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 It is well-known that in the presence of multicollinearity, the ridge estimator is an 

alternative to the ordinary least square (OLS) estimator. The generalized ridge estimator 

(GRE) is a generalization of the ridge estimator. However, the efficiency of the GRE 

depends on appropriately choosing the shrinkage parameter matrix which is involved in 

the GRE. In this paper, a particle swarm optimization method, which is a metaheuristic 

continuous algorithm, is proposed to estimate the shrinkage parameter matrix. The 

simulation study and real application results show the superior performance of the 

proposed method in terms of prediction error.  
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1. Introduction 

Regression modeling is a widely applied strategy for studying several real data problems. In the linear regression model, the 

response variable is considered as continuous and reasonably assumed to follow the normal distribution. In linear 

regression models, it is assumed that the correlations among the explanatory variables are not high (Alheety and Kibria, 

2014,Alkhamisi and Shukur, 2007,Dorugade, 2014). However, this assumption is not always held in practice. In the linear 

regression model, the ordinary least squares (OLS) estimator is the best estimator among all linear and unbiased estimators. 

However, under multicollinearity, the OLS estimator becomes unhelpful due to its large variance. The ridge estimator (RE) 

(Hoerl and Kennard, 1970) has been consistently demonstrated to be an alternative to the OLS when multicollinearity 

exists. The RE can shrink all the regression coefficients toward zero to reduce the large variance (Asar and Genç, 

2015,Algamal, 2018). The generalized ridge estimator (GRE) has also been considered as a generalization of the RE. The 

performance of the GRE fully depends on the values of the shrinkage parameter matrix. Accordingly, appropriate choosing 

the shrinkage parameter matrix is an important part of applying the GRE. Numerous approaches are available in the 

literature for estimating the shrinkage parameter (Khalaf and Shukur, 2005,Allen, 1974,Muniz and Kibria, 2009,Kibria, 

2003,Hamed et al., 2013,Alkhamisi et al., 2006,Hefnawy and Farag, 2014). In recent years, numerous nature-inspired 

algorithms have been successfully introduced and applied as random search strategies for solving a number of optimization 

problems. The Particle swarm optimization algorithm is a comparatively recent population-based algorithm that is inspired 

by swarm intelligence. In this paper, the particle swarm optimization algorithm is proposed to estimate the values of the 

shrinkage parameter matrix in the GRE. Our proposed approach will efficiently help to find the best values with high 

prediction accuracy. The superiority of our proposed approach in different simulated examples and a real data application is 

proved. 
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2. Generalized ridge estimator 

Suppose that we have a data set 
1{( , )}n

i i iy =x  where 
iy   is a response variable and 

1 2( , ,..., ) p

i i i ipx x x= x  represents 

a p-dimensional explanatory variable vector. Without loss of generality, it is assumed that the response variable is centered 

and the explanatory variables are standardized.  

Consider the following linear regression model, 

y = Xβ + ε,                            (1) 

where y  is an 1n   vector of observations of the response variable, 1 p
X = (x , ..., x )  is an n p  known design matrix 

of explanatory variables, 1
( ,..., )

p
 β =  is a 1p   vector of unknown regression coefficients, and ε  is an 1n   vector 

of random errors with mean 0 and variance 
2 .  Using the OLS method, the parameter estimation of Eq. (1) is given by 

ˆ .OLS

T -1 T
β = (X X) X y                                                          (2) 

The OLS estimator is unbiased and has minimum variance among all linear unbiased estimators. However, in the presence 

of multicollinearity, the 
T

X X  matrix is nearly singular, which makes the OLS estimator unstable due to the large variance. 

