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Abstract

In this article we make a comparison between three different
nonparametric density estimators .The first estimator is called fixed
kernel which uses a fixed bandwidth.

The second estimator is called variable kernel, which uses variable
bandwidth, then the third estimator, refers to a new version of
nonparametric density estimator (this estimator is a hybrid of the above
estimators.

This comparison depends on using different kernels, two of these
functions are proposed in this article .To make this comparison suitable,
we use standardization techniques, which are called canonical kernel.

Simulation is used to find kernel function based on the standardization
techniques (canonical kernel).
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1. Introduction

The main property that describes the behavior of the random variables
X can be seen from the probability density function. From the density
function can be known the number of observations that lie in some
groups.

The probability can be calculated as an integral on that group

Pr(a<x<b):?f(x)dx .. (1)

This value x lies in the interval that mentioned above, this will lead to
prediction that the observations will appear frequently; also, through
using the graphical plots for probability density function. We will know
that the observation may have long tails; also we can see that the
observations have multimodality.

Estimating the unknown probability density function will provide the
researcher are understanding for the behavior of the random variables, but
in most studies the distribution is unknown and instead of that will
depend on the given observation that regarded as identically and
independent random variables which have unknown probability density.

The goal is to estimate the probability density function on the basis of
these observations. The methods are used in this article is of a
nonparametric kind that does not have any restrictions on the form of the
probability density function. These methods are estimating the density
completely based on observations.

Also in this article we want to compare different kernels, where two
kernels are proposed here. This comparison relies on three nonparametric
density estimators, one of these is a new version of estimators.

2. Kernel density estimators
The proposed kernel estimator is:

f(x)=(1-m)fy (X)+mfe(X) . (2)

Where 1?\, (x) refers to variable kernel estimator that has the form

fo=nty t kXX . @)

i-1h(x)  h(x)
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This estimator relies on using variable bandwidth at each point through
using big window at low density and using small window at high density
.The idea of this estimator come back to Breiman, Meisel and Purcell
(1977).

The other nonparametric density estimator is fF (X), which refers to
fixed kernel estimator that has the form:

fE(x) = (nh)—lzK( ') . (4)

This estlmator IS called fixed because its rely on using fixed bandwidth
on the real line of the density function. This estimator is proposed from
Rosenblatt (1956) and Parzen (1962).

We must note that the proposed estimator consists of two unknowns
(K, h), that is kernel function and bandwidth.

Therefore we will display the estimator of h and the possible kernel
functions, and then we compare the performance of the proposed
nonparametric estimator with the other estimators depending on the
different kernel functions and using the standardization or rescale
techniques to find the best estimator and kernel function.

3. Kernels

Kernel functions have different names such as window function or
weight function. These functions are real, symmetric, continuous and
these integrals equal to one. That is:

1- Sup|K (z)| < oo, OjoK(z)dz =1.
Ojo K (2)|dz < oo—, Lim[z|K(z)| = 0—,K(-z) = K(2) . ... (5)
2- ofqu(z)dz =0,0=123,..r-1

3- T ‘qu(z)‘dz <oo,q=Tr.

Be sure that these conditions are satisfied when r=2.The following
table displays some kernels and their efficiencies:
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Table (1)
Refers to some kernels with two proposed kernels and their
efficiencies relative to Epanchnikov

Kernel K(2) S dy C|2<dk E(Kopt, K)
Epanchnikov (3/4)(1-2%) 0.6 0.2 0.072 1
Quartic (1516(@-2%)° | 0.714 | 0.143 | 0.073 1.006

Triweight | (35320-7%)° | 0816 | 0.111 | 00739 | 1.0132

Gaussian @0 V2exp212) | @(x)Y%)*? 1 0.0796 1.0515
Proposed1 (45/64)(L—z*)? 0.611 0.195 [ 0.0728 1.0055

Proposed2 | (72/89/(1-z%)* 0692 [ 0.151 || 0.0723 | 1.0021

The relative efficiency for the above kernels can be obtained from the
following:

effi (K, K gpt) = [IKZ(Z)dZHIZZK(z)dz]

0.5

] Koptz(z)dz]2 [JZZKOpt (Z)dz]

0.5

Cidy ... (6)
2
C:kopt dkopt

4. Canonical Kernels

We must note that if one used a kernel of the formK;(.) = % K(./9),

and rescale the bandwidth by the factord, one would obtain the estimate
as with the original kernel estimator.

Kernel can therefore be seen as equivalence class of functions K with
possible rescaling by o .

A consequence of this scale dependence is that the bandwidth
selection problem is not identifiable if the kernel is determined only up to
scale.

