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1. Introduction

Linear regression is one of the frequently used statistical methods that have applications in all field of daily life. In a
statistical perspective, the regression analysis is used for studying the dependence relationship between a dependent
(response) variable and a set of independent (predictor) variables (Rawlings et al, 1998). In general, the most popular
method used for regression is ordinary least squares (OLS) for its ease and simplicity. The OLS method is claimed to be
unbiased, efficient and consistent estimator as compared to other linear regression model are satisfied. If the assumption is
violated, the OLS method will no longer produce the least variance, leading to the inefficiency in estimating a model. One
of the assumptions is that there is no exact linear relationship between the explanatory variables (Zahari et al, 2014).
Multicollinearity refers to a situation in which or more predictor variables in a multiple regression model are highly
correlated if multicolinearity is perfect, the regression coefficients are indeterminate and their standard errors are infinite, if
it is less than perfect (Dereny etal, 2011). There are several techniques used for the reduction of multicolinearity problem.
Some of these techniques can be listed as: obtaining more data, the removal of one or more independent variables from the
model, clustering the independent variables, and biased estimation techniques (Tunah and Siklar, 2015).

The ridge regression is the most widely model in solving the multicolinearity problem, and it's an alternative to OLS. The
main advantage of ridge regression method is to reduce the variance term of the slope parameters (Alibuhatto, 2016). The
aims of this study are to study the ridge regression method, which resolves multicolinearity without removing independent
variables from the model but provides biased estimator to study the effect of some meteorological factors on the rainfall.
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2. Theoretical Part
2. 1. Regression Model
Linear regression model is the relationship between a dependent variable and a set of independent variables as
(Olandrewaju et al, 2017).
V=B + XL BiXij+e&, i=1..,nandj=1,...,p ()]

Where; ; is the i*" response variable, X;, X, X, are explanatory variables, ¢; is error term, and o, By, -...., Bp-1) are the
regression coefficients.

In matrix form, the model can be written as:

Y=XB+¢ 2)
Where; Y is (n x 1) vector of observations on dependent variables, X is a (n X p) matrix, € is (n x 1) vector of error
term, and B is a (p x 1) vector of regression coefficients.

The OLS estimate 3 of S is obtained by minimizing the residual sum of squares (Salh, 2014).

Lig? = —XB)(Y —XB) (©)
Then the best linear unbiased estimator of g is
B =XXx)Xy 4
With,
E(B) =8 ®)
Var(B) = a?(Xx)™! (6)
MSE(B) = o?trace (XX )™! = o2 Zfﬂ% )

Assumptions made about the error and the variables:

€ is a random vector.
E(Ei) =0
T
een) = " i
e~NID(0,02I,)
X is non-stochastic matrix.
There is no correlation between the non-stochastic x and the stochastic ¢ , i.e E(Xg;) = 0
7. The x variables are linearly independent, so |XX| # 0
Thus, x matrix hasrankr = (p —1) <n

ouk W dMPE

2. 2. Multicollinearity

Multicollinearity is a statistical tool in which there exists a perfect relationship between the explanatory variables. When
there is a perfect relationship between the explanatory variables, it is difficult to come up with reliable estimates of their
individual coefficients. It will result in incorrect conclusions about the relationship between dependent variable and
explanatory variables (Alibuhatto, 2016).

There are two types of multicollinearity (EI-Sibakhi, 2016):

a. Perfect Multicollinearity
If exist perfect linear relationship among the explanatory variables then it is treated as exact multicollinearity. In case of
perfect multicollinearity the design matrix as data matrix is not of full rank and consequently (XX)~'doesnot exist. In this
case|XX| =0

b. Semi- Perfect Multicollineartity
If the explanatory variables are strongly as highly correlated but not perfectly then it is called semi- perfect
mulitcolinearity. In this case(XX)~! is exist but, with related large diagonal elements. Multicollineartity has several
effects; these are described as follows (Dereny et al, 2011), (El-Sibakhi, 2016):

