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 Categorical and ordered variables are commonly used in many scientific researches. 

Researchers often use the ML method, which assumes a multivariate normal distribution, 

and this is not true with categorical data because the normal state assumption is violated 

when a Likert scale is used which leads to shaded results. In this research, it has been 

suggested the robust MLR method with covariance matrix of the sample which deals with 

the data as it is a continuous data especially when the Likert scale is five or above.  It has 

been suggested a method for reducing the error by linking error measurement, where a 

link was performed between three standard errors, and through the fit  indices, it was 

obtained a good result in reducing the standard error of capabilities and improving the 

quality of fit indexes.  It has been also used two of the robust methods, WLSMV method 

which known as RDWLS method, and ULSMV method which known as RULS method, 

use a polychoric correlation, each two methods deal with the data as it categorical.  This 

research also included a comparison between the robust estimation methods ML , MLR , 

WLSMV and ULSMV and study its effects on the population corrected robust model fit 

indexes , and then select the best method for dealing with the categorical ordered data . 

The results showed a superiority of the robust methods in comparison with other methods, 

where it showed a robust corrections in the standard errors by using the polychoric 

correlation coefficient matrix, in addition to robust correction of the chi square. In addition 

of that, the fit indices is replaced by the robust fit indexes of chi- square robust, TLI, CFI 

and RMSIA. 
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1. introduction 

Many scientists or researchers have discussed different estimation methods for modeling structural equations, where   

Assumed theoretical models include free parameters that we need to estimate, including modeling latent factors, 

measurement errors, and factor correlations if it is a Measurement model. If the model is structural, the estimated 

parameters reflect the correlations between basic independent variables and the paths that link the complete independent 

variables. The statistical methods that social scientists often use are generally called the first generation techniques. 

Which involves regression-based approaches such as multiple regression, logistic regression and variance analysis, other  

tools such as first generation exploratory and confirmatory component analysis, cluster analysis and multidimensional 

scaling techniques. Nevertheless, many researchers have more increasingly turned to second-generation approaches over 

the past 20 years to resolve the shortcomings of first-generation methods. researchers introduce non-observable variables 

or Latent variables that are evaluated indirectly by observed indices. We also make measurement errors in measured 

variables easier to account for. 
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2. objective of research 

Using robust methods to estimate the parameters in SEM when the data are in ordinal categorical and no normal 

distribution.Choosing the best way for deal with the ordinal categorical data when we have a five- Likert scale through 

the estimator that deal with the data as it is a continuous and the robust estimator that deal with the data as it is an ordinal 

categorical. Study the correcting estimator of robust methods. Measuring the impact of the estimation methods on 

conformity fit indicators when using the robust Chi Square Correction for Muthen (2010), the corresponding  fit 

indicators for each CFI, TLI, RMSEA are all dependent on the Chi Square robust and are replaced by the new Chi-

Square value, the fit indicators are called robust model fit index, and thus it is compared The effest of robust estimation 

methods on the robust fit indicators.  Suggesting a method to reduce the error by making a correlation between the 

standard errors of the variables, where as the fit indicators give several suggestions to improve the fit of conformity, and 

a variation was made between covariance  Z62 ~~ Z72 and Z92 ~~ Z102 and Y11 ~~ Y21 

3. Ordered Categorical Variables 

Ordered categorical variable involves more than two categories. Pearson (1901) has a long history of analysis and work 

of polychoric and polyserial correlations, (Li, Li and Li, 2014). When the data is ordered and categorical, the association 

measures differ from those for continuous variables. A common definition for ordered categorical variables is that an 

ordered categorical variable is classified into the observed ordinal variable through applying a number of thresholds.The 

relationship is called tetrachoric correlation with two underlying continuous variables, while the calculated variables are 

binary. The resulting correlation is called polychoric association, if the calculated variables have more than two classes. 

One way in which observed ordered categorical results occur by dividing a continuous, normally distributed latent 

response variable (y*) into differentcategories (e.g., Bollen, 1989). Thresholds (t) are the points which divide the 

continuous latent response variable (y*) into a set number of categories (c) where the total number of thresholds is equal 

to the number of categories less one (c – 1).where 𝜏0 = −∞ and   𝜏𝐶 = ∞ is The relationship between a latent response 

distribution, y*, with an observed ordinal distribution, y, is formalized as    𝑦 = 𝑐,   if    𝜏𝑐 < 𝑦∗ < 𝜏𝑐+1 

The observed ordinal value for y changes if a threshold on the latent response variable y * is exceeded . For example, if a 

Likert scale has five response choices, it will require four threshold values to divide y * into five ordered categories. The 

ordinal data (y) observed is thought to be t 

𝑦

=

{
 
 

 
 
1 if𝑦∗ ≤ 𝜏1
2 if𝜏1 < 𝑦

∗ ≤ 𝜏2
3 if𝜏2 < 𝑦∗ ≤ 𝜏3
4 if𝜏3 < 𝑦∗ ≤ 𝜏4
5 𝑦∗ > 𝜏4 }

 
 

 
 

                                                                                                                                                                     (1) 

Usually, polychoric correlations are computed using the two-stage method Olsson (1979) defined. (Flora and Curran, 

2004) (Course, 2013) 

4. Building structural model  

The fundamental building blocks of SEM analyzes are implemented using a sequential series of five phases or processes: 

model definition, model identification, model estimation, model checking and model adjustment. Such fundamental 

building blocks are utterly necessary for SEM models to be carried out. Wang (2020) 

4.1 Modeling of Structural Equation (SEM)  

SEM of two basic sets of models: the measuring model and the model structure , uses the confirmatory factor analysis          

( CFA) to form the latent variables (factors) and adjust the measuring error of the indicator . The exogenous indicator x 

measurement model and the endogenous indicators y can be described as 

x = Λx𝜉 + 𝛿

𝑦 = Λ𝑦𝜂 + 𝜀
                                                                                                                                                                                     (2) 

The structural model is defined as 

n = Bn + Γ𝜉 + 𝜁                                                                                                                                                                                   ( 3)                        
            where 𝜉  and 𝜂 are Described as the latent variables vectors given above, B is the 𝑚 ×𝑚   matrix of  𝑚2  
Coefficients of regression between the latent endogenous variables, and 𝚪 is the 𝑚 × 𝑛   Coefficients of SR regression 

matrix among latent endogenous and exogenous variables, 𝜁 is the  𝑚 × 1   vector with 𝑀𝑁𝑁(0,Ψ) observed residual  𝜁  

