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Study of heat transfers problem of dissipative fluid flow
in a porous walls channel
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ABSTRACT

A model of heat transfer by natural convection of dissipative fluid
in a channel of porous walls has been discussed, the solution of
governing partial differential equations was obtained using Alternating
Direction Implicit method. The unsteady state as well as steady state
solutions are founds simultaneously during the successive iteration of

(ADI) for the first time .
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1-Introduction:

The study of fluids flow in a channel of porous walls is very
important because it has a wide range of implementation, and this is due
to the fact that these flows have many engineering and geophysical
applications which include geothermal resources, Blood flow inside
human being bodies, building insulation, Oil extraction, heat salt
leaching in soils, flow system for transporting lymph , urinary circulatory
system, transpiration cooling and many more.

In previous works, Beithou [2] has studied the effect of variable
porosity on the free convection flow along a vertical plate embedded in
porous medium numerically. The results showed when porosity
Increases , temperature variation becomes steepr and the Nusselt number
increase utmost linearly with increasing porosity. Al-Odat [3]
investigated transient MHD double diffusive of an electrically
conducting fluid by free convection over a flat plate embedded in Darcy
and non-Darcy porous medium in the presence of surface suction or
blowing and magnetic field effects, he found that the presence magnetic
field lowers both the Nusselt and Sherwood numbers in Darcy as well as
Fochheimer flow regimes. Makinde [5], presented the unsteady two-
dimensional laminar flow of a viscous incompressible and electrically
conducting fluid through a channel with the one wall impermeable and
the other porous under the influence of a transverse magnetic field, he
used the integral method in his investigation. Bukhari [6] has analyzed a
linear stability by using the spectral Chebyshev polynomial method to
obtain the numerical solution of multi-layer system consisting of the
finger convection onset in a fluid layer overlying a porous layer. Mhone
[7], presented the investigation of combined effects of a transverse
magnetic field and irradiative heat transfer on unsteady flow of a
conducting optically thin fluid through a channel filled with saturated
porous medium and a non-uniform walls temperature, his results showed
that increasing magnetic field intensity reduces wall shear stress while
increasing radiation parameter through heat obseption causes an increase
in the magnetic of wall shear stress. Das and Sahoo [8], considered the
unsteady free convection and mass transfer boundary layer flow past an
accelerated infinite vertical porous flat plate with suction when the plate
accelerates in its own plane. The governing equations are solved both
analytically and numerically using finite difference scheme and finally
El-Kabeir [9] discussed an investigation to the thermal dispersion effect
on non-Darcy MHD natural convection flow over a permeable sphere



The Second Scientific Conference of Mathematics-Statistics& Information [57]

maintained at uniform heat flux in a variable porosity porous medium. In
this paper, we study the natural convection in a channel with porous
walls, the governing differential equations were solved using (ADI )
method.

2-Mathematical Model:

Consider the unsteady flow of a dissipative fluid passing through
a long channel with porous walls, the Cartesian coordinate system
(x,y,2) has been taken as the x-axis lay in the center of the channel, vy -

axis represents the width of the channel while the z -axis is the normal of
xy plane. Let u,v andw be the velocity components in the directions

x,y and z respectively, we assumed that all the components in z
direction vanish as illustrated by the figure (2-1).

T, =constant
C, =constant

u=v=0.0
X
u=v=0.0
=E=E======== EETT_EEEEEEEEEEEEEEE
C, =
y
Figure (2-1)

The governing equations in dimensional form are given by:
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where u,vare the wvelocity components, t is the time and
T,.9.8.8 %K a,upc, D are the temperature, gravitational
acceleration, thermal expansion coefficient, concentration expansion
coefficient, Kinematics viscosity, permeability of the medium, thermal
diffusivity, dynamical viscosity, density, specific heat at constant

pressure, mass diffusion coefficient, respectively.
With the following boundary conditions,

u=v=0.0

T=T,T,

C=C,.C,
y=0,h ...(2.2.5)
h is the width of the channel.

3- Non-dimensional form:

To solve the governing equations (2.2.1)-(2.2.4) with the boundary
conditions (2.2.5), we need to introduce the following non-dimensional
quantities [4,3],
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Substituting these quantities into equations (2.2.1)-(2.2.4), the governing
equations
becomes.
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Simplifying the above equations, the governing equations under these
non-dimensional quantities becomes,
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where
Gr = Grashof number for heat transfer
&= %h = dissipation parameter
p

pr = Prandtl number
Gr’ = Grashof number for Mass transfer
Sc :% = Schmidt number
D = the mass diffusion coefficient
Da :ﬁz = Darcy number

h

and the boundary conditions (2.2.5) in the non-dimensional form
become,
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U=V=0
6 =0.0
6 =10.0
$=0.0
$=1.0

4- Method of solution:

atY =01
at Y =0
aty =1
at Y =0
at 'Y =1
...(3.6)

[61]

