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Abstract 
In this paper, we present a modified algorithm with curve search rule for 
unconstrained minimization problems. At each iteration, the next iterative point 
is determined by means of a curve search rule. That the search direction and the 
step-size are particularly determined simultaneously at each iteration of the new 
algorithm. 
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1. Introduction 
       Consider an unconstrained minimization problem (UP) 
          nRxxf ∈   ),(min                                                                                     (1) 
where RRf n →:  is a continuously differentiable function. Most of the well-
known iterative algorithms for solving (UP) take the form 

          11 −− += kkkk dxx α                        
(2) 

where kd  is a search direction, and kα  is a positive step-size parameter. If kx  is 
the current iterative point, then we denote )( kxf∇ by kg , )( kxf  by kf  and 

)( *xf  by *f , respectively.  
       If kk gd −= , then the corresponding method is called Steepest method. This 
method has low convergence rate in many situations, and often yields zigzag 
phenomenon. However, it does not require computing and strong some matrices 
associated with Hessian of objective functions. 
     If we take kkk gHd −=  in (2), where the kH  is a matrix that approximates 
the inverse of the Hessian of f  at kx , the related methods are called Newton-
like methods. It needs to store and compute the matrix associated with Hessian 
of f , but it has faster convergence rate than steepest descent method and 
conjugate gradient methods in many situations. 
       Generally, the conjugate gradient method is a useful technique for solving 
large scale minimization problems because it avoids, like steepest descent 
method, the computation and storage of some matrices. The conjugate gradient 
method has the form  
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where kβ is a parameter that defines the different conjugate gradient methods. 
However, many conjugate gradient methods have no global convergence e.g., 
(Bertsekas, 1982), (Evtushenko, 1985), (Grippo and Lucidi, 1997), (Hestens, 
1980), (Nocedal, 1999), (Powell, 1977) and (Powell, 1976). 
      Miele and Cantrell (Miele and Cantrell, 1969) studied memory gradient 
method for (UP). Cantrell (Cantrall, 1969) showed that the memory gradient 
method and the Fletcher–Reeves algorithm (Fletcher and Reeves, 1964) were 
identical in the particular case of a quadratic function. 
      Cragg and Levy proposed a super-memory gradient method which is a 
generalization of Miele and Cantrell's method. (Cragg and Levy, 1969) 
      Wolfe and Viazminsky (Wolfe and Viazminsky, 1976) investigated a super-
memory descent method for (UP). Other literatures on super-memory gradient 
method can be seen in e.g., (Qui and Shi, 2000), (Shi, 2003) and (Shi, 2000). 
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Both memory gradient method and super-memory gradient method are more 
efficient than conjugate gradient methods e.g., (Grippo and Lucidi, 1997), 
(Gilbert and Nocedal, 1992), (Powell, 1977) and (Powell, 1976) because they 
use more previous iterative information and add freedom of choosing 
parameters. 
     However, the convergence results of memory gradient methods and super 
memory gradient methods for non-quadratic objective functions are barely seen 
in recent literatures. It is of significance to investigate an efficient convergent 
super-memory gradient algorithm for solving large scale minimization 
problems, especially the problems in which the objective function is non-
quadratic or even non-convex. As we know, the ODE methods (or dynamic 
methods) for unconstrained minimization are curve search methods (Botsaris, 
1978), (Schropp, 1997), (Syman, 1982), (Van Wyk, 1984) and (Wu, Xia and 
Ouyang, 2002). It is required to solve some ordinary differential equations so as 
to approximate the minimizer of (UP). Ford et al. (Ford and Tharmlikit, 2003), 
(Ford and Moghrabi, 1996a) and (Ford and Moghrabi, 1996b) studied a new 
class of multi-step quasi-Newton methods for unconstrained minimization. 
However, it is required to store some matrices at each iteration. These methods 
are suitable to solve small and intermediate problems. 
      To accelerate the convergence rate and avoid the evaluation and storage of 
matrices, we present a new descent algorithm and prove its global convergence 
and linear convergence rate. At each iteration, the next iterative point is 
determined by means of a curve search rule that resembles Wolfe's line search 
rule. The algorithm, similarly to conjugate gradient methods, avoids the 
computation and storage of some matrices associated with the Hessian of 
objective functions. Though the algorithm in the paper has no as fast 
convergence rate as Newton-like methods, it is suitable to solve large scale 
minimization problems. The new algorithm is similar to Cragg and Levy's 
algorithm (Cragg and Levy, 1969), but is superior to it in the aspect of 
convergence. The algorithm is not a line search method, we may call it a curve 
search method. 
 