               The covariance matrix is obtained as follows  

Σ(𝜃) = [
Λ𝑦(I − B)

−1[ΓΦΓ′ + Ψ](I − B)−1Λ𝑦
′ + Θ𝜀 Λ𝑦(I − B)

−1ΓΦΛ𝑥
′

Λ𝑥ΦΓ
′(I − B)−1Λ𝑦

′ Λ𝑥ΦΛ𝑥
′ + Θ𝛿

]            (4) 

  

Therefore the matrix of covariance was proven. (Timm, no date) . 
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4.2 Estimation of Model Parameters 

Estimation is a technique for calculating unknown parameters by optimizing the basic fit function consisting of the 

hypothesized model and the data observed, Estimation is basically the most important aspect for  analysis including 

methods  estimation  following 

4.2.1 Maximum likelihood function for SEM (ML) 

Maximum Likelihood (ML) is the most commonly used fit function for structural equations modeling . Almost every 

software programs uses ML as their main estimator . This approach , leads to estimates of the parameters which increase 

the likelihood to  obtaining the covariance matrix empirical S.  from  implied covariance matrix  model 𝚺(𝜽). The 

minimized log Likelihood  possibility function log L is (Bollen, 1989) In this case, MLE function can be defined as in 

equation (5). 

𝐹𝑀𝐿(𝜃) = ln |Σ| + tr (𝑆Σ
−1) − ln 𝑆 − (𝑝 + 𝑞)                                  (5) 

  Where q is X variable number and p is Y variable number.  Where  𝜃 is a parameter vector.  Σ
^

 is a covariance matrix 

model implied .  𝐹𝑀𝐿 is The fitting function value measured at the estimates final.  |Σ|  determinant.  tr is the trace of a 

matrix. (Bollen, 1989) , and Standard errors are the square roots of the diagonal components of the approximate 

asymptotic covariance matrix from FML under the multivariate normality assumption: 

acov (𝜃
^

) = [𝜀 (
∂2𝐹

∂𝜃 ∂𝜃′|𝜃 = 𝜃0
)]

−1

= 𝑛−1(Δ′Γ−1Δ)−1                                                                                                                 (6) 

where     Δ = (∂𝜎(𝜃)/ ∂𝜃′)|𝜃=𝜃0  Is the model's partial derivatives matrix as respects the parameters. The square roots of 

the diagonal components then the standard errors.    Estimates of parameters provided by ML are desirable asymptotic, 

such as unbiased, consistency and efficiency in addition the test statistics which use Wishart's probability are described 

as 

TML = (𝑁 − 1)FML,     𝑑𝑓 =  𝑝
∗ − 𝑞 ,                                                                                                                                 (7) 

or  follows a 𝜒2distribution with 𝑝∗ − 𝑞 degrees of freedom, where  𝑝∗ represents  the number of non-duplicated elements 

in the observed covariance matrix 𝑝∗ = 0.5𝑝(𝑝 + 1) , whiel   𝑞 the number of unknown parameters. (Crisci, 2012)    

(Bollen, 1989) 

4.2.2. Robust Maximum likelihood function for SEM (MLR) 

There are two deal methods for non-normal continuous Ordinal data: maximum probability robust (MLR)  (Satorra and 

Bentler, 1994),  and weighted least square (WLS) (Browne, 1984). WLS is not advised because its weight matrix 

requires large sample sizes. MLR is a way of using an asymptotic matrix with covariances. It produces less biased 

standard errors and works well when dealing with various sample sizes and non-normality degrees. Ordinal measured 

variables are seldom distributed normally, but often display non-normality in the context of Asymmetrics to a certain 

degree and showed that in applied studies non-normality in the shape of distribution Asymmetrics (due to Categorical 

Variables) was very popular.(Micceri, 1989) 

Estimates of the parameters derived with ML are not effective   asymptotically as long as assumption of normality is not 

lasting. The Cov()ML in equation (16) not consistent with both asymptotic covariance matrix, resulting in incorrect 

standard estimates of errors.. (Yuan, Bentler and Zhang, 2005) . Estimated parameters using MLR are similar with those 

calculated using ML, while the chi-square function and standard parameter-related errors are modified to be robust to 

non-normal results. If the model is not specified or data is not normal, the correction of SB scaling (Satorra & Bentler, 

1994) and (Yuan, Bentler and Zhang, 2005)Asparouhov and Muthén (2005) rescues 𝑇𝑀𝐿 by 

𝑇𝑀𝐿 =
  𝑝∗−𝑞 

𝑡𝑟(𝑈Γ∗)
𝑇𝑀                                                                                                                                                                   (8) 

𝑈Γ is  the weights of the matrix that given by the eigenvalues . 

 Where 𝑈 = 𝑊−1 −𝑊−1Δ(Δ′𝑊−1Δ)−1Δ′𝑊−1,  W = D′(Σ(𝜃
^

)−1⊗Σ(𝜃
^

)−1)D Is  the usual theoretical weight matrix; D 

is the matrix of duplication; and Γ is either the data kurtosis matrix or a distribution-free approximation of the sample 

covariance matrix. (Browne, 1984). 

There is always a need to rescalue the standard errors. Note that the parameter covariance matrix under the multivariate 

normality assumption is defined by Equation (16), whereas the robust parameter covariance matrix has a sandwich-like 

form under non-normality, as shown in the Equation (9) Asparouhov and Muthén (2005) 

cov (√𝑁𝜃
^

) = (Δ
^
′W−1Δ

^

)−1Δ
^
′W−1Γ

^
∗W−1Δ

^

(Δ
^
′W−1Δ

^

)−1                                      (9) 

4.2.3. Diagonally weighted squares and Robust DWLS Robust Corrections to Standard Errors and Test Statistics 

The WLS estimator's statistical requirements make it an impractical alternative to treat ordered categorical data when an 

incredibly broad sampling size is accessible (i.e. a complete asymptotic covariance matrix is challenging to quantify and 

invert). The estimate of Diagonally WLS (DWLS) was developed to address the limitations of full estimate of the WLS. 