Consider the situation in which two statisticians analyze the same data
set but use different kernels for their estimators. Their bandwidths have
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been determined subjectively or automatically, but they have been
computed for different kernels and therefore can’t be compared directly.
In order to allow some comparison one needs a common scale for both
bandwidths. To find such a scale, we must note that two kernel estimators
with the same bandwidth should ascribe the same amount of smoothing to
the data.
Such a scale is given by canonical kernels in the class of kernels K .1t

is based on the expansion of the AMISE(Kj)

K 2
AMISE (K ;) = n—1%+0.25\\f"u§54m§(|<) . (7)
Where:
2 1
K|S ==[K
Ksll = 2Kl
T22K5(z)dz:52 TZZK(Z)dZ ... (8)

To Scale the bias and the variance equally we choose 8" such that:
12 _ (s \apa 2
?HKH2 =(0 )"M5(K)=T(K) .. (9)

We call the parameter o " the canonical bandwidth or canonical

smoothing parameter for kernel K 5 and & can be achieved by defining
0.2
o[ K]S
M2 (K)

Also we should be noting that:
L 02 2

_ |l M2(K)

2

2 |\ IKI

2

+—1
T(K):H5 K

[ee}

5 2

= [|\/|2(K)HK\2]D .. (12)
If we take h' = S5"h then:

AMISE (K, h') = {nh_l +0.25]f "
And the canonical bandwidth is:

§h4}*T(K) .. (12)
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5
I

From the above equation we obtain the relationship between the
bandwidth and kernel (K;,h;) with the coupled(K;, h;).After we

substitute the relation (13) in the form (12), we obtain

* -1 4
AMISE - o1 | N2 s

bt (k. a2 5701 ey L 1K)
- o k) + 0T T (K |
— AMISE(Kq ) * o) (14)

) T

5. Simulation

To know the performance of each of the kernels density estimators
(Fixed, Variable and the proposed) with the kernel functions we do some
simulation experiments.

In these experiments we use three different sizes (40,125,160), each
with different distributions (Normal, Bimodal and contaminated
distributions).

We repeat each experiment 100 once for each sample size and
distribution. Also we use a plug-in estimator for estimating the bandwidth
.The common distance measure that it used is mean averaged squared
error (MASE)

MASE(f (x))=n* %[f(xi) — f (><i)]2

i=1
The following tables illustrate the values of MASE ( f(x))for different
distributions and sample sizes.
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Table (2
Refers to MASE for different nonparametric estimators, kernels and
distributions when using Normal distribution

Distr. | Estimators | Fixed Kernel | Variable Kernel | Suggested Kernel

125 | 160 40 125 | 160 40 125 | 160

0.0051 | 0.00174 | 0.00136 j| 0.0039 | 0.00125 | 0.00111 fj 0.00333 | 0.00112 | 0.00099

Quartic 0.00523 | 0.00176 | 0.00138 ]| 0.0048 0.0015 | 0.00133 j| 0.00388 | 0.0013 | 0.00113

Triweight 0.00531 | 0.00178 | 0.0014 |J| 0.00554 | 0.00172 | 0.00151 j 0.00425 | 0.00143 | 0.00122

Gaussian || 0.00563 | 0.00186 | 0.00146 || 0.00377 | 0.00162 | 0.00126 | 0.00201 | 0.00077 | 0.00057

Proposedl 0.005 0.00174 | 0.00136 0.004 0.00128 | 0.00114 |f 0.00337 | 0.00114 | 0.00101

Proposedz 0.00501 | 0.00174 | 0.00136 ]| 0.00458 | 0.00145 | 0.00129 }| 0.00375 | 0.00127 | 0.0011

Epanch, 0.003 0.00112 | 0.00093 | 0.00179 | 0.00071 | 0.00068 |f 0.00164 | 0.00068 | 0.00065

Quartic 0.00309 | 0.00114 | 0.00094 f 0.00228 | 0.00084 | 0.00079 Jf 0.00196 | 0.00079 | 0.00074

Triweight 0.00316 | 0.00116 | 0.00095 | 0.00272 | 0.00096 | 0.00088 jf 0.0022 | 0.00087 | 0.00081

Gaussian || 0.00339 | 0.00122 | 0.00098 [| 0.00243 | 0.00098 | 0.00088 || 0.00108 | 0.00044 | 0.0004

Proposedl 0.00293 | 0.00111 | 0.00093 Jf 0.00184 | 0.00074 | 0.00071 ff 0.00166 | 0.00069 | 0.00066

Proposed2 0.00293 | 0.00111 | 0.00093 f| 0.00217 | 0.00083 | 0.00078 jJf 0.00189 | 0.00077 | 0.00073

Epanch 0.00502 | 0.0013 | 0.00105 J| 0.00339 | 0.00089 | 0.00079 jf 0.00305 | 0.00082 | 0.00072

Quartic 0.00516 | 0.00132 | 0.00106 | 0.0043 | 0.00103 | 0.0009 Jf 0.00368 | 0.00093 | 0.0008

Triweight 0.00525 | 0.00134 | 0.00107 jj 0.00506 | 0.00116 0.001 0.00413 | 0.00102 | 0.00087

Gaussian || 0.00558 | 0.00140 | 0.00112 || 0.0027 | 0.00146 | 0.00123 | 0.00143 | 0.0006 | 0.00052

Proposedl 0.00488 | 0.00129 | 0.00105 J| 0.00348 | 0.00092 | 0.00081 jf 0.00308 | 0.00083 | 0.00073

