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       A new hybrid scaling parameter for a VM-algorithm 
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 Abstract 
 
             In this paper we have proposed a modified  hybrid conjugate 
direction algorithm which combined a well-known CG-method  which was 
based on a non-quadratic model and a well-known VM-method which based 
on the quadratic model. 
     The new modified algorithm was treated both theoretically and 
numerically and proved to be stable and its convergence was super-linear 
and it uses an exact line search. 
      Our numerical results indicate that the modified hybrid method performs 
well compared to the two well-known used method. 
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1-Introduction 
 
     We will consider the problem of computing a point T

nxxxx ),...,,( 21=  
which is a good approximation to a local minimum of a nonlinear twice 
differentiable function f(x). To solve a particular  problem of this type, one 
commonly used either a Conjugate Gradient (CG) algorithm or a Variable 
Metric (VM) algorithm. Each has its advantages. In general, a CG-algorithm 
requires more iterations than a VM one to obtain an equally good local 
minimum, but on the other hand a CG requires little storage for 
implementation. 
      We try to solve the unconstrained minimization problem 
          )(xfMin nRx∈  ,                                                                         (1) 
where f is twice continuously differentiable function. This problem is 
usually solved iteratively. Starting with an initial estimate 1x  of the 
minimum point, each subsequent point 1+ix , 1≥i  , will be derived by 
searching along a descent direction id , such that i

T
i gd >0, where )( ii xfg ∇=  

so that iiii dxx λ+=+1  for 1≥i , where iλ  is the step-length computed by a line 
search procedure (Poul and, Kristian, 2004). These line search procedures 
are traditional and efficient technique for solving unconstrained 
minimization problems. This convergence has attracted more attention in 
recent years; consequently, some new line search  methods have been 
proposed, for example, see  (Jongen, et al, 2004) & (Nocedal & Wright, 
2006). 
Or, iλ  may also be computed by Wolfe line search procedure, namely: 
  i

T
iiiiii dgcxfdxf λλ 1)()( +≤+   ,                                                      (2a) 

and 
,2 i

T
ii

T
i dgcdg −≤                                                                                (2b) 

where 0> 1c > 2c >1. Conjugate Gradient (CG) method is one of the few 
practical methods for solving large dimensionality problems because it does 
not require matrix storage and its iteration cost is very low. Normally  the 
initial direction 1d  is given by 11 gd −= . The search direction   
  iiii dgd β+−= ++ 11  ,                                                                             (3) 
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where iβ  is a constant parameter obtained by (Fletcher & Reeves, 1964), or 
by (Polak-Rib'ere, 1969), or by (Hestenes & Stiefel, 1952), or by  (Dixon, 
1975). 
 
 
2-The Extended CG-Method 
 

     Standard method for solving the problem (1) includes the CG-method 
which requires 4n locations of computer storage to implement. The CG-
method is  iterative and it generates a sequences of approximations to the 
minimizer nimx  of  f(x).  
 
We can define the classical CG-algorithm as follows (Jongen, et al 2004): 
 
Algorithm (2.1):  
       Given 

nRx ∈1 , an initial estimate of the minimizer *x , 
Step (1): Set i=1, ii gd −= . 
Step (2): Set  iiii dxx λ+=+1 , where iλ  minimizes )( iii dxf λ+ . 
Step (3): Set  iiiii dgd ββ ,11 +−= ++ is scalar defined in different manners. 
Step (4): Check for convergence . 
Step (5): If i=n, then go to step (1). 
Step (6): Else, set i=i+1 and go to step (2). 
 
    In fact, many attempts have been made to investigate more functions than 
the quadratic one as a basis for the CG-method. Over years, various authors 
have published works to solve this problem, for many sorts of objective 
function, see for example (Fried, 1971),(Goldfard, 1972),(Boland,et al, 
1979a, 1979b),(Tassopoulos& Story, 1984a, 1984b), (Al-Bayati, 1993), (Al-
Bayati & Al-Naemi, 1995), (Andrei, 2006) 
     The most popular extended CG-algorithm which based on the logarithmic 
model 
       ),1))((log()( −= xqxf ε  , ε <0 ,q<0                                              (4) 
Is used as the first part of the new interleaved algorithm, see(Al-Bayati & 
Al-Naemi, 1995). Now, the outlines of the algorithm are listed below: 
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Algorithm (2.2): (An extended non-quadratic model algorithm) 
For general function f(x) with gradient g(x) and for any starting point 

nRx ∈1 , follow these steps : 
Step (1): Set i=1, ii gd −= . 
Step (2): Set  iiii dxx λ+=+1 , i≥  1 where iλ  minimizes )( iii dxf λ+  along       
              id . 
 