1. High variance of coefficients my reduced the precision of estimation.

2. Multicollineartity can result in coefficients appearing to have the wrong sign.
3. Estimates of coefficients may be sensitive to particular sets of sample data.
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4. Some variables may be dropped from the model although they are important in the population.
5. The coefficients are sensitive of the presence of small number inaccurate data values.
2. 3. Detection of Multicollinearity
1. Correlation Matrix
Compute the correlation coefficients between any two of the explanatory variables. A high significant value of the
correlation between two variables may indicate that the variables are collinear. This method is easy, but it cannot produce a
clear estimate of the rate of multicollinearity (Alibuhatto, 2016).
2. The Variance Inflation Factor(VIF)
The VIF is computed from the correlation matrix of the independent variables (Rawlings et al, 1998), (Montgomery and

Runger, 2002), (Raheem et al, 2019).

VIF = ——
1—R]-

R]-2 is coefficient of determination in the regression of explanatory variables on the remaining explanatory variables of the
model.
3. Condition Number
The eigen values of the correlation matrix can also be used to measure the presence of multicollinearity. If
multicollinearity is present in the predictor variables one or more of the egien values will be small. Let 4;,4,,43,...., 4,
be the egien values of correlation matrix. The condition number of correlation matrix is defined as:
Jo = Zmax ©)
Amin
If the condition number is less than 100, there is no serious problem with multicollinearity and if a condition
number is between 100 and 1000 implies a moderate to strong multicollinearity. Also, if the condition number
exceeds 1000, severe multicollinearity is indicated (Alibuhatto, 2016).
4. Eigen structure of XX , Let 4;,1,, 23, ...., A, be the egien values of XX .when at least one eigen values is close to
zero, then multicollineartity is exist (Dereny et al, 2011).
5. Checking the relationship between the F and T test might provide some indication of the presence of
multicollinearity. If the overall significance of the model is good by using F- test but individually the coefficients
are not significant by using T- test, then the model might suffer from multicollinearity (EI-Sibakhi, 2016),

(Raheem et al, 2019).

J=12,....,p—1 (8)

6

2.4. Ridge Regression
Ridge regression represents one of the methods which deal with multicollinearity problem (Kamel and Aboud, 2013).

A possible remedy to this problem is the ridge estimator suggested by Hoerl and Kennard (Gullkey and Murrhy, 1975)
represented it in 1970 (Kamel and Aboud, 2013). This reduces the variance of the estimates at the expense of introducing
some degree of bias. This is accomplished by adding a small positive number, k, to each of diagonal elements of correlation
matrix. The ridge estimator is shown as follow (Fitrianto and Yik, 2014).
B r=XX+kDXY (10)
Where, the | denote an identity matrix and k is ridge parameter.
The ridge regression estimator has several properties, which can be summarized as follow:
E(Br) = (XX + k) E(XY)

= (Xx + k1) (XX)E(B)

= A.B (11
Where

L -1\

A= (1+ k(%)) (12)

V(B) = (XX + ki) XX(XX + kI) o2

= O’zAk(XX)_lAk (13)

53



Iragi Journal of Statistical Sciences, Vol. 17, No. 2, 2020, Pp (51-57)

Where, B is a biased estimator, but reduce the variance of the estimate, and By is the coefficient vector with minimum
length. The MSE of By is given by:

MSE Bg = E[( By — B)(Bry — B)

= o2trace [A(XX) " Ad+ B (- AU — A B
=023 sk B (XX + k1) B (14)
3. Application Part

The data was obtained from the meteorological directorate of Sulaimani for the period (Jan. 2012- Aug. 2017) in order to reach
an appropriate model, have been used NCSS19 and SPSS22.

The data that is including one response variable (Y) and seven explanatory variables (X;):
Y = Rainfall
X, = Average Temperature
X, = Relative Humidity
X3 = Wind Speed
X, = Average Vapors
X5 = Sunshine
X, = Station Pressure
X, = Soil Temperature
Now since some of the variables are significantly related as shown in table (1).The results of the correlation matrix above,
showed a highly significant possible relationships between variables. These results showed that there is presence of

multicollinearity among these independent variables.