Specifically, by decreasing the statistical sensitivity associated with the complete WLS estimator, DWLS eliminates the 
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need for a large sample size DWLS may also incorporate scaling similar to the S – B scaling approach that results in 

robust DWLS estimation or WLSMV (Course, 2013) The general form of the DWLS fit function is: 

FDWLS = (S − 𝜎(𝜃))
𝑇(𝑊𝐷)

−1(𝑆′ − 𝜎′(𝜃))                                                                                                                    (10) 

In ordinary data, one technique is to fit the SEM model with the polychoric correlation matrix rather than the sample 

covariance matrix called cat-WLS. 𝑊𝐷 = diag(Γ
^
∗)   includes only diagonal elements of a polychoric association and 

threshold projections approximate asymptotic covariance matrix.   Therefore, The estimated asymptotic covariance 

matrix of the parameter calculations provides robust correction of standard errors 𝜃. for D-WLS estimation (Muthén, du 

Toit, & Spisic, 1997) 

acov(𝜃
_
)DwLs = 𝑁

−1(Δ′WD
−1Δ)−1Δ′WD

−1Γ
^
∗WD

−1Δ(Δ′WD
−1Δ

^

)−1                                                                                       (11) 

Asparouhov and Bengt Muthén (2010)  proposed a new way to compute the mean- and variance-adjusted 𝜒2  (denoted as 

𝑇WLSMV). The method of estimating this correction is called WLSMV or R-DWLS 

𝑇WLSMV = 𝑎𝑇DWLS − 𝑏                                                                                                                                                     (12) 

Where  𝑎 = √
𝑑𝑓

tr [(UΓ
^
∗)2]
   , and     𝑏 = 𝑑𝑓 − √

𝑑𝑓[tr(UΓ
^
∗)]2

tr [UΓ
^
∗UΓ

^
∗)]

 

4.2.4. Unweighted squares and RULS Robust Corrections to Standard Errors and Test Statistics 

the ULS is approach of the necessity that all variables observed be on the same scale. One benefit is that the ULS 

approach does not need a positive-definite covariance matrix, including does not require distributional 

assumption.)(Kline, 2015) (Nalbantoğlu Yılmaz, 2019).  Cat-ULS are the approaches that better work in small and 

medium samples. It is  also minimizes squared model residuals; , it uses the matrix of identity as the matrix of weight  

W=I . Recent data indicates parameter estimates for cat-ULS and cat-DWLS is equal with cat-ULS or better performing 

(Forero, Maydeu-Olivares, & Gallardo-Pujol, 2009); (Yang- Wallentin et al., 2010) (Savalei and Rhemtulla, 2013) . Let r 

be the 
1

2
𝑝(𝑝 − 1) × 1Polychor correlation vector estimated from the categorical data observed The cat-ULS parameter 

estimates𝜃
^

 a saturated threshold structure by minimizing the fit  can be represented as follows  

𝐹UIS = (𝑟 − 𝜌(𝜃))′(𝑟 − 𝜌(𝜃))                                                                                                                                        (13) 

       Robust correction of standard errors is taken out in the estimated parameter estimates asymptotic covariance matrix 

for ULS calculations (Muthén, 1993; Satorra & Bentler, 1994). (Li, 2016) 

aCov(𝜃
^

_
)ULS = 𝑁

−1(Δ
^
′Δ
^

)−1Δ
^
′Γ
^
∗Δ
^

(Δ
^
′Δ
^

)−1                                                                                                                       (14) 

           Asparouhov and Muthen (2010) a new approach has been proposed 'to introduce a second order adjustment, one 

that doesn't change the degrees of freedom of the model. Under this approach, the Robust  mean- and variance-adjusted 

statistics based on the Reliable Cat-ULS estimator are as follows: ULSMV 

𝑇ULSMV = 𝑎𝑇ULS − 𝑏                                                                                                                                                        (15) 

Where           𝑎ULS = √
𝑑𝑓

tr (𝑈
^

UISΓ
^
∗ 𝑈
^

UISΓ
^
∗)
         , 𝑏ULS = 𝑑𝑓 − 𝑎UIS tr (𝑈

^

UISΓ
^
∗)          

(Yang-Wallentin, Jöreskog and Luo, 2010) (Xia and Yang, 2018) 

4.3 Model evaluation 

         A main feature of SEM is the performance of an overall model fit test to the basic hypothesis,Σ(θ)=Σ , the degree 

for which the model estimation variance covariance matrix  Σ  ̂   differs with the sample variance covariance matrix 

observed S  .  However , If the model-estimated variance covariance matrix, Σ̂, is non significantly different with the 

observed data covariance matrix, S, then  we can say the model fits the data well, otherwise,  the null hypothesis was 

rejected . Bollen 1989; Jöreskog and Sörbom 1989; Bentler 1990) The estimation of the all model fit will be performed 

before the parameter estimates are interpreted. Any assumption from the sample estimation may be misleading without 

testing the model fit Numerous model fit indices been have developed to determine the closeness of S to Σ̂. . 

(Bollen,1989) 

4.3.1   Comparative fit index (CFI)  

 (CFI)  for  Bentler (1990) compares the defined fit model with the null model that assumes no covariances among the 

observed variables. This estimate is based on the non-centrality parameterd 𝐷 = 𝜒2 − 𝑑𝑓   df where df is the model's 

degrees of freedom. as the following  format     

𝐶𝐹𝐼 =
𝑑𝑛𝑢𝑙𝑙−𝑑𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑

𝑑𝑛𝑢𝑙𝑙
                                                                                                                                                         (16) 

where d null and d specified are the rescaled non-centrality parameters for the null model and the specified model, 

respectively , A value of more than 0.90 indicates a good fit.   Schumacker and Lomax, 2010) 
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4.3.2.  Tucker Lewis index (TLI)  

(TLI) for (Tucker and Lewis, 1973 ) is also one way to compare the goodness of fit  a specified model . and it is defined 

as 

𝑇𝐿𝐼 =
(
𝜒null
2

𝑑𝑓null
−
𝜒specificd
2

𝑑𝑓specificd
)

(
𝑥null
2

𝑑𝑓null
−1)

                                                                                                                                                     (17) 

where 𝜒2 null ∕ df null and 𝜒 2 specified ∕ df specified  ratios of 𝜒 2 statistics to the degrees of freedoms of the null model 

and ratios of 𝜒 2 statistics to the degrees of freedoms the specified model. A higher value close to one indicates a good fit 

.Wang (2020)  