In order to solve the system of equations (3.2)-(3.5) with the
boundary conditions (3.6), we resort to ADI finite difference method
[1], and to achieve this we have to start with last equation (3.5), equation
of diffusion and then equation (3.4), heat equation, and finally equation
(3.3), equation of motion as follows:

4-1 Diffusion equation:

*
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U =constant Ug; =0, U, =0
V =constant Vo; =0, V5=0

¢iI,10 =00 ¢ir,]N =10
..(4.1.3)
Equations (4.1.1) and (4.1.2) can be reduced to give,
A(I)¢i*—1,j + B(I)¢ifj +C(I)¢ij-l,j =D,(1), 1=012..N
..(4.1.4)
where
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followed by,
A )¢.nr—11 + Bl(J)(ﬁir,]}rl +C,(J )¢.nﬁ1 =D,(J), J=012.N
...(4.1.6)
where
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..(4.2.2)
with boundary conditions,
U =constant Ug; =0, U, =0

V =constant Vo; =0, V5=0
0, =0.0 0"y =10.0

..(4.2.3)
Equations (4.2.1) and (4.2.2) can be reduced to give,
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followed by,
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4-3 Motion equation:
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with boundary conditions,

U =constant Ug; =0, U, =0
V = constant Vo; =0, V5 =0

..(4.3.3)
Equations (4.3.1) and (4.3.2) can be reduced to give,
A,(WU;,; +B, (DU, +C,(1NU;,; =Ds(1), 1=012..N

..(4.3.4)

where
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The coefficients U,V are treated as constants during any one time-step

of the computation [4], each of the equations (diffusion, heat, motion)
creating a tridiagonal system which are solved by using Gauss
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elimination method, all details are given in reference no. [1].

5- Results and figures:

We present in this section some of the results obtained from the
computation done, and these results have been expressed by figures to
illustrate how the solution for different cases becomes as well as the
effects of different parameters as follows:

The Diffusion Function —e—FY at (2,3)
— @ — FYat(5,5)
—Aa—FY at (8,7)

FY

- -0.08

- -0.1
W -0.12
-0.14

-0.16

Iteration Number

Figure (5.1) The non-dimensional diffusion function ¢ for different
position in the channel with the parameters: Gr =0.1, Sc =0.22
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The Diffusion Function —e—unSteady state

—&— steady state

0.001
-0
- -0.001
- -0.002
>
o
- -0.003
- -0.004

- -0.005

-0.006

Iteration

Figure (5.2) The non-dimensional diffusion function ¢ near the
side of the channel with the parameters Gr =0.1, Sc =0.22
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The Diffusion Function ——Gr=0.1
——Gr=1.0
0.3 —— Gr=50.0

Iteration

Figure (5.3) The non-dimensional diffusion function ¢ for a point
in the channel with the different values of Grashof number .
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Temperature

AAAAAAAAAAAAAAALAAADLAALA

Iteration

—e— Theta(2,7)
—&— Theta(6,6)
—— Theta(9,8)
—e— Theta(2,3)

Theta

Figure (5.4) The non-dimensional temperature ¢ for different

position in the
Gr=0.1, pr=0.7, ¢ =-0.004

channel

with

the

parameters:
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Temperature curve

——pr=100.0
—&—pr=0.22
——pr=0.7

Theta

p
p

p

4
L 4
4

Iteration

Figure (5.5) The non-dimensional temperature & for a point in the
channel with the different values of Prandtl number .
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Velocity Profile

- -0.005
- -0.01
- -0.015
- -0.02
- -0.025
- -0.03

- -0.035

-0.04

Iteration

Velocity

——U(2,2)
—=—U(5,6)
—4—U(9,9)

Figure (5.6) The non-dimensional velocity u for different position
in the channel with the parameters: Gr =0.1, Gr" =1.0, Da=4.0
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Velocity profile —&— Unsteady state
—e— Slteaty state

- -0.01

- -0.02

- -0.03

Velocity

- -0.04

- -0.05

-0.06

lteration

Figure (5.6) The non-dimensional velocity u near the side of the
channel with the parameters: Gr =0.1, Gr" =1.0, Da=4.0

6- Conclusions:

In this work we have used ADI method in the solution of the
governing equations completely without reducing or changing and from
the results obtained we conclude that the steady state can be reached after
some iterations for all equations and this is clear from the figures given
previously in last section, due to this fact figure (5.1) represents the
results obtained by the solution of diffusion equation which showed that
for different point the values of the diffusion function goes to steady
state for some iterations and remains fixed to the end, the same things
happened to the temperature and velocity functions which is obvious
from figures (5.4) and (5.5) respectively. Other remarks can be noticed
for some parameters like grashof and prandtl numbers. It is also noticed
that the parameters Sc (Schmidt number) and pr (Prandtl number) has

effects into motion equation only through diffusion factor ¢ and heat
factor @ equation (3.3).
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