely proportional to the value of objective 

function. 

In the implementation of the FFA, each member is called firefly in the swarm. Each firefly represents a candidate 

solution in the dimensional search space. The brighter locations are assumed to represent better solutions. Then, the 

algorithm tries to help fireflies to find these locations in the search space. The firefly's attractiveness is determined by its 

brightness, which in turn is associated with the objective function for a given optimization problem. The brightness 

decreases when the distance between a firefly and the target location increases. The attraction between fireflies is based on 

the differences in brightness. This means that a less bright can move to a brighter firefly by the attraction. If none of the 

fireflies are brighter than a particular firefly, it will move randomly. During the search process and because of the 

attractions among fireflies, fireflies can move towards new locations or positions through the attraction and find new 

candidate solutions. 

Mathematically, assume that there are fn  of fireflies in the swarm (populations size) are randomly distributed in the D-

dimensional search space. During the evolutionary process, each firefly has a position vector denoted as 

 1 2, , ,i i i idx x x= x , where 1, 2,..., fi n=  and d D  is the dimensionality of the solutions.  

The distance between any two fireflies i  and j , at positions ix  and jx  in the search space, respectively, is the 

Cartesian distance which can be calculated using the following equation 

( )
2

1

|| || .
D

ij i j id jd

d

r x x x x
=

= − = −     (4) 

Each firefly has its light intensity or brightness. The brightness value is used to evaluate the goodness of firefly, which is 

affected by the landscape of the optimization problem. The brightness of firefly i  at a particular or current position x can 

be denoted by the objective function value as follows: 

( ) ( )  i iI x f x=     (5) 

The light intensity of the firefly is directly proportional to its brightness and is related to objective values. In comparing the 

two fireflies, both fireflies are attracted, the firefly which has a lower light intensity is attracted toward the other firefly with 

the higher light intensity. The light intensity of a firefly depends on the intensity 0I  of light emitted by a firefly and the 

distance ijr  between two fireflies. Light intensity ( )I r  can be described by a monotonically decreasing function of the 

ijr  which can be formulated as follows: 

2

0
 ( ) ,

r

I I er −=     (6) 

where   is used to control the decrease of the light intensity or brightness an and can be taken as a constant.  

Each firefly has its distinctive attractiveness which indicates how powerful it attracts other members in the swarm. 

Attractiveness,  , is relative, which means that it must be judged by others, and therefore varies with the distance ijr . As 

mentioned earlier, the brightness decreases with the distance from the source and the light is also absorbed by the air, 

therefore the attractiveness must be allowed to vary with differing degrees of absorption (Karthikeyan, Asokan, & 

Nickolas, 2014). Thus, the main form of the attractiveness of a firefly is defined as the following equation: 
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2

0
 ( ) ,

r

er   −=     (7) 

where ( )r  represents attractiveness function of a firefly at a distance, r , and  0  denotes the initial attractiveness of a 

firefly at distance 0r =  and it can be constant. For implementation usually 0  set to be 1 for most problems. 

The fireflies will try to move to the best position. This means that the lower light intensity one will be attracted by the 

brighter one. The location updates for each pair of fireflies i  and j . For each firefly ix , it is compared to other all 

fireflies , 1, 2,...,j fx j n= . If firefly j  at position jx is brighter than firefly i , then ix  will move towards jx  by 

the attraction. The movement is defined as: 

( ) ( ) ( ) ( )( ) ( )
2

1

0        ,
rt t t t t

id id jd id t idx x e x x  
+ −= + − +     (8) 

where t  is the randomization parameter,   is an absorption coefficient which controls the decrease of the light intensity, 

and ( )
0.5)(

t

id rand −= , where rand  is a random number from uniform distribution with [0, 1]. 

4. The proposed method 

The efficiency of NW kernel estimator largely depends on an appropriately choosing the smoothing parameter, h . As a 

result, it is of crucial importance selecting a suitable value of the h . In literature, the most widely used method for 

selecting h  is the cross-validation (CV), which is a data-driven approach (Chen, 2015; Scott & Terrell, 1987). In this 

paper, a FFA is proposed to determine the smoothing parameter in the NW kernel estimator. The proposed method will 

efficiently help to find the best value with high prediction performance. The parameter configurations for our proposed 

method are presented as follows.  

(1) The number of fireflies, is set to 25 and the number of iterations is  
maxt =100 . 

(2) The positions of each firefly are randomly determined. The position of a firefly represents the smoothing parameter, h
. The initial positions of the fireflies are generated from a uniform distribution within the range [0,10].  

(3) The fitness function is defined as  

2

1

1
ˆfitness min ( ) ,

n

i i

i

y y
n =

= −    (9) 

(4) The positions are updated using Eq. (8). 

(5) Steps 3 and 4 are repeated until a maxt  is reached. 

 

5. Simulation results 

To test how well the proposed method performs for different possible mean functions the following study design was 

followed. The comparisons with different used methods, CV, GCV, AIC, and plug-in method (PM) are also conducted. 

Three sizes of samples are taken as: 50,100,150.n =  In addition, the type of kernel is setting as Epanechnikov kernel 

type.  

Case 1:  In the case, we use the regression function 
3 3
(1 ) (0,0.003)i iy x x N= − +    (10) 

The explanatory variable, x is generated from uniform distribution with the range 0 and 1.  

Case 2:  In the case, we use the regression function 
5

sin( )cos(3 ) (0,0.05)i iy x x N  = +    (11) 

The explanatory variable, x is generated from uniform distribution with the range 0 and 1.  

Case 3:  In the case, we use the regression function 

sin(2 ) (0,0.05)i iy x x N = +    (12) 

The explanatory variable, x is generated from uniform distribution with the range 0 and 1.  

