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A new hybrid scaling parameter for a VM-algorithm

Abbas.Y.Al-Bayati’ Ghada.M.Al-Naemi

Abstract

In this paper we have proposed a modified hybrid conjugate
direction algorithm which combined a well-known CG-method which was
based on a non-quadratic model and a well-known VM-method which based
on the quadratic model.

The new modified algorithm was treated both theoretically and
numerically and proved to be stable and its convergence was super-linear
and it uses an exact line search.

Our numerical results indicate that the modified hybrid method performs
well compared to the two well-known used method.
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1-Introduction

We will consider the problem of computing a point x=(x,,x,,....x,)"
which is a good approximation to a local minimum of a nonlinear twice
differentiable function f(x). To solve a particular problem of this type, one
commonly used either a Conjugate Gradient (CG) algorithm or a Variable
Metric (VM) algorithm. Each has its advantages. In general, a CG-algorithm
requires more iterations than a VM one to obtain an equally good local
minimum, but on the other hand a CG requires little storage for
implementation.

We try to solve the unconstrained minimization problem

MinxeRn f(X) (1)
where f is twice continuously differentiable function. This problem is
usually solved iteratively. Starting with an initial estimate *1 of the
minimum point, each subsequent point *+, =1  will be derived by
T —
searching along a descent direction 4: such that 9 &>0, where & =Vf(x)

so that *in =% +4d: for i>1 where % is the step-length computed by a line
search procedure (Poul and, Kristian, 2004). These line search procedures
are traditional and efficient technique for solving unconstrained
minimization problems. This convergence has attracted more attention in
recent years; consequently, some new line search methods have been
proposed, for example, see (Jongen, et al, 2004) & (Nocedal & Wright,
2006).

or, 4 may also be computed by Wolfe line search procedure, namely:

f(xi + //lid[) < f(x[) + Clﬂ’igde[ , (Za)
and
|gdei| = _ngdei' (2b)

where 0> “>¢%>1. Conjugate Gradient (CG) method is one of the few
practical methods for solving large dimensionality problems because it does
not require matrix storage and its iteration cost is very low. Normally the
initial direction 91 is given by 91 =~8&:. The search direction

di+1 =—8iu +,Bidi ’ (3)
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where % is a constant parameter obtained by (Fletcher & Reeves, 1964), or
by (Polak-Rib'ere, 1969), or by (Hestenes & Stiefel, 1952), or by (Dixon,
1975).

2-The Extended CG-Method

Standard method for solving the problem (1) includes the CG-method
which requires 4n locations of computer storage to implement. The CG-
method is iterative and it generates a sequences of approximations to the

minimizer *-» of f(x).
We can define the classical CG-algorithm as follows (Jongen, et al 2004):

Algorithm (2.1):
Given ¥ €R” an initial estimate of the minimizer x”,
Step (1): Seti=1, 4 =78,
Step (2): Set Y1 =% + A \where 4 minimizes /(% T A4d:)
Step (3): Set d,,, =-g.., +B.d,, B is scalar defined in different manners.

Step (4): Check for convergence .
Step (5): If i=n, then go to step (1).
Step (6): Else, set i=i+1 and go to step (2).

In fact, many attempts have been made to investigate more functions than
the quadratic one as a basis for the CG-method. Over years, various authors
have published works to solve this problem, for many sorts of objective
function, see for example (Fried, 1971),(Goldfard, 1972),(Boland,et al,
1979a, 1979Db),(Tassopoulos& Story, 1984a, 1984b), (Al-Bayati, 1993), (Al-
Bayati & Al-Naemi, 1995), (Andrei, 2006)

The most popular extended CG-algorithm which based on the logarithmic
model

f(x) = e(log(g(x)) -1), , £<0,q<0 4)
Is used as the first part of the new interleaved algorithm, see(Al-Bayati &
Al-Naemi, 1995). Now, the outlines of the algorithm are listed below:
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Algorithm (2.2): (An extended_non-quadratic model algorithm)
For general function f(x) with gradient g(x) and for any starting point

x €R" follow these steps :
Step (1): Seti=1, 4 =78,

Step (2): Set Y1 =% +Adi i> 1 where % minimizes /& T 44:) along
d,

Step (3): Compute #i from

2 3 n-1 T
1+X+y_+y_+___+y =/1igigi/2
21 3 4 n! fin— 1 (53.)
V= |Og Pi = pP; =exp(y,') (5b)

Step (4): Compute diy ==8u+phd, )

Step (5): Test for convergence ; if not continue.

Step (6): If i=n or any other restarting criterion is satisfied, go to step (1)
else, set i=i+1 and go to step (2).

