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Abstract 

The classical Back propagation method (CBP) is the simplest algorithm 

for training feed-forward neural networks. It uses the steepest descent direction 

with fixed learning rate    to minimize the error function E, since   is fixed 

for each iteration this causes slow convergence for the CBP algorithm. In this 

paper we suggested a new formula for computing learning rate  
k

 , using 

modified secant equation to accelerate the convergence of the CBP algorithm.  

Simulation results are presented and compared with other training algorithms. 

 

 معادلة القاطع المطورة الىعامل تعلم جذيذ  لخوارزمية الانتشار العكسي مستنذ 
 

 الملخص

حعد خوارزهيت الانخشار العكسي القياسيت ابسط خوارزهيت لخعلين الشبكاث العصببيت وااث الخذيةبت 

الاهاهيت, ةسخخدم احجبا  الاندبدار السبلبي هبم  اهبي حعلبين ياببج كبي  بي حكب ار لخصبذي   البت الخ ب    ى 

اقخ حنبا يبيذت  اهي الخعلين يابج كبي  بي حكب ار ا بيا ةسبب  ببطب حقبارر الخوارزهيبت  كبي  بيا البدب  

جدةدة لدسار  اهي الخعلين باسخخدام هعا لت القاطم الو ورة لخعجيي حقارر خوارزهيت  الانخشار العكسبي 

 القياسيت اقد   ضج نخائج الودا اة اقورنج هم خوارزهياث حعلين اخ   
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  1.Introduction   

     Neural networks are composed of simple elements operating in  parallel. 

These elements are inspired by biological neurons systems. As in nature, the 

network function is determined largely by the connections between elements. 

We can train a neural network to perform a particular function by adjusting the 

values of the connections(weights), between elements, commonly neural 

networks are adjusted, or trained so that a particular input leads to as specific 

target output. The network is adjusted, 

 based on a comparison of the output and the target, until the network output 

matches the target. Typically many such input/target pairs are used in this 

supervised learning to train a network. Batch training of network proceeds by 

making weight and bias changes based on an  entire set (batch) of input vectors 

[6]. 

   The batch training of the Multi-layer Feed-forward Neural network (MFFN) 

can be formulated as a non-linear unconstrained minimization problem [8, 9] 

.Namely 

    .  ),(  min n
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 where E is the batch error measure defined as the sum of squared differences 

Error functions over the entire training set , defined by 
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to    is the squared differences between the actual  j-th output  

layer neuron for pattern  P and the target output value.  The scalar P is an index 

over input-output pairs,  the general purpose of  the training is to search an 

optimal set of connection weights in the manner that the error of the network 

output  can be minimized. 

   The most popular training algorithm is the Classical Batch Back Propagation 

(CBP) introduced by Rumelhart, Hinton and Williams[12]. Although the CBP 
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algorithm is a simple learning algorithm for training Multi-layer Feed-Forward 

MFF networks,  unfortunately it is not based on a sound theoretical basis and is 

very inefficient and unreliable. One iteration of the CBP algorithm can be 

written 
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       Where  
k

w  is the vector of current weights and biases, )(
kk

wEg   and
k

   

       is the learning rate, with CBP the learning  rate is held constant throughout  

       training. The performance of the algorithm  is very sensitive to the proper 

       setting of the learning rate [5]. 

    In order to overcome to the drawbacks of the CBP algorithm many gradient 

based training algorithms   have been proposed in  the literature 

[1, 2,  5, 7, 13] . 

       2. Some Modifications on CBP.                                                                                                                                   

  A surprising result was given by Brazilian and Brownie [3], which gives 

formula for the learning rate 
k

  and leads to super linear convergence. The 

main idea of BB method is to use the information in the previous iteration to 

decide the step size (learning rate) in the current iteration. The iteration (3) is 

viewed as   
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where ID kk 1 . In order to force matrix 1kD  having certain quasi-Newton 

(QN)  property, is  reasonable to require either 
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or 
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respectively. Note that we abbreviate the method defined in equation(3) with 

learning rate defined in equations (7) and (8) as BB1 and BB2 methods, 

respectively. 

     An alternative approach is based on the work of Plagianakos et al [11]. 

Following this approach, equation (3) is reformulated to the following Scheme: 
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where ] ...,, ,[ 
21 n

diagB   and  n ..., ,1 , i
i
 are eigen values for the  

)(2

k
wE ,  or approximations to the Eigen-values for )(2

k
wE .   A well known 

difficulty to this approach is that the computation of  the Eigen values or 

estimating them is not  asimple task, hence the schema defined   in equation(9) 

is not practical . 

        3. A New Efficient Monotone Learning rate 

 

  Due to the unexpected theoretical properties and the striking numerical 

performance of the BB1 and BB2 methods, it inspired lots of researches on the 

gradient methods [4].  We believe that the main drawback of the BB methods 

happen  when 
kk

gg 
1

 which leads to 0
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T

k
ys  or 0
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k
yy ,  hence the 

algorithm becomes undefined, to overcome  this difficulty we 

will introduce a new formula to compute 
k

 ,  our idea is  based on using 

modified secant equation as follows: 

consider the matrix B defined by 
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furthermore, let  
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since 0i

k
  for i    and from equations (11) and (12), 

k
M   is diagonal, 

symmetric and positive definite, therefore 
k

M  satisfies the following modified 

secant equation   
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 There are different values  for 
k

z  [14],  in this paper we consider  the following 
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  To compute the value of  
k

  in equation (12), we minimize the following  

Quadratic equation 
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 By computing the derivative of  )(q  and letting it to zero we obtain 
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Using equations (14) and (15) in equation (19) we get  
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       there are different choices for the vector u  in this work, we use 
kk

su  ,    

then equation (20) becomes 
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with this choice of 
k

  we will use the backtracking strategy to ensure that 

the learning rare 
k

   satisfies the following  Wolfe  condition: 
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                                                                                                                where 

1      0   .  At this point we will summarize the new training algorithm, we 

abbreviate  this new algorithm as MSBP 

 

Algorithm MSBP for training FFNN 

 Step(1): Initiate   (0,1) and 0 ,  ,1 0 ,R ,1
21

n

1
 wk    

 Step(2): If     )(      
21
 

kk
wEorg stop else go to step(3). 