Table 1: Correlation matrix of the variables

Variables X, X, X5 X, X5 X X y
X, 1
X, -893" |1
X 174 -171 1
X, .854™ -.624™ | .201 1
Xs .846™ S777TT | 321 678" 1
X -564™ | 566" 332" =347 | -3437 |1
X, .932™ -8277 | .057 .804™ 748" -522" |1
y -665™ | .635™ -.159 -526™ | -.636" | .348™ | -.596" 1

** Correlation is significant at the 0.01 level.

The existence of multicollinearity was investigated using variance inflation factor (VIF) and condition number. The VIF for
all independent variables are as follow:
VIF(X,) = 36.854,VIF(X,) = 7.781,VIF (X;) = 1.70,VIF(X,) = 6.56,VIF (Xs) = 4.533, VIF(Xs) = 2.529,
VIF(X;) = 8.959
The result of VIF revealed presence of multicollinearity at VIF(X,) is greater than 10. This result confirmed a high level of
multicollinearity among the independent variables.
The eigenvalues of the correlation matrix as follow:

A1 = 4.545, 1, = 1.344, 1; = 0479, 1, = 0.311, 15 = 0.202, A¢ = 0.097, 1, = 0.021

The condition number () = i"ﬂ =215.44> 100

min

The results also indicate the presence strong multicollinearity between variables. To estimate B coefficients with the
minimum variance it is need to resolve this multicollinearity. The parameter estimations (Bgg) calculated with k in the
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range of [0, 1] in order to see the effects of multicollinearity, trying to resolve with ridge regression technique, on the
coefficients B are given in table (2).

Table 2: Standardized ridge regression coefficients and max VIF.
K X, X, X3 X, X Xe X, Max VIF

0.000 -.539 0.151 0.024 0.052 -0.214 | -0.038 0.129 36.854
0.001 -521 0.155 0.023 0.047 -0.217 | -0.035 0.123 33.601
0.002 -0.505 | 0.159 0.022 0.042 -0.219 | -0.033 0.117 30.761
0.003 -0.489 | 0.162 0.021 0.038 -0.221 | -0.031 0.112 28.267
0.004 -0.475 | 0.165 0.021 0.034 -0.223 | -0.029 0.107 26.066
0.005 -0.463 | 0.168 0.020 0.030 -0.225 | -0.028 0.102 24112
0.006 -0.451 | 0.171 0.019 0.027 -0.227 | -0.026 0.098 22.371
0.007 -0.439 | 0.173 0.018 0.024 -0.228 | -0.025 0.094 20.812
0.008 -0.429 | 0.175 0.018 0.021 -0.229 | -0.023 0.090 19.412
0.009 -0.419 | 0.177 0.017 0.018 -0.231 | -0.022 0.086 18.148
0.010 -0.410 | 0.178 0.016 0.016 -0.232 | -0.020 0.083 17.004
0.020 -0.344 | 0.190 0.011 -0.001 | -0.239 | -0.011 0.055 9.767