Now, to ensure that the extended CG-method produces an identical sequence

of approximations as a standard CG-algorithm, let us consider the following

theorem:

Theorem (2.1)
Given an identical starting point x,, the method of (Fleacher and

Reeves, 1964) defined by

dy=-gi, (6)
diy=-g +pd;i2] (7)
B =lguall el (8)

And | || is the Euclidean norm applied to f(x)=q(x) and the extended CG-
method using the following search direction:

dl* = —g:, (9)

d:rl =_g:+l+piﬂidi*’i21’ (10)
pPi= fz /](i;l’ (11)
B, =[ea| e (12)

And applied to f(q(x)) generate identical conjugate direction (within a
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positive multiple £) and the identical sequence of approximations x, to the
solution x™ for any function satisfying

Zl - />0 forg>0and &>0. (13)
q

It assumed that the one-dimensional searches are exact. The vectors n
g, . g are gradients of f(q(x)) at x, and x,, respectively.

Proof:
The theorem is true for i=1, because
dl* = _gf = _fl‘gl = fildl' (14)
Now for i=2, we have
d, =~g,+p.fd, (15)
=g, + (5 1) e e ).,
=128 + (L LS L) (| e ) £ d,
= ledz-
Assume that, for i > 2,
d; = f1=ga+ (gl e )] (16)
= fd,.
If follows from (10) that
d;rl = _g;l + p[ﬁ[di* (17)
= —f1a&i + LDl 1) (gial Ne s,
= _fi+1di+1-

3-The Self-Scaled VM-Algorithm

VM algorithm begin an estimate *: to the minimizer *=n and a numerical

estimate 71 of the inverse Hessian matrix ¢ ()
A sequence of points

X =X, —AH,g, (18)
where i is updated by a correction of rank-2 matrix of family, i.e. the
BFGS update
H,, = [Hiyi.yiTHi /yiTHiyi + Wiwir] + ViviT /viTyi (19)

with
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Vi ='xi+l_'xi’ Yi :ng_gi’

w, = Hy) 2 vy, —Hy, 1y H,y] (20)
The self scaled updating can be defined
H.,=H -Hyy HIy Hy +ww +pvy vy , (21)
where
p=y Hylylv (22)

(Al-Bayati, 1991). Now, the outlines of the standerd self-scaling Vm-
algorithm are:

Algorithm (3.1): (A self-scaling quadratic model algorithm)
Start with any initial point *1.

Step (1): Set i=1 and choose %71 to be any positive definite matrix
(usually =),

Step (2): Determine the step size A minimizes /
d;=-Hi& and obtain ¥ =% *Ad;,

Step (3): Compute the self scaled updating by equation (9) & (10).

Step (4): Test for convergence: if not put i=i+1 and go to step (2).

(x; +4d.) \where

Theorem (3.1)

Assume That f(x) be quadratic function and that line searches are
exact: if H is any symmetric positive definite matrix and we define an
updating

Hyy=H,—Hyy Hly Hy +ww oy, vy, (23)
where

o; = yiTHiyi /yiTVi’ (24)
Then the search direction

di* = _Higi*’ (25)
Is identical to the conjugate direction 4., defined by

- :{—g,* L ,forz.—O (26)
e -g, +(y, g 1y d)d,  forix1

Proof:

The update (23) can be written as:
Hi*+l =H, _ViyiTHi /ViTyi _HiyiviT /ViTyi + (Gi +yiTHiyi /ViTyi)ViViT /viTyi' (27)
Now
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diy=-Hg +y/Hg vy, +vigHy vy, -2y Hyv/ g I(y/v)v,  (28)
=-H,g +y Hg ly/v,
Using the property v'g =0, quoted earlier which holds for exact line
searches. The vector g™ can be substituted for Hg™ by using the property

Property (3.2)
Let f(x) be a quadratic function. Choose an initial approximation H, = H,
where H is any symmetric positive definite matrix appropriate order.
Obtain 7™ from H where d=-Hg is the search direction and assuming exact
line searches then

H.g =Hg , forO<i<k<n. (29)
For proof see (Al-Bayati, 1991)

4-A Modified CD-Algorithm (based on mixed quadratic & non-
qguadratic model)

The fundamental strategy which we wish to present the following. If it is
based on combining the self-scaling VM- restarts of the form (21) which
subsequent ECG-steps will be defined in (5).

The new self-scaled updating can be redefined as:

H[+l :[Hiyiy[TH[ /yiTH[yi +WiW[T]+piv[viT /V,'Tyi (30)
where
P =" +U=y)p (31)

is convex combination of 2" defined in (22) and #* defined in (5),

. VM CcG .
where 0<7 31, notice that 2 &2 have the same effectiveness on the
real value p of the parametic » when 7 =05,

Algorithm (4.1): (New algorithm)
Start with any initial point *:.
Step (1): Set i=1 and choose %71 to be any positive definite matrix
(usually =),
Step (2): Determine the step size

% minimizes /*: *44:) where
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d;==H:& and compute % =% +4d;
Step (3): Compute the self scaled updating by equation (11) & (12).
Step (4): Test for convergence: if not put i=i+1 and go to step (2).