4.3.3. Root Mean Square Error of Approximation (RMSEA) Index  

RMSEA by ( Steiger & Lind, 1980)  is an indicator of the difference between the covariance matrix with the degree of 

freedom found , and the assumed covariance matrix indicating the model (Chen, 2007) As for the cut-off limits, the value 

is 0.08 or less indicates good fit indicators. The fit index is calculated the following way 

RMSEA𝑀𝐿,𝑛 = √𝑚𝑎𝑥(0,
𝐹
^

𝑀𝐿,𝑛

𝑑𝑓
−

1

𝑛−1
)                                                                                                                              (18) 

     where  𝐹
^

𝑀𝐿,𝑛  indicates the fit function is minimized and n indicates the sample size 

(Schermelleh-Engel, Moosbrugger and Müller, 2003). In above equation RMSEA provides better results when we 

increases   the sample size compared to the smaller sample sizes . The term [1/(n – 1)] is asymptotically closer to zero 

when the sample size becomes big (Rigdon, 1996). This test, as described here, is based on a non-centrality parameter: 

RMSEA𝑀𝐿 = √max(0,
𝑇𝑀𝐿,𝑛−𝑑𝑓

(𝑛−1)𝑑𝑓
) = √max(0,

𝜆
^

𝑛

(𝑛−1)𝑑𝑓
)                                                                                                    (19) 

where 𝜆
^

𝑛 = 𝑇𝑀𝐿,𝑛 − 𝑑𝑓 is the rescaled non-centrality parameter  a CI for The parameter Non centrality is acquired by 

obtaining the value  𝜆
^

.05such that TML;n is the 95th percentile of the chi-square distribution noncentral unter; 

𝜒2(𝑑𝑓, 𝜆
^

.95)and 𝜆
^

.05such that 𝑇MLn, is the 5th percentile of the chi-square distribution noncentral under ; 

𝑥2(𝑑𝑓, 𝜆, 05)The RMSEA CI limits are defined by 

𝑅𝑀𝑆𝐸𝐴𝑀𝐿𝑛,𝑙𝑜𝑢𝑒𝑟 = √max(0,
𝜆
^

05

(𝑛−1)𝑑𝑓
) , RMSEA𝑀𝐿,𝑛,𝑢𝑝𝑝𝑒𝑟 = √max(0,

𝜆
^

,95

(𝑛−1)𝑑𝑓
)                                                          (20) 

(Browne and Cudeck 1993) wang( 2020 )(Brosseau-Liard, Savalei and Li, 2012) 

4.3.4.  Standardized , Root Mean Square Residual (SRMR)  

By (Bentler, 1995)The (SRMR) is an estimate of the standardized average residuals between both the covariance 

matrices observed and the hypothesized (Chen, 2007). indicates good fit for this indicator is 0.05 or less. They can define 

as: 

𝑆𝑅𝑀𝑅 =
√2∑

𝑝
𝑖=1

∑𝑖𝑗=1 (
𝑠𝑖𝑗−𝜎

^
𝑖𝑗

𝑠𝑖𝑖𝑠𝑗𝑗
)2

𝑝(𝑝+1)
                                                                                                                                 (21) 

Where 𝑠𝑖𝑗 is the covariance observed between the two variables , ˆij represents The corresponding item reproduced in 

the matrix of covariances, while  sii and s jj are observed standard deviations  (Kline, 2011; Schermelleh-Engel and 

Moosbrugger, 2003)  

4.4 Robust Model-fit Indexes with methods robust estimation 

As RMSEA, CFI and TLI are all properties of chi-square statistics due to the finite sample sizes, it is conceptually 

important to replace uncorrected  standariz chi-square statistics by robust chi-square statistics when applying them. 

WLSMV WLSM or ULSMV. The model-fit indexes so defined are called population-corrected (PR) model-fit indexes 

and are named  as RMSEAPR, CFIPR, and TLIPR. (Brosseau Liard et al., 2012) 

The chi-square, corrected by mean and variance, is given by  𝑇WLSMV =
1

𝑎𝑛
𝑇ML + 𝑏    (Asparouhov & Muthen, 2010) For 

either WLSMV or ULSMV let T, d, a, and b be the robust chi-square statistics, the degrees for freedom in the model, the 

scale factor and the shift factor. The design-fit indices of sample size PR are measured as 

RMSEA𝑃𝑅.𝑛 = √𝑚𝑎𝑥(0,
𝑎𝐻(𝑛−1)𝐹

^

𝐻+𝑏𝐻−𝑑𝐻

(𝑛−1)𝑑𝐻
)                                                                                                                (22) 
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This equation is obtained by simply replacing TML;n in Equation (19) with 𝑇ss. mean- and variance-adjusted muthen 

(2010) also compute an approximate CI for Equation (20) as follows: 

𝑅𝑀𝑆𝐸𝐴𝑃𝑅,𝑛,𝑙𝑜𝑤𝑒𝑟 = √𝑚𝑎𝑥(0,
𝜆
^

𝑆𝑆,05

(𝑛−1)𝑑𝑓
)    RMSEA𝑃𝑅,nupper = √𝑚𝑎𝑥(0,

𝜆
^

𝑆𝑆,95

(𝑛−1)𝑑𝑓
)                                                        (23) 

CFI𝑃𝑅.𝑛 = 1 −
𝑎𝐻(𝑛−1)𝐹

^

𝐻+𝑏𝐻−𝑑𝐻

𝑎𝐵(𝑛−1) 𝐹 𝐵+𝑏𝐵−𝑑𝐵

                                                                                                                                  (24) 

TL𝑚,𝑛 = 1 −
𝑎𝐻(𝑛−1)𝐹

^

𝐻+𝑏𝐻−𝑑𝐻

𝑎𝐵(𝑛−1) 𝐹
^

𝐵+𝑏𝐵−𝑑𝐵

⋅
𝑑𝐻

𝑑𝑛
                                                                                                                              (25) 

(Brosseau-liard et al., 2014)(Xia and Yang, 2019)  

4.5 Modification indices 

The indices of modifications help to classify regions of possible model weakness. Their usefulness lies in their capacity 

to prescribe such changes in order to boost the model's goodness-of-fit. In addition, adjustment indices (provided by all 

software) will identify the parameters, which greatly contribute to the fit of the model when applied to it. Gana (2019) 

5. Applied side 

In this part, a comparison is made between estimation methods in terms of parameter estimater ,  standard error and fit 

indicators .  The model of structural equations is one of the most methods in that used many fields. the model was 

applied on a data of catigorical  ordered from the five Likert scale represented by a questionnaire devoted specified for 

the the administrative aspect, where the objective of the research is to use the robust estimation methods especially when 

we deal with the  categorical ordered  data ,  so the Violation the assumption of normal distirabuation is predominant. 