Case 4:  In the case, we use the regression function 
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sin(2 ) (0,0.5)i iy x N = +    (13) 

The explanatory variable, x is generated from uniform distribution with the range 0 and 1.  

Case 5:  In the case, we use the regression function 

sin(4 ) (0,0.11)i iy x N= +    (14) 

The explanatory variable, x is generated from uniform distribution with the range 0 and 1.   

The generated data is repeated 500 times and the averaged integrated mean squared error (IMSE) is calculated. The results 

of the used methods are summarized in Tables 1 – 5.  

The results presented in Tables 1 – 5 show that the FFA algorithm yielded higher prediction accuracy than did CV, GCV, 

AIC, and PM methods for the case 1, case 2, case 3, case 4, and case 5. The proposed method, FFA, has superior reduction 

in terms of IMSE. For example, for case 2, the reduction in IMSE using FFA was 5.52%, 5.02%, 5.97%, and 7.84% 

compared with CV, GCV, AIC, and PM methods, respectively.  

With respect to the sample size, there is a decreasing in the IMSE values when the sample size increasing. However, the 

performance of the proposed method, FFA, is still the best among others in all cases.       

Table 1: The average IMSE for the case 1 

Methods n=50 n=100 n=150 

CV 0.2361 0.2175 0.2168 

GCV 0.2365 0.2532 0.2321 

AIC 0.3974 0.3685 0.3366 

PM 0.6224 0.4510 0.4142 

FFA 0.1441 0.1422 0.1107 

Table 2: The average IMSE for the case 2 

Methods n=50 n=100 n=150 

CV 0.2673 0.1312 0.1216 

GCV 0.2651 0.1468 0.1316 

AIC 0.3203 0.2994 0.2596 

PM 0.5758 0.4786 0.4152 

FFA 0.1311 0.1108 0.1138 

Table 3: The average IMSE for the case 3 

Methods n=50 n=100 n=150 

CV 0.2772 0.2502 0.2485 

GCV 0.2606 0.2402 0.2385 

AIC 0.2914 0.2865 0.2493 

PM 0.4254 0.39567 0.3891 

FFA 0.1781 0.1628 0.1381 

Table 4: The average IMSE for the case 4 

Methods n=50 n=100 n=150 

CV 0.3681 0.2916 0.3524 

GCV 0.3587 0.2886 0.3343 

AIC 0.3862 0.3572 0.3061 

PM 0.4154 0.4106 0.4251 

FFA 0.2528 0.2311 0.2101 

Table 5: The average IMSE for the case 5 

Methods n=50 n=100 n=150 

CV 0.0671 0.0627 0.0572 

GCV 0.0558 0.0468 0.0406 

AIC 0.0624 0.0512 0.0424 
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PM 0.1256 0.1124 0.1056 

FFA 0.0315 0.0308 0.0227 

 

6. Real application results 

To investigate the performance of our proposed method in real application, 255 observations are daily taken from 2ed 

January/2019 to 13ed March/2020). This data is related to ASIAcell Communication Company in Iraq. The response 

variable is the number of deals and the explanatory variable is the closed price of the share in Iraqi dinar. The estimated 

IMSE values and the value of the smoothing parameter, h , is reported in Table 6. It is clearly seen from Table 6, that the 

proposed method, FFA, achieved the lowest prediction error. It reduced the IMSE by 5.08%, 4.87%, 3.64%, and 3.67% 

than those obtained by CV, GCV, AIC, and PM, respectively. Figure 1 shows the smoothing curve of the used methods in 

addition to the linear model which is estimated by ordinary least square method (OLS). It is clearly seen that our proposed 

method give a more smooth curve than the others.    

Table 6: The IMSE results of the application data 

Methods h  IMSE 

CV 1.970 0.8547 

GCV 1.851 0.7741 

AIC 1.024 0.6526 

PM 1.051 0.6628 

FFA 0.508 0.4088 

 
Figure 1: The estimated smoothing curve for the real data application over the used methods with the OLS method.  

 

7. Conclusion 

this paper, the problem of selecting smoothing parameter in Nadaraya-Watson kernel nonparametric regression is 

considered. A firefly optimization algorithm was proposed to choose the parameter of smoothing parameter. The results 

obtained from simulation and real data application demonstrated the superiority of the proposed method, FFA, in terms of 

IMSE comparing with other competitor methods. 
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 باستخدام تحسين الخوارزمية المستوحى من الطبيعة  Nadaraya-Watson kernel nonparametric regressionتجانس اختيار المعلمات في 
 

 د زكريا يحيى الجمال   وزينة أمير بشير 
 . العراق ،الموصل  ،جامعة الموصل، كلية علوم الحاسوب والرياضيات ،قسم الاحصاء والمعلوماتية

 
يعتمد تقدير المنحنى بالكامل على معلمة التنعيم. في هذه المرحلة ، يمكن    ،   Nadaraya-Watson kernel nonparametricفي سياق انحدار  :  لاصةالخ

اليراع لاختيار معامل  استخدام الخوارزميات المستوحاة من الطبيعة كأداة بديلة للعثور على الاختيار الأمثل. في هذا البحث تم اقتراح طريقة خوارزمية تحسين  
نواة   انحدار  عالي.  Nadaraya-Watson nonparametricالتنعيم في  تنبؤ  مع  معامل تجانس  العثور على أفضل  في  بكفاءة  المقترحة  الطريقة  . ستساعد 

 .الطريقة المقترحة تم مقارنتها بأربع طرق مشهورة تظهر النتائج التجريبية بشكل شامل تفوق الطريقة المقترحة من حيث القدرة على التنبؤ
 . خوارزمية تحسين اليراع ؛ تجانس اختيار المعلمة.Nadaraya-Watson: مقدر الكلمات المفتاحية