To reduce the effects of the multicollinearity, the RE (Hoerl and Kennard, 1970), which is the most commonly used 

method, adds a positive shrinkage parameter, k , to the main diagonal of the 
T

X X  matrix. The RE is defined as  

                         

                                                                                                                                       (3)   

 

where I  is the identity matrix with dimension p p . The estimator ˆ
REβ is biased but more stable and has less mean 

square error. The shrinkage parameter, k , controls the shrinkage of β  toward zero. The OLS estimator can be considered 

as a special estimator from the RE with 0k = . For a large value of k , the RE yields greater shrinkage approaching zero 

(Yang and Emura, 2017). Rewriting Eq. (1) as the canonical form introduced by [4] , we obtain  

y = Zα + ε                                                                    (4)  

where Z = XW , W  is a p p  matrix such that T T T
Z Z = W X XW  will imply  

1 1( , ,....., )pdiag   =T
Z Z = Λ where 

Λ  is a diagonal matrix with the Eigen values of T
X X and T

α = W β . Then, the OLS estimator of  α  is given by 

                                 (5 )  

 

Therefore the OLS estimator of β  is 

                                                                                                                                                                                                                                 

 

The RE estimator given in Eq (3) is rewritten by as (Hoerl and Kennard, 1970) ) 

 

 where kA = Λ + I .  

Related to Eq. (3) and Eq.(5), the mean square error (MSE) is 

2

2 2

2 2
1 1

ˆ ˆ( )
( ) ( )

p p
j j

RE

j jj j

MSE k
k k

 


 = =

= +
+ +

 β                                                                                                             (8)  

ˆ ˆ .
LS

β = Wα

ˆ
RE k -1 T -1 T
β = (Λ + I) Z y = A Z y

ˆ
RE kT -1 T
β = (X X+ I) X y,

ˆ .
-1 T

LS
α = Λ Z y
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The GRE is suggested by [4] to generalize the ridge estimator. Several researchers deal with the GRE (Loesgen, 

1990,Trenkler and Toutenburg, 1990,Ohtani, 1995). The difference between the RE and the GRE is that there are p  

values of k  for the GRE estimator such that (Hoerl and Kennard, 1970) 

ˆ
GRE

-1 T -1 T
β = (Λ +K) Z y = B Z y                                                                                                                             (9)  

where 1 2
( , ,...., )

p
diag k k k=K  and Β = Λ +K . The MSE of the GRE estimator, which is less than when using the 

RE and OLS, is 
2

2 2

2 2
1 1

ˆ ˆ( )
( ) ( )

p p
j j

GRE j

j jj j j j

MSE k
k k

 


 = =

= +
+ +

 β                                                                                                (10) 

where 
2 ˆ

ˆ
- -1n p


T

OLS
y y -α Zy

= (Hoerl and Kennard, 1970).  

Since the ridge parameter is the key to reducing the multicollinearity, there are several ways to determine this value. 

Researchers suggest several ways to choose the optimal k, such as (Hocking et al., 1976) (HK), (Nomura, 1988) (N), 

(Troskie and Chalton, 1996) (TC), (Firinguetti, 1999) (F), (Alkhamisi and Shukur, 2007) (HSL), (Batah et al., 2008) (SB), 

(Al-Hassan, 2010) (AH), (Dorugade and Kashid, 2010) (DK), (Månsson et al., 2010) (M), (Dorugade, 2014) (D), (Asar et 

al., 2014) (AS) and (Bhat and Raju, 2017) (SV1,SV2). These methods can be defined as: 

2

( ) 2

ˆˆ
ˆj HK

j

k



=

                                 

                                                                                                              (11) 

 
2

2 2 1 2

( ) 2

ˆˆ ˆ ˆ1 1 ( / )
ˆj N j j

j

k k


 


 = + +
 

                                                                             

            (12) 
2

( ) 2 2

ˆ
ˆ

ˆ ˆ

j

j TC

j j

k
k

k



 
=

+

                                                

  

  

  (13) 
2

( ) 2 2

ˆ
ˆ

ˆ ˆ( )

j

j F

j j

k
k

k n p



 
=

+ −

                                        

  (14) 
2 2

12

( ) 2 2

1

ˆ(k )
ˆ ˆ

ˆ( (k ))

p

j jj

j HSL p

j jj

k





=

=

=




                                        (15) 

2 2

12

( ) 2 2
max

1

ˆ(k ) 1ˆ ˆ
ˆ( (k ))

p

j jj

j AH p

j jj

k





=

=

= +




                                  (16) 

2

( ) 2

max

ˆˆ
ˆj D

j

k
k




=

                                                  

 (17) 
2

(SB) 2 2
max

ˆ 1ˆ
ˆ ˆ

j

j

j j

k
k

kk



 
= +

+

                                           (18) 