5- Some observations on the new algorithm

1- Positive definite /i: have been proved in (Al-Bayati, 1991) that the self-

scaling updating formula Hia generates identical search with standard
CG-algorithm and it is a positive definite. Hence, it is clear that the new
algorithm verifies the positive definite property.

2- line Search: In the new algorithm the line search strategy must satisfy
the following properties

d:rlgi <d & (32)

This condition is equivalent to that H: s a positive definite. For proof
see

(Buckley, 1978).
3- the new method preserves the super-linear and stability because the scalar

p” depends on the linear combination values of o™ and p““ which
have been proved to the algorithms with super-linearly convergence

property.

6- The Numerical Results

In this section we have compared our new proposed CD-algorithm against
the standard well-known BFGS algorithm which was known as the best and
effective VM-algorithm. Of course, the scalar p“”depends on a linear

combination of p"™ and p““, the scale of the parametic y, 0<y <1 has been

noticed, so ¥ =02 s the average of value of the scalar »° and it performs
better than the values of » is very small tends to zero and y is very large
tends to one. The total Number of Iteration (NOI) and total Number of
Function evaluations (NOF).

The comparison test involve sixteen well-known test functions with different
dimensions 2<#7<1000 (see Appendix). From Table (6.1), taking the
percentage of 100% for NOI and NOF of the standard BFGS algorithm,
we have found that there are a bout overall 15% NOI and 17% NOF
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improvements against the standard BFGS algorithm.

Also from Table (6.2) we have found by taking the same consideration that
there are about overall 20% NOI and 27% NOF improvements against the
standard BFGS algorithm.

The stopping criteria in Table (6.1) has been taken to be
while in Table (6.2) the stopping criteria is taken to be

fia =1l 55 E-10. (34)
Table (6.1)
Comparison of the new algorithm against the standard BFGS algorithm using the stopping criteria ”ng” <é&.
Test function N Y New Method Standard BFGS
NOI [NOF] NOI [NOF]
Rosen 2 0.01 20 [75] 23 [74]
0.5 21 [58]
0.95 22 [61]
Cubic 2 0.01 7 [22] 7 [25]
0.5 7 [19]
0.95 7 [19]
Beal 2 0.01 9 [27] 9 [26]
0.5 8 [20]
0.95 8 [20]
Fred 2 0.01 6 [18] 6 [21]
0.5 6 [18]
0.95 6 [18]
Bigg 3 0.01 8 [31] 9 [37]
0.5 11 [36]
0.95 11 [33]
Recip 3 0.01 12 [43] 10 [33]
0.5 10 [28]
0.95 9 [27]
Powel 4 0.01 23 [80] 21 [87]
0.5 25 [88]
0.95 34 [75]
Wood 4 0.01 58 [177] 57 [165]
0.5 61 [196]
0.95 20 [46]
Shallow 4 0.01 8 [24] 8 [25]
0.5 6 [17]
0.95 8 [19]
Sum 4 0.01 5 [31] 5 [36]
0.5 4 [22]
0.95 4 [22]
Dixon 4 0.01 13 [39] 15 [39]
0.5 14 [34]
0.95 15 [35]
Ex-Rosen 6 0.01 43 [132] 44 [139]
0.5 43 [132]
0.95 43 [132]
Ex-Wolfe 40 0.01 36 [73] 44 [89]
0.5 37 [75]
0.95 38 [77]
Ex-Full 40 0.01 | 40 [82] 0 [82]
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0.5 40 [81]
0.95 40 [81]
Ex-Non-Diagonal 300 0.01 52 [126] 63 [149]
0.5 23 [61]
0.95 22 [63]
Ex-Miele 800 0.01 38 [132] 44 [145]
0.5 40 [127]
0.95 41 [120]
Ex-Wolfe 800 0.01 47 [96] 85 [172]
0.5 46 [94]
0.95 46 [94]
Ex-Powel 1000 0.01 70 [167] 39 [111]
0.5 51 [114]
0.95 50 [104]
Ex-Fred 1000 0.01 8 [22] 10 [27]
0.5 8 [23]
0.95 6 [18]
Ex-Cubic 1000 0.01 14 [34] 11 [32]
05 8 [21]
0.95 7 [19]
Ex-Beal 1000 0.01 10 [28] 10 [28]
0.5 9 [23]
0.95 8 [20] 40 [82]
Total 478 [1287] 560 [1542]
85%  [83%] 100%  [100%]
Table (6.2)
Comparison of the new algorithm against the standard BFGS algorithm using the stopping criteria |fi+1 - f;| <&
Test function N Y New Method Standard BFGS
NOI  [NOF] NOI  [NOF]
Rosen 2 0.01 20 [75] 22 [72]
0.5 20 [56]
0.95 21 [59]
Cubic 2 0.01 22 [82] 15 [60]
0.5 17 [52]
0.95 19 [55]
Beal 2 0.01 8 [24] 8 [60]
05 8 [20]
0.95 8 [20]
Fred 2 0.01 6 [18] 6 [21]
0.5 6 [18]
0.95 6 [18]
Powel 3 3 0.01 8 [23] 9 [25]
0.5 9 [25]
0.95 11 [30]
Wood 4 0.01 57 [170] 56 [162]
05 60 [194]
0.95 19 [44]
Powel 4 0.01 21 [73] 18 [76]
0.5 24 [69]
0.95 29 [63]
Shallow 4 0.01 7 [21] 8 [25]
05 6 [17]
0.95 7 [16]
Sum 4 0.01 6 [37] 6 [43]
0.5 8 [58]
0.95 7 [55]
Dixon 4 0.01 12 [37] 14 [37]
0.5 13 [32]
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0.95 14 [33]