ML is the most common technique available in most programs, Satorra (1998) suggested methods for correcting statistics 

and standard errors to a degree commensurate with the multivariate kurtosis of the observed data. An applied study was 

carried out by relying on data from a doctoral thesis for a field study within the University of Mosul, represented by 

strategic communication patterns and their reflection in building dynamic capabilities A questionnaire Questions, Mosul 

University Professors (Ayman, 2019)  . Taking part of the scale and constructing a model consisting of 6 latent variables 

(dimensions) where the latent variable y1 represents the sharing of knowledge. A process by which the organization 

looks to be creative with the products it provides to its customers. The latent variable y2 brand is the sum total of the 

banana of the organization that passed to the different audiences of the organization. The latent variable y3 represents the 

polarization of external knowledge, Gain knowledge from outside the organization (market, research centers, and 

universities). These three variables operate as latent Exogenous (independent) variables. As for the latent mediation 

variables, they are represented by Z1: how efficient the integration in which the organization has access to the knowledge 

that its subsidiaries have. The second latent variable is the mediation Z2, the flexibility of integration represents the 

multiplicity and type of knowledge areas that the organization possesses and from which it derives its capabilities, while 

Y1 represents the approved endogenous variable, repair, the organization's ability to learn from its previous experiences 

and the experiences of other organizations. . the study represented 32 observational variables that represent the 

paragraphs of the questionnaire distributed among the latent changes, which are not seen. The sample size was 384 

views. Modeling requires a sample size greater than 200. One of the well-known rules in the field of determining the 

least sample size is what Jackson has proposed around the base of q: N , q represents the number of parameters that need 

to be estimated relative to the sample size for N,  and suggested method two is the number of observe N to the number of 

variables p , as the sample size is  suitable for conducting the study when  10 <(N/p) (1/10), i.e. 10 for each variable at 

least .Jackson(2003) 

         A Mardia test was performed to verify the assumption of the multivariate normal distribution. find the data do not 

follow the normal distribution at the level 0.05 ,also by drawing a QQ-plot  Figure (1) shows that the data are not normal 

distribution 

 
figure (1) chi- squared QQ-plot for data set 
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The application of transformations in order to change the shape of the distribution into a better approximation to the 

normal distribution, there are many methods. The interpretation of the transformed variables is often very difficult and 

the results in wrong conclusions in the medical, administrative and educational fields. , and therefore requires the use of 

alternative methods to deal with non normal distributions. There are several tests that were performed until it was 

determined before the model was built, by it omitted the non-significant observed variables on the latent variable to 

construct the model correctly. In addition, verifying for not having been found a problem of multiple linear relationship 

by the absence of a high correlation between the latent variables. and The mean of all factors is greater than 0.70 The 

following results are shown by alpha-Cronbach's and omega test and the results are shown in the table (1) and figure (2) 

Confirmatory Factor Analysis 

                              Table(1) reliability values for on factors 

                X1          X2         X3        Z1      Z2       Y1        

alpha  0.8578668 0.8691948 0.8922236 0.8831467 0.8552136 0.8799359  

omega  0.8600011 0.8698286 0.8928239 0.8840544 0.8549437 0.8797867  

omega2 0.8600011 0.8698286 0.8928239 0.8840544 0.8549437 0.8797867  

omega3 0.8609672 0.8694482 0.8939084 0.8841796 0.8537930 0.8781420  

 

 
figure (2) Confirmatory Factor Analysis and correlation coefficients between factors 

 

Figures on one-way arrows indicate the values of the estimated parameters of the variables, and the two-headed arrows 

indicate the correlations between the variables, and the numbers on the arrows indicate the values of the correlations. The 

hypotheses of modeling the structural equations were developed, the figure(3) showing a path analysis between the latent 

variables and the use of the R program with the Lavaan package to estimate four methods, namely ML, MLR, ULSMV 

and WLSMV to find the best method estimation for SEM . as the number of free parameters that required to estimate are 

75 parameters which Are variations, covariance , and path analysis regression coefficients.  The assumptions for 

modeling structural equations are shown in  the scheme  below 

 
figure (3) Experimental research hypothesis (structural equation model) 
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     The model consists of two parts, measurement the model, which is represented by the following mathematical 

equations 

𝑋11 = 𝜆𝑥11𝑋1 + 𝛿1   

𝑋21 = 𝜆𝑥21𝑋1 + 𝛿2
𝑋31 = 𝜆𝑥31𝑋1 + 𝛿3
𝑋41 = 𝜆𝑥41𝑋1 + 𝛿4
𝑋51 = 𝜆𝑥51𝑋1 + 𝛿5
𝑋61 = 𝜆𝑥61𝑋1 + 𝛿6
𝑋72 = 𝜆𝑥72𝑋2 + 𝛿7
𝑋82 = 𝜆𝑥82𝑋2 + 𝛿8
𝑋92 = 𝜆𝑥92𝑋2 + 𝛿9
𝑋102 = 𝜆𝑥102𝑋2 + 𝛿10
𝑋112 = 𝜆𝑥112𝑋2 + 𝛿11
𝑋122 = 𝜆𝑥122𝑋2 + 𝛿12
  𝑥133 = 𝜆𝑥133𝑋3 + 𝛿13
𝑥143 = 𝜆𝑥143𝑋3 + 𝛿14
𝑥143 = 𝜆𝑥143𝑋3 + 𝛿14

 

𝑥163 = 𝜆𝑥163𝑋3 + 𝛿16
𝑥173 = 𝜆𝑥173𝑋3 + 𝛿17
𝑍11 = 𝜆𝑧11𝑍1 + 𝛿1
𝑍21 = 𝜆𝑧21𝑍1 + 𝛿2
𝑍31 = 𝜆𝑧31𝑍1 + 𝛿3
𝑍41 = 𝜆𝑧41𝑍1 + 𝛿4
𝑍51 = 𝜆𝑧51𝑍1 + 𝛿5  

𝑍62 = 𝜆𝑧62𝑍2 + 𝛿6
𝑍72 = 𝜆𝑧72𝑍2 + 𝛿7
𝑍82 = 𝜆𝑧82𝑍2 + 𝛿8.