2

( ) 2

ˆ 1ˆ 0,
ˆ ( )

j DK

j Maxj

p
k Max

n VIF





 
= − 

 
 

                                (19) 
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2

(SV1) 2 2

ˆ 1ˆ
ˆ ˆj

j Max j

p
k



  
= +                                                          

                                                                                                                                                                                         (20) 

( )

2

(SV 2) 22

ˆ 1ˆ
ˆ

2
j

j
Max Min

p
k



  
= +

                                    

                                                                                                                                                                                         (21) 

( ) 2

2 2

1ˆ
ˆ

ˆˆ( )

j M

Max j

Max j

k

n p

 

  

=

− +

                                                                                                                     (22) 

2

( ) 2

ˆ 1ˆ
ˆj AS

jj

k
k




= +                                                                                                                                                         (23) 

3. The proposed methods 

The efficiency of the ridge regression model strongly depends on appropriately choosing the shrinkage parameter. A choice 

of shrinkage parameter that is too small leads to overfitting the GRE, while a shrinkage parameter that is too large shrinks 

β  by too much, making a bias-variance tradeoff. Particle swarm optimization (PSO) is a nature- inspired metaheuristic 

algorithm  that was originally proposed by Kennedy and Eberhart (1995) for solving continuous optimization problems.  

PSO is inspired by the social or collective behavior of animals such as bird flocking and fish schooling. PSO, when 

compared with other computation intelligence-based algorithms, has several advantages, such as simple implementation, 

computationally higher efficiency, fewer parameters to tune, scalability and flexibility, robustness. For instance, compared 

with the genetic algorithm, there is no crossover and mutation genetic operation (Chen et al., 2014,Kiran, 2017,Lin et al., 

2008,Lu et al., 2009,Zhou and Dickerson, 2014).  

PSO performs the searching using a population, which is called swarm, of particles. Each particle has three features: 

(1) position, (2) velocity, and (3) fitness value. In PSO, each particle can be represented as a candidate solution (position) in 

the search space. The particles fly through the search space by their own efforts and in cooperation with other particles, and 

they follow the best solutions they have achieved (local best solutions), as well as tracking the best solutions that they 

found (the best global solution) (Cervantes et al., 2017,Lai et al., 2016,Mirjalili and Lewis, 2013,Wen et al., 2011).  

Mathematically, the search space is assumed to be D-dimensional and there are m  particles in the swarm where 

1,  2 ,d D=  . During the movement, each particle has a position vector  1 2, , ,j pk k k k=   with a velocity vector 

 1 2, , ,k k k kdv v v= v . In the PSO algorithm, the best position, which gives the best fitness value for the particle k , is 

called best previous position and is denoted as  1 2, ,...,k k k kdPbest Pbest Pbest Pbest= . The best position found by 

all particles is called the global best, which is denoted as  1 2, ,...,k k k kdGbest Gbest Gbest Gbest= . In each iteration, 

the PSO algorithm searches for the optimal solution by updating the position and the velocity of the 
thk  particle according 

to the following two equations: 

( ) ( )1

1 1 2 2 ,
t t t t t t

kd kd kd kd kd kdv z v c r Pbest x c r Gbest x
+
=  +   − +   −

                                                                               
 (24) 

1 1
,

t t t

kd kd kdx x v
+ +
= +                                                                                                                                                          (25) 

where t  denotes the iteration in the algorithm, and z  is the inertia weight which is used to balance between the global 

search and the local search. In addition, 1c  (the cognition learning factor) and 2c  (social learning factor) are the 

acceleration coefficients. 1r  and 2r  are random values selected from a uniform distribution with (0,1).  In this paper, a PSO 

algorithm is proposed to determine the shrinkage parameter matrix. The proposed method will efficiently help to reduce the 

MSE. The parameter configurations for our proposed method are presented as follows.  
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1- The number of particles, m , is set to 50, and the number of iterations is  maxt =100 . The acceleration coefficients 1c  

and 2c  are set within the range [2, 4]. The 1c  and 2c  are updated during the iteration according to the following 

equations:  

1 1,min 1,max 1,min

max

( ),
t

c c c c
t

= + −                                                                                                                                               (26) 

2 2,min 2,max 2,min

max

( ).
t

c c c c
t

= + −                                                                                                                                             (27) 

Further, the minimum and maximum values for the inertial weight are min 0.2z =  and max 0.9z = . The inertial weight is 

updated according to the following equation: 

max max min

max

( ).
t

z z z z
t

= − −                                                                                                                                        (28) 

2- The positions of each particle are randomly determined. The position of a particle represents the shrinkage parameters, 

jk . Here, the dimension of each particle is the number of explanatory variables. The initial positions of the particles 

are generated from a uniform distribution within the range [0,100].  