Ex-Rosen 20 0.01 85 [225] 86 [278]
0.5 21 [58]
0.95 22 [61]

Ex-Full 40 0.01 38 [771 38 [89]
0.5 38 [771
0.95 38 [77]

Ex-Powel 40 0.01 43 [105] 32 [96]
0.5 45 [97]
0.95 39 [82]

Ex-Strait 80 0.01 5 [13] 5 [14]
0.5 5 [14]
0.95 5 [13]

Ex-NOn-Diagonal 800 0.01 55 [131] 56 [134]
0.5 23 [63]
0.95 21 [61]

Total Total 303 [850] 379 [1157]

80%  [73%] 100%  [100%]




[12] A new hybrid scaling parameter...

Appendix

1- Wolfe Function:
o) =[x, 3—x,/2)+2x, —1]? +nz_l:[x[71 -x,(3—x, 12+2x, ., - D)* +[x,, —x, (3—x,/2)-1]

xo=(-1;...)".

2- Generalized Recipe Function:
Jx)= nzﬁl{(xﬁ-] -5 +X§H +X—32,:|

2
(X5 —X35.5) ’

x0=(2,51;..)".

3- Generalized Miele Function:
fe) = f{exp(xw—s X4y )42 + ]800(9641‘-2 _‘x4i—2] )6 +:|
(tan(x,_; =X, )" + Xy 5 +(x,;—1)

i=1

x0=(1,2,22;...)"

4- Generalized Powell Function:
fx)= f|:(x4i—3 + ]0x4i—24)2 +5(Xy Xy )j "}
(yr =24, )" +10(x, 5 —x,)

x0=(3,-1,0,3;..)".
5- Generalized Powell 3 Function:

J09) = 2{3 - [;} —sin("2R) exp[— (R 2)2}}

2
I+(x;—x,) X,

xo=(0,1,2;...)".

6- Non-Diagonal Variant of Rosenbrok Function:
£(x) = S 00(x, - x7)? +(1-x,)%n > 1,

xo=(-1;...)".
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7- Dixon Function:
f(x)= (:I-_Xl)2 + (1_x10)2 +Z(xi2 _‘xi+l)2

xo=(-1;...)".
8- Rosenborck Function:
£ =51100(x, —x2 )P + (1, 0)?

xo=(-1.2,1;..)".

1

9- Generalized Cubic Function:
109 =2 (1006, 53, 4 (1-x.., )
xp=(-2,1,.)".

10- Generalized Beale Function:

fx)= f{[lﬁ—xzw(]_xzi )]2 +2[2'25_x2,~_1(1—x§[ )]2}
i1 +[2.625—x2,._1(1—x§i]
xo=(-1,1,...)".

11- Generalized Shallow Function:

n/2

)= 2 (X3~ [ +(1-%,0)°
xo=(-2,2;..)".

12- Generalized Strait Function:

F() = 2 (s = x,)? 41000 x,,,)"
x0=(2,-2;...)".

13- Sum of Quadrics (SUM) function:

@)= )

[13]
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xo=(1,...)".

14- Full Set of Distainct Eigenvalues Function:
f(x)=(x, _1)2 + i[le‘ _xi—l]2

xo=(1;,..)".

15- Biggs Function:
f(x) = Z[exp(—xlz[.) — X3 exp(_'xZZi) - exp(_zi) + 5exp(—1OZ,.)]2

i=1

Where
z, = (0.1)1', and
xo=(1,2,1)".

16- Freudenstein and Roth Function:
S(xX)=[83+x+(5-x,)x, - 2))62]2 +[29+ x, + ((L+ x,)x, —14x2]2,
x=(30,3)".
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