0.030 -0.304 | 0.194 0.006 -0.012 | -0.241 | -0.004 0.035 6.343

0.040 -0.276 | 0.196 0.003 -0.019 | -0.241 | 0.000 0.020 4.456

0.050 -0.256 | 0.197 0.000 -0.024 | -0.242 | 0.004 0.009 3.307

0.060 -0.241 | 0.196 -0.002 | -0.028 | -0.241 | 0.008 -0.000 | 2.860
0.070 -0.230 | 0.195 -0.005 | -0.031 | -0.240 | 0.010 -0.008 | 2.546
0.080 -0.220 | 0.194 -0.007 | -0.034 | -0.238 | 0.013 -0.015 | 2.285
0.090 -0.212 | 0.193 -0.009 | -0.036 | -0.236 | 0.015 -0.021 | 2.065
0.100 -0.206 | 0.192 -0.010 | -0.038 | -0.234 | 0.017 -0.027 | 1.878
0.200 -0.172 | 0.178 -0.021 | -0.051 | -0.232 | 0.029 -0.058 | 1.007
0.300 -0.158 | 0.168 -0.027 | -0.058 | -0.212 | 0.036 -0.072 | 0.680
0.400 -0.149 | 0.159 -0.030 | -0.063 | -0.196 | 0.040 -0.080 | 0.515
0.500 -0.143 | 0.152 -0.031 | -0.067 | -0.174 | 0.042 -0.084 | 0.421
0.600 -0.138 | 0.147 -0.032 | -0.069 | -0.166 | 0.044 -0.087 | 0.362
0.700 -0.134 | 0.142 -0.032 | -0.071 | -0.159 | 0.045 -0.088 | 0.316
0.800 -0.131 | 0.137 -0.082 | -0.072 | -0.153 | 0.046 -0.089 | 0.279
0.900 -0.128 | 0.133 -0.032 | -0.072 | -0.147 | 0.046 -0.090 | 0.248
1.000 -0.125 | 0.129 -0.032 | -0.073 | -0.142 | 0.046 -0.089 | 0.223

The regression coefficients and standard errors of these coefficients can be summarized in table (3), by using both OLS and
RR methods to analyze the data, we get the following results.

Table 3: Regression coefficients and standard errors

Independent Ridge Least Square | Ridge Least Square
variable Coefficient Coefficient Standard Standard
Error Error
intercept 204.995 428.476
X, -2.544 -3.986 1.977 3.821
X, 0.779 0.621 0.735 0.975
X5 1.261 2.804 11.906 12.688
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X, -0.053 1.604 4.843 6.701
X5 -6.902 -6.195 4.843 5.239
Xg -0.101 -0.346 1.091 1.234
Xg 0.538 1.266 1.909 2.489

In the study for (Jan. 2012- Aug. 2017) period, ridge parameter k was (0.02) and the ridge regression, which indicates the
effects of independent variables to the rainfall in Sulaimani, is estimated as

y; = 204.995 — 2.544X, + 0.779X, + 1.261X; — 0.053X, — 6.902X; — 0.101X, + .538X,
And ordinary least square model, is estimated as
y; =228.476 — 3.986X; + 0.621X, + 2.804X; — 1.604X, — 6.195Xs — 0.346X, + 1.266X,

Table 4: Analysis of variance for k = 0.02

0.5V D.F Sum of Mean F — Ratio | P
Squares Square — value
Intercept 1 250937.5 250937.5
Model 7 190049.7 27149.96 9.0330 0.00*
Error 73 219412.1 3005.645
Total (Adjusted) 80 409461.8 5118.272

Mean of dependent variable 55.659

Root mean square error 54.824
R — Squared 0.4641
Coefficient of variation 0.985

** The result is significant at the 0.01

The root mean squares error of regression coefficients for RR and OLS methods are as follow:

RMSE (Bgrg) = 54.824, RMSE(Bos) = 55.543
And the coefficient of determination (R?) for each model, we obtain the following result:

R2(RR) = 0.464 , R2(OLS) = 0.419

We make a comparison between ridge regression and ordinary least squares. We noted that ridge regression model is
better than ordinary least square model when the multicollinearity problem is exist because it has smaller mean square
errors of estimators, smaller standard deviation for all estimators and has large coefficient of determination.

4. Conclusions

According to the results of this study the multicollinearity was detected, because variance inflation factor for X; equal
(36.854) greater than 10 and condition number equal (215.44) greater than 100, this confirmed that the multicollinearty
problem is existing. The most direct variables affecting the amount of rainfall are the average temperature which affects (-
0.665), followed by sunshine that affects (-0.636), then relative humidity (0.635), then soil temperature (-0.596), and then
other meteorological variables. The (k=0.02) value is the optimal value that resolves the multicollinearity problem. The
ridge regression model is better than ordinary least square model when the multicollinearity problem is exist, because it has
smaller mean square errors of estimators, smaller standard deviation for all estimators and has large coefficient of
determination.
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