3- The initial velocities of each particle are generated from a uniform distribution within the range [0, 4].  

4- The fitness function which is the MSE as indicated in Eq (10) is calculated. 

5- The velocities and positions are updated using Eq. (22) and Eq. (23), respectively. 

6- Steps 4 and 5 are repeated until a maxt  is reached. 

4. Monte Carlo simulation results  

In this section, a comprehensive simulation study was conducted to evaluate the performance of the proposed methods 

(Alheety and Kibria, 2014,Alkhamisi and Shukur, 2007,Hoerl and Kennard, 1970,Yang and Emura, 2017,Hocking, Speed 

and Lynn, 1976,Troskie and Chalton, 1996,Firinguetti, 1999,Batah, Ramanathan and Gore, 2008,Al-Hassan, 

2010,Dorugade and Kashid, 2010,Månsson, Shukur and Golam Kibria, 2010,Asar, Karaibrahimoğlu and Genç, 2014,Bhat 

and Raju, 2017,Bhat et al., 2016,Bhat, 2016,Hocking, 1976). Following McDonald and Galarneau (1975), the explanatory 

variables with different degrees of multicollinearity are generated by 

2 1 2(1 ) , 1,2,..., , 1,2,..., ,l

ij ij ipx w w i n j p = − + = =                                                                                    (29) 

where 
2  represents the correlation between the explanatory variables, and ij

w  are independent standard normal pseudo-

random numbers. The response variable is generated by 

0 1 1 ... ,i i p ip iy x x   = + + + +                                                                                                                                  (30) 

where i  are independent and identically normal distributed pseudo-random numbers with zero mean and variance 
2 . 

Because the sample size has direct impact on the prediction accuracy, three representative values of the sample size are 

considered: 30, 50 and 150. In addition, the number of explanatory variables is considered as {4,8,12}p  . Further, 

because we are interested in the effect of multicollinearity, in which the degrees of correlation are considered more 

important, three values of the pairwise correlation are considered with {0.90,0.95,0.99} = . Besides, the value of 
2  

is 1. 

For a combination of these different values of , ,n p  , the generated data are repeated 5000 times and the averaged mean 

squared errors (MSE) is calculated as  
5000

1

1ˆ ˆ ˆ( ) ( ) ( ),
5000

T

r

MSE
=

= β β - β β - β                                                                                                                                (31) 

where β̂  is the ridge estimator obtained by the method. In addition, the bias is calculated as 

ˆbias = β - β                                                                                                                                                                (32) 
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The MSE and bias values from the Monte Carlo simulation study are reported in Tables 1 – 3. Several results can be 

obtained as follows:   

1- The simulation results indicate that the PSO method of selecting K  is superior to the other used selection methods for 

all combinations of ,n p , and   in terms of MSE. We can see that the PSO method has smaller MSE and 

significantly lower MSE than others. 

2- It is seen from Tables 1 – 3 that the ˆ
PSOβ  estimator using the PSO method is usually more efficient than the OLS 

estimator for all values of ,n p  and when multicollinearity is high or severe.  

3- In terms of   values, there is an increase in the MSE values when the correlation degree increases regardless of the 

value of n
 
and p .   

4- Regarding the number of explanatory variables, it is easily seen that there is a negative impact of MSE, where there is 

an increase in their values when the p  increases from four explanatory variables to twelve explanatory variables. 

5- With respect to the value of n , the MSE values decrease when n  increases, regardless of the value of  and p . 

6- All the selection methods of K are superior to the OLS estimator in terms of MSE. 

7- According to the bias results, it was clearly seen that the proposed methods yielded smallest bias among the other 

estimating methods.    