 Step(3): Compute the search direction using steepest descent direction i. e 

                
kk

gd    

  Step(4):  Compute learning rate 
k

 , if k=1 then 
k

k
g

1
  else  

                 use equation (21) with backtracking strategy to ensure the  

                 Wolfe conditions (22) and(23) hold. 

   Step(5): Update the weigh vector  according to the following relation 

                   
kkkk

dww 
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   Step(6): Set k=k+1, go to Step(2).  

Note: 

  Below are some observations on which the convergence of MSBP  

  Algorithm rests: 

 then second Wolfe condition (23)   0
k

T

k
ys 1. In equation (21)  if   

     Ensures  0
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k
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 2.We see from equation (21) that k
k
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4. Experiments and Results: 

A computer simulation  has been developed to study the performance of the 

learning algorithms. The simulations have been carried out using 

MATLAB(7.6) the performance of the MSBP has been evaluated and 

compared with batch versions of the Classical Back Propagation (CBP). The 

algorithms were tested using the initial weights, initialized by the Nguyen –

widrow method [10] and received the same sequence of input patterns . The 

weights of network are updated only after the entire set of patterns to be learned 

has been presented .             

For each of the test problems, a table summarizing the performance of the 

algorithms for simulations that reached solution is presented . The reported 

parameters are min  the minimum number of epochs for 50 simulation , mean 

the mean value of epochs for 50 simulation, Max the maximum number of 

epochs for 50 simulation, Tav the average of total time for 50 simulation and 

Succ, the succeeded simulations out of (50) trails within error function 

evaluations limit.    

If an algorithm fails to converge within the above limit considered that it fails 

to train the FFNN, but its epochs are not included in the statical analysis  of the 

algorithm, one gradient and one error function evaluations are necessary at each 

epoch. 

4.1  Problem (1): (Spect Heart Problem)  

This data set contains data instances derived from Cardiac Single Proton 

Emission Computed Tomography (SPECT) images from the university of 

Colorado [9]. The network architectures for this medical classification problem 

consists of one hidden layer with 3 neurons and an output layer of one neuron. 

The termination criterion is set to 01.0
2
 within the limit of 2000 epochs, 
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table(1) summarizes the resuls of all algorithms i.e for 50 simulations the 

minimum epochs for each algorithm  are listed in the first column (Min), the 

maximum epoch for each algorithm are listed in the second column, third 

column contains (Mean) the mean value of epochs and (Tav) is the average of 

time for 50 simulations and last column contains the percentage of succeeds of 

the algorithms in 50 simulations.  

  Table(1): Results of simulations for the Heart problem 

Algorithms Min Max Mean Tav Succ 

CBP ----- ----- ----- ------ 2 % 

BB1 21 68 33.1 0.75 100 % 

BB2 45 113 79.74 1.1852 100 % 

MSBP 20 59 32. 0.734 100 % 

 

Form table (1), we note that the algorithm MSBP is the best algorithm with 

respect to the epochs number and the time. 

 

4.2 Problem (2): Continuous Function  Approximation:  

The second test problem we consider is the approximation of the continuous 

trigonometric function: )3cos(*)sin()( xxxf  . The network architecture for 

this problem is 1-15-1 FNN (thirty weights, sixteen biases) is trained to 

approximate the function f(x), where  x[-,] and the network is trained until 

the sum of the squares of the errors becomes less than the error goal 0.002, 

comparative results are shown in table (2). 

Table(2): Results of simulations for the function approximation  problem 

Algorithms Min Max Mean Tav Succ 

CBP fail -- -- -- 0.0% 

BB1 92 382 184.7 2.2076 100% 

BB2 973 1912 --- --- 85% 

MSBP 96 364 182.02 2.14 100% 

Form table (2), we conclude that the algorithm MSBP is the beast algorithm 

with  respect to the succeeded simulations, number of epochs and the time. 
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4.3 Problem (3):(XOR Problem) 

 The last  problem we have been encountered with is the XOR Boolean 

function problem, which is considered as a classical problem for the FFNN 

training . The XOR function maps two binary inputs to a single binary output. 

As it is well known this function is not linearly separable. The network 

architectures for this binary classification problem consists of one hidden layer 

with 3 neurons and an output layer of one neuron. The termination criterion is 

set to 002.0
2
  within the limit of 1000 epochs, and table(3) summarizes the 

result of all algorithms i.e for 50 simulations the minimum epochs for each 

algorithm  are listed in the first column (Min), the maximum epochs for each 

algorithm are listed in the second column, third column contains (Mean) the 

mean value of epochs and (Tav) is the average of time for 50 simulations and 

last columns contain the percentage of succeeds of the algorithms in 50 

simulations  

 Table(3): Results of simulations for the XOR function   

Algorithms Min Max Mean Tav Succ 

CBP Fail -- -- -- 0.0% 

BB1 7 43 23.9 0.4904 100% 

BB2 19 2674 134.9 1.618 72% 
MSBP 17 32 24.45 0.5151 100% 

 

Form table (3), we conclude that the algorithm BB1 is the beast algorithm 

with respect to the succeeded simulations, number of epochs and the time. 
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