2. New Algorithm 
       We assume that  
(H1): The function f  has lower bound on { })(≤)( : 0xfxfRx n∈=Γ , where 0x   
           is available. 
(H2): The gradient g  is Lipschitz continuous in an open convex set B that  
           contains L0, i.e., there exists L > 0 such that 

          NxyxLygxg ∈y , ∀     ,- ≤)(-)(                        
(4) 
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         There are a lot of rules for choosing step-size ak e.g., (Cohen, 1981) and 
(Vrahatis, 2000) etc. We use curve search rule, which is similar to Wolfe's line 
search rule. 
Curve search rule: At each iteration, fixed 0>ks , the step-size kα  satisfies 
          ( )( ) k

T
kkkkk dgfdxf αµαα 1- ≤+                                                                (5) 

( )( ) ( ) k
T
kkk

T
kkk dgddxg µααα ≥+                                                             (6) 

where 1
2
10 21 <<<< µµ , and  
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It is clear that, if ELS is used, then 01 =−k
T
k dg  . In this case we have  
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For simplicity, we sometimes denote ( )
kkd α  by kd . It is obvious that the above 

search rule is not a line search rule though it is similar to Wolfe's line search 
rule. We may call it a modified curve search rule, in which the search direction 
and step size are determined at the same time. It is different from the traditional 
line search methods in which one first defines a descent direction and then finds 
a step-size along the direction. In the curve search method, search direction is a 
vector function of step-size. In fact, at the kth iteration, we find a new iterative 
point 1+kx  along the curve ( ){ }0: ≥+ ααα kk dx   from the current point kx . 
 

Algorithm. 1
2
10 21 <<<< µµ , nRx ∈1 , 1=k  , 0>ε  

Step 1: If ε<kg  then stop, else go to step 2; 
Step 2: Define 
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Step 3: ( )kkkk dxx αα+=+1  where 
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and kα  is chosen by modified curve search rule; 
Step 4: 1+= kk , go to step 1. 
 
      Traditional line search methods consist of two stages. The first one is to find 
a descent direction and the second is to define a step-size along the search 
direction. In the above algorithm, the search direction and the step-size are 
determined at the same time at each iteration and the search is along a curve.  
     With respect to the above algorithm, the first problem is whether kα exists at 
each iteration. To solve this problem, we have the following result. 
 

Lemma 2.1. Suppose that (H1) holds. Let ⎟
⎠
⎞

⎜
⎝
⎛∈

2
1 ,01µ , ( )1 ,22 µµ ∈ , and assume 

that 0≠kg , thus 0≠ks . There exists an interval [ ]21  , cc  with 210 cc << , such 
that every [ ]21 ,ccα  satisfies (5) and (6). 
 
The prove is easy to obtained. 
 
Lemma 2.2. For all 0≥k  
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Lemma 2.3. If (H2) holds, then 
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Proof. 
       By (H2), Cauchy-Schwarz inequality and (6), we have 
          ( ) ( )( ) ( )kkkkkkkkkkk dgdxgdL ααθααα .
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Numerical Result  
      We tested the FR method, PR method and New method. The test problems 
are drawn from (Andrie, 2004). The Numerical results of our tests are reported 
in Table 2.1. Each problem was tested with three different values of n ranging 
from n=100 to n=1000. The numerical results are given in the form of NOI / 
NOF, where NOI, NOF denote the number of iteration and function 
evaluations, respectively.  The stopping condition is  ( )kk fg +×≤ − 1101 5 .        
From Table 2.1, we see that for these problems, NEW method really performs 
much better than the FR method and PR method. 
 

Table 2.1. Numerical Results of FR method, PR method and NEW method 
FR Method PR Method NEW Method 

Test Function  n  NOI / NOF NOI / NOF NOI / NOF 
DIXMAANA 100 6 / 19 7 / 21 7 / 14 
 500 6 / 21 6 / 21 7 / 14 
 1000 8 / 24 6 / 22 7 / 14 

100 Failed Failed 22 / 41 Extended 
Trigonometric  500 Failed Failed 84 / 136 
 1000 Failed Failed 35 / 63 
ARGLINB 100 Failed 1 / 6 1 / 3  
 500 1 / 4 1 / 5 1 / 3 
 1000 Failed Failed 1 / 3 
Raydan 2 100 2 / 8 2 / 8 4 / 9 
 500 2 / 7 2 / 7 4 / 9  
 1000 2 / 10 1 / 6 4 / 9 
Full Hessian 100 305 / 677 308 / 724 3 / 7 
 500 636 / 1301 1044 / 1638 3 / 7  
 1000 934 / 1555 3150 / 3774 3 / 7 
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FLETCHER 100 863 / 1376 300 / 621 38 / 78 
 500 4966 / 5468 1488 / 2072 28 /54 
 1000 4984 / 5486 2984 / 3568 30 / 57 

 
 

       From this table and for six standard test functions with 18 problem-
dimension cases, the NEW algorithm is superior on the standard well-known 
CG-methods for all the selected cases.  
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