𝑍92 = 𝜆𝑧92𝑍2 + 𝛿9
𝑍102 = 𝜆𝑧102𝑍2 + 𝛿10
𝑌11 = 𝜆𝑦11𝑌1 + 𝛿1

… . .
𝑌51 = 𝜆𝑦51𝑌1 + 𝛿5

                                                                                             (26) 

As for the structural model, it is written in the following format 
𝑍1 = 𝛾11𝑋1 + 𝛾12𝑋2 + 𝛾13𝑋3 + 𝜁1
𝑍2 = 𝛾21𝑋1 + 𝛾22𝑋2 + 𝛾13𝑋3 + 𝜁2

𝑌1 = 𝛽11𝑍1 + 𝛽12𝑍1 + 𝜁3

                                                                                                                                                (27) 

The parameters 𝜆𝑥11 ... 𝑦51 , 𝛾11 … . 𝛾13  , 𝛽11… .𝛽12   are unknown and their estimation is required. The factor loads of 

the standard model, the measurement errors on the measured variable, and the structural model parameters represent a 

pathway analysis between the latent variables  . After the assumptions have been set for the model and the measurement 

and structural model is determined, the estimation process is the most important stage in the modeling , as it is related to 

the fit function which is reducing the difference between the sample matrix S and the matrix derived by the model. The 

estimation methods provide us two type of information ,the first one estimating the free parameters of the model and 

standard errors for these estimates, the second is the fit feature between the two matrices, which allows the calculation of 

good fit indicators. 

          Traditionally when the Likert scale is five  it treats with the data as it is continuous when using both ML and MLR 

methods, so that we use  a Pearson correlation coefficient with these methods . and with development , it suggested 

several methods to deal with the class data ordered categorical , including the robust methods of each of WLSMV 

ULSMV using poly correlation coefficient . 

           A good decision regarding the estimation method has a direct impact on the results, and the ML method does not 

give biased results when the number of categorical is high and the size is large and the data is distributed almost 

normality. tables (2)  estimate the parameters directly and indirectly. Direct via mediation variables as well as estimates 

of parameters of the standard model in equation (26) and estimates of parameters of Exogenous, intermediate, and 

endogenous underlying latent variables of the four methods. 

 

Table (2) Estimation of the parameters of the ML, MLR, WLSMV and ULSMV method for the structural model, 

standard errors 

methods estimation 
 

ULSMV WLSMV MLR ML 

Std.Err estimate Std.Err estimate Std.Err estimate Std.Err estimate parameter 

0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 X1 =~ X11 

0.058 0.910 0.054 0.923 0.064 0.876 0.075 0.876 X1 =~ X21 

0.057 1.046 0.052 1.046 0.081 1.166 0.090 1.166 X1 =~ X31 

0.068 0.998 0.061 0.996 0.078 0.902 0.074 0.902 X1 =~ X41 

0.065 1.132 0.059 1.122 0.080 1.057 0.079 1.057 X1 =~ X51 

0.068 1.181 0.062 1.159 0.082 0.937 0.080 0.937 X1 =~ X61 

0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 X2 =~ X72 

0.038 1.042 0.037 1.051 0.061 0.983 0.071 0.983 X2 =~ X82 

0.048 0.945 0.047 0.945 0.078 0.924 0.074 0.924 X2 =~ X92 
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0.043 1.040 0.042 1.046 0.075 1.088 0.078 1.088 X2 =~ X102 