Table 1: Average MSE when n=30 

 
Table 3: Average MSE when n=150 

 
Table 4: Average bias when n=30 

 
Table 5: Average bias when n=50 
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Table 6: Average bias when n=150 

 
 

Real application results 

To evaluate the predictive performance of the proposed method and to compare its performance with the other methods 

used in a real data application, the Portland cement dataset is employed. The Portland cement dataset became a standard 

dataset to examine and to remedy multicollinearity (Woods et al., 1932,Chen and Emura, 2017). It was widely used by 

numerous researchers. This dataset comes from an experimental investigation of heat evolved during the setting and 

hardening of Portland cements of varied composition and the dependence of this heat on the percentages of four compounds 

in the clinkers from which the cement was produced. There are 13 observations of heat evolved in calories per gram of 

cement ( y ), tricalcium aluminate ( 1x ), tetracalcium silicate ( 2x ), tetracalcium alumino ferrite ( 3x ), and dicalcium 

silicate ( 4x ). Before fitting the linear regression model, the explanatory variables and the response variable are 

standardized. Then, eigenvalues of X X  matrix are calculated with 
1 26.8284k = , 

2 18.9127k = , 
3 2.2392k = , and 

4 0.0194k =  resulting in a condition number  
1 4 1376. 810/ 8k k = . Thus, multicollinearity exists. As a result, using 

the RE and the GRE will be more suitable than the OLS. The predictive performance for each method used is computed 

using the predicted MSE, 2

1

ˆPMSE (1/ ) ( )
n

i i

i

n y y
=

= − , and the results are given in Table 7. It is apparent from Table 4 that 

there is an improvement of the predictive capability of PSO compared with the other methods used, where PSO 

significantly reduces the the PMSE. The reduction of MSE using PSO was 11.350%, 10.892%, 10.625%, 10.552%, 

10.007%, 10.888%, 9.842%, 11.101%, 9.842%, 11.101%, 9.843%, 10.969%, 9.945%, 10.056%, 10.431%, and 10.213% 

compared with OLS, HK, KN, TC, f, HSL, AH, D, SB, DK, SV1, SV2, AS , and M, respectively.  

Table 7: Real application results for the used methods 

Method PMSE 

OLS 9303.049 

PSO 8247.127 

HK 9255.305 

KN 9227.561 

TC 9220.055 

f 9164.227 
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HSL 9254.874 

AH 9147.469 

D 9277.002 

SB 9147.553 

DK 9263.284 

SV1 9157.882 

SV2 9169.254 

AS 9207.598 

M 9185.278 

1. Conclusion 

In this paper, a new shrinkage parameter selection of the generalized ridge estimator, which depends on employing the 

particle swarm optimization algorithm, was proposed. This proposed method allows us to handle multicollinearity with 

decreasing the variability of shrinkage parameter selection. Simulation and results demonstrate that the proposed method 

outperformed several classical methods. Furthermore, the results proved that the proposed method is more efficient than the 

method of Hoerl and Kennard (1970). 
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 تقدير انكماش مقدر التلال المعمم بناءً على خوارزمية تحسين سرب الجسيمات  

 ل ازكريا يحيى الجم      و       قمر عبد الكريم  

 العراق ، الموصل،جامعة الموصل، كلية علوم الحاسوب والرياضيات ،قسم الاحصاء والمعلوماتية

هو   (GRE) مقدر التلال المعمم .(OLS) خطية متعددة ، يكون مقدر التلال بديلًا لمقدر المربعات الصغرى العاديةمن المعروف أنه في وجود علاقة  :خلاصةال
في هذا البحث ، تم اقتراح   .GRE تعتمد على الاختيار المناسب لمصفوفة معامل الانكماش التي تشارك في GRE تعميم لمقدر التلال. ومع ذلك ، فإن كفاءة

ء الجسيمات ، وهي خوارزمية ميتاهوريستية مستمرة ، لتقدير مصفوفة معامل الانكماش. تظهر دراسة المحاكاة ونتائج التطبيق الحقيقية الأدا  طريقة تحسين سرب
 .المتفوق للطريقة المقترحة من حيث خطأ التنبؤ

 .الجسيمات: علاقة خطية متعددة؛ معلمة الانكماش مقدر التلال المعمم تحسين سرب الكلمات المفتاحية