Proposed2 0.0049 | 0.00129 | 0.00104 || 0.00412 | 0.00102 | 0.00089 f 0.00351 | 0.00091 | 0.00078
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Table (3)
Refers to MASE for different nonparametric estimators, kernels and
distributions when using Bimodal and Contamination distributions

Fixed Kernel Variable Kernel Suggested Kernel

Kemel ‘ 40 | 125 | 160 || 40 | 125 | 160 | 40 | 125 | 160

Epanch_ 0.00165 | 0.00071 | 0.00054 j 0.00142 | 0.00067 | 0.00047 §f 0.00115 | 0.00055 | 0.00042

Quartic 0.00072 | 0.00055 J| 0.00183 | 0.00082 | 0.00057 j| 0.00138 | 0.00063 | 0.00048

Triweight 0.00174 | 0.00073 | 0.00056 §f 0.00222 | 0.00096 | 0.00067 §f 0.00155 | 0.00068 | 0.00051

Gaussian || 0.00189 | 0.00078 | 0.00059 J| 0.00144 | 0.00074 | 0.00061 [ 0.00083 | 0.00041

0.35N( -2,2)+0.65N(3,1)

PFODOSEdl 0.00054 §| 0.00142 | 0.00068 | 0.00048 jj 0.00115 | 0.00056 | 0.00042

PI’OpOSGdZ 0.00054 §| 0.00168 | 0.00078 | 0.00055 fj 0.00129 | 0.00061 | 0.00046

Epanch_ 0.00078 | 0.00034 | 0.00028 jf 0.00058 | 0.00032 | 0.00025 §f 0.00052 | 0.00027 | 0.00022

Quartic 0.00081 | 0.00035 | 0.00029 || 0.00076 | 0.00039 0.00065 | 0.00031 | 0.00025

Triweight 0.00083 | 0.00035 | 0.00029 jf 0.00093 | 0.00045 | 0.00035 §f 0.00072 | 0.00033 | 0.00027

Gaussian 0.0009 | 0.00037 | 0.00031 j| 0.00083 | 0.00038 | 0.0003 J 0.00037 | 0.00019 | 0.00016

~~
N
~~
B
Lo
—
Z
—
(=}
+
Lon)
™
™
N
zZ
<
o

Proposedl 0.00076 | 0.00034 | 0.00028 | 0.00059 | 0.00032 | 0.00026 f 0.00053 | 0.00027 | 0.00023

Proposedz 0.00077 | 0.00034 | 0.00028 j| 0.00071 | 0.00037 | 0.0003 [ 0.00061 | 0.00029 | 0.00025

Epanch_ 0.00178 | 0.00081 | 0.00057 | 0.00142 | 0.00068 | 0.00046 §f 0.00122 | 0.00062 | 0.00042

Quartic 0.00184 | 0.00082 | 0.00057 0.00081 | 0.00053 j 0.00143 | 0.00069 | 0.00047

Triweight 0.00188 | 0.00083 | 0.00058 j§f 0.00213 | 0.00093 0.00157 | 0.00074 | 0.00051

Gaussian || 0.00203 | 0.00087 0.00164 | 0.00066 | 0.00049 § 0.00077 | 0.00036 | 0.00027

Proposedl 0.00173 | 0.00081 | 0.00057 §f 0.00145 0.00047 §| 0.00122 | 0.00063 | 0.00042

0.15N( 0,2.5)+0.85 N(5,1.25)

Proposed? [ 290174 | 0.00081 | 0.00057 0.00079 | 0.00052 || 0.00136 | 0.00068 | 0.00046
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From the tables above we see the following:

% For table (2) and for all the parameters are proposed we find that the
proposed nonparametric estimator is the best for the probability
density function, then variable kernel and lastly fixed kernel.

% The Gaussian kernel is the best kernel when we are using the
proposed density estimator, then Epanchnikov and the two proposed
kernels respectively.

% As a general case we see that the best kernel is Epanchnikov when
we are using variable kernel, then the two proposed kernels except at
one case when using the distribution N(-2,2) with sample size n=40.

% For the case N (0, 2.5) and n=40, the results show that the Gaussian
kernel is the best, then Epanchnikov and the two proposed kernels
respectively.

% The best kernels when we are using fixed kernel estimator are the
two proposed kernels, then Epanchnikov.

s Refer to the results we see that the two kernels *Quartic and
Triweight) are less efficient relative to the other kernels when we are
using the proposed kernel estimator.

From the table (3) we obtain the following:

s The best estimator for the probability density function is the
proposed kernel estimator (for all the kernels).

% The Gaussian kernel is the best kernel when we are using the
proposed density estimator, then Epanchnikov and the first proposed
kernels equally.

% When we use the variable kernel, the results show that the best
kernels are the first proposed kernel with Epanchnikov, then the
second proposed kernels.

% When we use the fixed kernel, the results show that the best kernels
are the proposed kernels, then Epanchnikov.

6. Conclusions

From the results that we are mentioned we see that the best estimator
for the probability density function is the proposed kernel estimator for
all kernels.

Also we conclude that we must rely on the proposed kernels and
Gaussian kernel especially when the proposed kernel estimator is applied.

For the fixed and variable kernel estimators we conclude that the
proposed kernels and Epanchnikov should be used.
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