0.998    

0.044 

0.998    

0.044 
0.042 1.011 0.085 1.086 0.081 1.086 X2 =~ X112 

0.042 0.949 0.042 0.960 0.083 1.110 0.083 1.110 X2 =~ X122 

0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 X3 =~ X133 

0.029 1.008 0.027 1.015 0.042 0.977 0.057 0.977 X3 =~ X143 

0.033 1.002 0.029 1.005 0.057 1.053 0.062 1.053 X3 =~ X153 

0.034 1.013 0.030 1.011 0.058 0.988 0.060 0.988 X3 =~ X163 

0.033 1.002 0.029 0.987 0.057 1.006 0.063 1.006 X3 =~ X173 

0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 Z1 =~ Z11 

0.043 1.127 0.041 1.128 0.082 1.19 0.082 1.19 Z1 =~ Z21 

0.046 1.173 0.043 1.168 0.082 1.122 0.076 1.122 Z1 =~ Z31 

0.043 1.064 0.041 1.076 0.076 1.062 0.074 1.062 Z1 =~ Z41 

0.048 1.164 0.045 1.159 0.079 1.062 0.074 1.062 Z1 =~ Z51 

0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 Z2 =~ Z62 

0.036 1.001 0.034 1.003 0.047 1.009 0.070 1.009 Z2 =~ Z72 

0.040 0.905 0.037 0.879 0.060 0.929 0.073 0.929 Z2 =~ Z82 

0.046 1.050 0.039 1.025 0.076 0.957 0.067 0.957 Z2 =~ Z92 

0.046 1.084 0.039 1.025 0.077 1.017 0.070 1.017 Z2 =~ Z102 

0.000 1.000 0.000 1.000 0.000 1.000 0.000 1.000 Y1 =~ Y11 

0.043 1.151 0.038 1.131 0.046 0.888 0.061 0.888 Y1 =~ Y21 

0.043 1.149 0.037 1.121 0.050 0.875 0.059 0.875 Y1 =~ Y31 

0.046 1.156 0.040 1.129 0.060 0.945 0.064 0.945 Y1 =~ Y41 

0.049 1.115 0.042 1.097 0.060 0.925 0.063 0.925 Y1 =~ Y51 

0.043 0.094 0.042 0.108 0.059 0.101 0.045 0.101 Z1 ~x1 

0.063 0.536 0.059 0.511 0.109 0.498 0.084 0.498 Z1 ~x2 

0.048 0.285 0.044 0.296 0.078 0.283 0.062 0.283 Z1 ~x3 

0.050 0.207 0.049 0.210 0.068 0.187 0.054 0.187 Z2 ~x1 

0.071 0.479 0.069 0.478 0.122 0.469 0.094 0.469 Z2 ~x2 

0.058 0.249 0.055 0.259 0.091 0.272 0.072 0.272 Z2 ~x3 

0.062 0.470 0.055 0.487 0.136 0.556 0.094 0.556 Y1 ~ Z1 

0.060 0.399 0.050 0.380 0.131 0.525 0.087 0.525 Y1 ~ Z2 

0.062 0.470 0.055 0.487 0.136 0.556 0.094 0.556 dir_Z1 

0.060 0.399 0.050 0.380 0.131 0.525 0.087 0.525 dir_Z2 

0.022 0.044 0.021 0.052 0.037 0.056 0.026 0.056 ind1_X1_TO_Y1 

0.024 0.083 0.022 0.080 0.045 0.098 0.032 0.098 Ind2_X1_TO_Y1 

0.031 0.127 0.030 0.132 0.060 0.154 0.041 0.154 tot _X1_TO_Y1 

0.043 0.251 0.039 0.249 0.087 0.277 0.062 0.277 ind1_X2_TO_Y1 

0.040 0.191 0.036 0.182 0.088 0.246 0.062 0.246 Ind2_X2_TO_Y1 

0.051 0.442 0.048 0.431 0.113 0.523 0.079 0.523 tot _X2_TO_Y1 

0.028 0.134 0.026 0.144 0.058 0.157 0.042 0.157 ind1_X3_TO_Y1 

0.027 0.099 0.024 0.099 0.057 0.143 0.043 0.143 Ind2_X3_TO_Y1 

0.035 0.233 0.033 0.243 0.078 0.300 0.056 0.300 tot_nd_4_TO_Y1 

         

All Std.Err values are small for all estimators, but there is a difference between the estimators. using Robust corrections 

for the standard errors leads to a reduction in the errors of the estimator for all parameters . in addition , most of the 

estimated parameters are greater than twice the standard error , and the sum of the parameter divided by the estimated 

error  is greater than 1.96 which indicates that the parameters are significant. Through the results of the tables above, the 

MLR method provided better performance than the ML when we deal with the data as continuous using the Pearson 

correlation coefficient, also , the MLR method presented small standard errors compared to the ML, where as the 

estimation method is the same but the correction in the robust standard errors As a result, the corresponding fit indicators 

provided a perfect match compared with the way ML method, so it is preferable to use MLr with the ordered catigorical 

data that does not normal distribution 
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We also note from the table of estimators WLSMV, ULSMV robust, a significant improvement in the values of 

parameter estimates and standard errors. Where as the errors less than methods ML, MLR using polycoric correlation 

coefficient with wlsmv,ulsmv.  Although small results were obtained for standard errors for each estimator by wlsmv, 

ulsmv, but fit indicators for a ulsmv provided better performance than a wlsmv.Based on the results of the above 

methods we recommend to use the ULSMV method , for this reason also  will be explained the robust ulsmv estimation 

method in reserch. 

By analyzing the results of the model and setting research hypotheses based on theory, there is an indirect effect of the 

latent Exogenous variables through the mediation latent variables on the endogenous latent variable , and there is no 

direct effect on the relationship , and there is complete mediation as we note through the application. 

Table (2) shows parameter estimates for the ULSMV estimator as there is a direct effect from the Exogenous latent 

variable for each x1 x2 x3 which represented by knowledge and brand sharing and knowledge polarization on the 

mediation variable Z1 the adequacy of integration .also, there is an effect on the second mediation variable flexibility of  

integration Z2 , and all the  track  effects were  significant, achieving the results of the model hypothesis. Also, there was 

a direct effect by the two mediation variables, Z1 and Z2, on the endogenous variable, Y1 learning. 

Through the two mediation variables, there is an indirect provocation of the Exogenous latent variables X1 X2 X3 by the 

mediation variable Z1, and at the same time there is an indirect effect from the Exogenous latent variables X1 X2 X3 to 

the endogenous latent variable Y1 by the second mediation variable Z2 ,so that the amount of indirect effect X1 to Y1 by 

the mediation variable Z1 is 0.44 with a standard error of 0.22. 

There is an indirect effect from the variable X1 to Y1 via the second mediation variable variable Z2 which is 0.83 and 

with a standard error of 0.24 ,while the overall effect of X1 across each of the two mediation variables Z1 Z2 to Y1 is 

0.127 with a standard error of 0.31. in the same Method, the effect of the direct and indirect pathway of both X2 to Y1 

was studied by the two mediation potential variables Z1 Z2, as well as X3 to Y1 via Z1 Z2 where as all values were 

significant and errors were small. 

5.1 Classical and robust fit indicesr 

The main types of fit indicators were presented, and the assumed sem model was examined from the perspective of 

different estimation methods. We note that the model estimated according to ML methods obtained good fit  indicators, 

while the RMSEA TLI CFI SRMR indicators was within the ideal interval, and the model estimated under the MLR 

method obtained higher quality fit indicators than the ML, especially when using the Yuan- Bentler, and the scaling 

correction factor was 1.218. By dividing this value on the standard Chi Square value of ML we get the robust corrected 

value which is 834.945, and since the fit indicators for RMSEA TLI CFI depend on the chi-Square corrector, it replaced 

the value of the robust chi-Square and leads to an improvement in the fit indicators of the conformity. 

As for the conformance fit  indicesr  of the WLSMV method using the robust Chi Square Correction Factor for Muthén 

2010 , when we deal with the data categorical ordinal and the polycoric correlation coefficient , the value of Chi Square 

is 1127.826, while the correction value was equal to Scaling correction factor = 248.365 and shift parameter is 0.971 . the 

fit indicators for the ULSM estimator with Muthén correction 2010 , provided superior performance in model fit for all 

conformance indicators when we deal with categorical data.  therefore, we recommend using the ULSMV estimator 

when the data is ordinal with Likert scale categorical data, contrary to what most researchers use with Common ML 

estimator in most programs. 

From this results , we conclude that the best fit of data when we deal with the data as it is continuous using MLR robust, 

where as the robust estimator provides a correction in the kurtosis of resulting from the lack of a normal distribution of 

data, and most of the fit robust indicators performed better than the ML fit indicators, As for the WLSMV ULSMV 

estimators, the strong fit indicators for the ULSMV estimator provided an optimal fit performance better than the 

WLSMV when dealing with the data as orderd catigorical by correction in the mean and variance . table(4) shows the fit 

indicators for the methods. 

Table (3) indicators of classical and robust fit of the four estimators 

TLI CFI SRMR upper Lower RMSEA 𝜒2\𝑑𝑓 df Chi Square estimator 

0.917 0.924 0.047 0.062 0.052 0.057 2.244 453 1016.830 ML 

0.929 0.935 0.047 0.051 0.042 0.047 1.843 453 834.945 MLR 

0.950 0.954 0.045 0.067 0.058 0.062 2.489 453 1127.826 WLSMV 

0.951 0.955 0.045 0.061 0.051 0.056 2.202 453 997.628 ULSMV 

 

5.2 fit indicators of classic and robust fit after adjusting for errors between observed variables 

We note through the fit indicators before and after making the covariance between measurement errors Z62 ~~ Z72 and 

Z92 ~~ Z102 and Y11 ~~ Y21, there is improvement in all indicators for all methods , as the values of the Chi Square 

have decreased and the values of the root mean square error of approximation index decreased close to 0.05 and less .this 

indicates that the index is within the good interval, as the closer to zero the greater the strength of fit to the model and the 
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value falls within the interval of confidence accepted. In addition to to that, it has been shown increasing in the values of 

CFI and TLI indicators and its approached one. the value of the SRMR index which is based on the analysis of the 

standard residual matrix, when ever close to zero indicates a good match and less influence with the parameters of the 

chi-Square. 

 

Table (4) indicators of classical and robust fit of the four estimators after Adjustment 

TLI CFI SRMR Upper lower RMSEA 𝜒2\𝑑𝑓 df Chi-square estimator 

0.934 0.940 0.045 0.055 0.046 0.051 1.984 450 892.994 ML 

0.948 0.953 0.045 0.051 0.039 0.045 1.633 450 734.921 MLR 

0.958 0.962 0.043 0.062 0.052 0.057 2.238 450 1007.141 WLSMV 

0.959 0.963 0.043 0.058 0.049 0.053 2.091 450 941.117 ULSMV 

 

 
figure (4) adjusting for errors and corelation between observed variables 

6. Conclusions  

the fit indicators for the MLR provided performance and fit higher than the ML due to the procedures for corrections 

robust on both the standard errors and the fit index test yuan.bentler. The ULSMV, WLSMV method  presented small 

standard errors compared to the MLR robust when dealing with the data as ordinal Categorical using the polycoric 

correlation coefficient, , as well as the fit index robust that is used in  WLSMV and ULSMV estimators relative to the 

robust Muthen (2010) gives agood fit. after making the covariance between measurement errors Z62 ~~ Z72 and Z92 ~~ 

Z102 and Y11 ~~ Y21, there is improvement in all indicators for all methods, standard errors were reduced .We 

recommend the use of robust methods when the data are not normal distributed and ordinal (categorical).  When the data 

is ordinal (categorical)., it is preferable to use each of the WLSMV ULSMV methods, and also when we have a Likert 

scale greater than 4 categories, it is preferable to use the robust MLR estimator 
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 المعادلات الهيكلية بمتغيرات فئوية ترتيبية  مقارنة بين طرق التقدير القوية لنمذجة
 

 

 محمد جاسم محمد  &عمر سالم إبراهيم   
 قسم الاحصاء والمعلوماتية /كلية علوم الحاسوب والرياضيات/جامعة الموصل/ الموصل/ العراق 

 قسم الاحصاء/ كلية الادارة والاقتصاد/ جامعة بغداد/ بغداد/ العراق
 

 

ن  تستخدم المتغيرات الرتبية على نطاق واسع في العديد من البحوث وفي كافة التخصصات العلمية ، وغالبا ما يستخدم الباحثون طريقة الامكا   :  خلاصةال
عي في حالة  والتي تفترض التوزيع الطبيعي متعدد المتغيرات ، وهذا ليس صحيحا مع البيانات الرتبية الفئوية حيث ينتهك افتراض التوزيع الطبي  MLالاعظم  

المطابقة تأثيره على مؤشرات  المعياري فضلا عن  الخطأ  نتائج مضللة وتضخيم في  الى  مما يؤدي  ليكرات  مقياس  اقتراح   .استخدام  البحث  هذا  فقد تضمن 
الامكان الاعظم الحصينة مع مصفوفة التغاير للعينة التي تتعامل مع البيانات على انها مستمرة وخاصة عندما يكون مقياس ليكرات خماسي     MLRطريقة  

تم الحصول  عديل  فما فوق.  وتم اقتراح طريقة لتقليل الخطأ من خلال ربط الاخطاء ، حيث تم اجراء ارتباط بين ثلاث اخطاء قياسية ، ومن خلال مؤشرات الت
او مايعرف   WLSMVكما وتم استخدام طريقتين من الطرق الحصينة ، طريقة  على نتائج جيدة في تقليل الخطأ المعياري وتحسين جودة المطابقة للمؤشرات.

الطريقتين تتعامل مع وكلتا    Polychoric correlationمع مصفوفة ارتباط متعدد الالوان   RULSاو مايعرف بطريقة  ULSMVوطريقة   RDWLSبطريقة 
ودراسة تاثيراتها    ML     ،MLR    ،WLSMV    ،ULSMVالبيانات على انها بيانات رتبية . وتضمن البحث ايضا اجراء مقارنة بين طرق التقدير الحصينة  

الى  التوصل  تم  وقد   ، الرتبية  البيانات  مع  للتعامل  الافضل  الطريقة  اختيار  ثم  ومن  الحصينة    المطابقة  مؤشرات  الطريقتين      على  من  لكل  جيدة   نتائج 
WLSMV    ،ULSMV   استخدام مصفوفة المعيارية عن طريق  تصحيحات حصينة في الاخطاء  النتائج  حيث اظهرت   ، الطرق الاخرى  نتائج  مع  مقارنة 

مطابقة تم استبدالها بمؤشرات المطابقة فضلا عن ذلك فان مؤشرات الكاي سكوير. معامل الارتباط متعددة الالوان بالاضافة الى التصحيحات الحصينة لمؤشر 
 .  RMSIAو    CFI و  TLIالحصينة لكاي سكوير 

 .نمذجة المعادلات الهيكلية , المتغيرات الرتبية الفئوية ,المقدرات الحصينة, مؤشرات المطابقة : المفتاحيةكلمات ال