 
 
Step (3): Compute iρ  from 

              ii

i
T
ii

n

ff
gg

n
yyyy

−
=+−−−++++

+

−

1

132 2/
!!4!3!2

1
λ

                            (5a)    
             )exp(log iiii yy =⇒= ρρ                                                     (5b)                                        
Step (4): Compute   iiiii dgd βρ+−= ++ 11  . 
Step (5): Test  for convergence ; if not continue. 
Step (6): If i=n or any other restarting criterion is satisfied,  go to step (1)    
              else, set  i=i+1 and go to step (2). 
Now, to ensure that the extended CG-method produces an identical sequence 
of approximations as a standard CG-algorithm, let us consider the following 
theorem: 
  
Theorem (2.1) 
          Given an identical starting point 1x , the method of (Fleacher and 
Reeves, 1964) defined by 
   ,11 gd −=                                                                                       (6) 
   ,1,1 ≥+−=+ idgd iiii β                                                                        (7) 
   ./ 22

1 iii gg +=β                                                                              (8) 
And  is the Euclidean norm applied to f(x)=q(x) and the extended CG-
method using the following search direction: 
     ,**

1 igd −=                                                                                        (9) 
     ,1,**

1
*

1 ≥+−= ++ idgd iiiii βρ                                                                 (10) 
     ,/ '

1
'

+= iii ffρ                                                                                    (11) 

     ./
2*2*

1 iii gg +=β                                                                             (12) 
 
And applied to f(q(x)) generate identical conjugate direction (within a 
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positive multiple '
if ) and the identical sequence of approximations ix  to the 

solution *x  for any function satisfying  
      'f

dq
df

= >0 for q>0 and  ε >0.                                                       (13) 

   It assumed that the one-dimensional searches are exact. The vectors n 
**

1 , igg  are gradients of f(q(x)) at 1x  and ix , respectively. 
 
Proof: 
   The theorem is true for i=1, because  
   1

'
11

'
1

*
1

*
1 dfgfgd =−=−= .                                                                    (14) 

Now for i=2, we have 
   *

211
*
2

*
2 dgd βρ+−=                                                                               (15) 

        1
'

1

2*
1

2*
2

'
2

'
12

'
2 )/)(/( dfggffgf +−=  

     1
'

1
2

1
2

2
2'

1
'

2
'

2
'

12
'

2 )/()/)(/( dfggffffgf +−=  
       .2

'
2df=  

Assume that, for ,2≥i  
      ])/([ 22

11
'*

iiiiii dgggfd ++ +−=                                                        (16) 
           .'

ii df=  
If follows from (10) that 
      **

1
*

1 iiiii dgd βρ+−= ++                                                                         (17) 
             iiiiiiiiii dfggffffgf '22

1
2''

1
'
1

'
1

'
1 )/()/)(/( +++++ +−=  

              .1
'
1 ++−= ii df  

 
 
3-The Self-Scaled VM-Algorithm 
 
   VM algorithm begin an estimate ix  to the minimizer minx  and a numerical 
estimate 1H  of the inverse Hessian matrix )(1 xG −

. 
   A sequence of points  
   iiiii gHxx λ−=+1                                                                                  (18) 
where iH  is updated by a correction of rank-2  matrix of family, i.e. the 
BFGS update 

i
T
i

T
ii

T
iiii

T
ii

T
iiii yvvvwwyHyHyyHH /]/[1 ++=+  ,                                        (19) 

with  



A new hybrid scaling parameter…            ___________________________  ]6[

    iii xxv −= +1 , iii ggy −= +1 , 
    ]//[)( 21

ii
T
iiii

T
iiii

T
ii yHyyHyvvyHyw −=                                              (20) 

 The self scaled updating can be defined 
i

T
i

T
ii

T
iiii

T
ii

T
iiiii yvvvwwyHyHyyHHH //1 ρ++−=+  ,                                 (21) 

where 
      i

T
iii

T
i vyyHy /=ρ                                                                                (22) 

(Al-Bayati, 1991). Now, the outlines of the standerd self-scaling Vm-
algorithm are: 
 
Algorithm (3.1): (A self-scaling  quadratic model algorithm) 
        Start with any initial point 1x . 
Step (1): Set i=1 and choose  1H  to be any positive definite matrix      
              (usually  1H =I). 
Step (2):  Determine the step size iλ  minimizes )( iii dxf λ+  where  
              iii gHd −= , and obtain  iiii dxx λ+=+1 . 
Step (3): Compute the self scaled updating by equation (9) & (10). 
Step (4):  Test  for convergence: if not  put  i=i+1 and go to step (2). 
 
Theorem (3.1) 
         Assume That f(x) be quadratic function and that line searches are 
exact: if H is any symmetric positive definite matrix and we define an 
updating   
      ,//1 i

T
i

T
iii

T
iiii

T
ii

T
iiiii yvvvwwyHyHyyHHH σ+−=+          (23)                    

where  
     ,/ i

T
iii

T
ii vyyHy=σ                                                                                   (24) 

Then the search direction  
      ,**

iii gHd −=                                                                                           (25)    
Is identical to the conjugate direction *

CGd   defined by 

      
⎪⎩

⎪
⎨
⎧

≥+−

=−
=+ 1,)/(

0,
**

*
1 iforddygyg

iforg
d

ii
T
ii

T
ii

i
i CG

                                                 (26) 

  
Proof: 
    The update (23) can be written as: 
 ./)/(//*

1 i
T

i
T

iii
T

iii
T

iii
T

i
T

iiii
T

ii
T

iiii yvvvyvyHyyvvyHyvHyvHH ++−−=+ σ  (27)                     
Now 
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  ii
T
ii

T
iii

T
ii

T
iiii

T
iii

T
iii

T
iiii vvygvyHyyvyHgvvyvgHygHd 2*****

1 )/(2// −++−=+         (28)         
         ,/**

i
T
iii

T
iii vygHygH +−=                                              

Using the property 0* =gvT , quoted earlier which holds for exact line 
searches. The vector *g  can be substituted for *Hg  by using the property 
 
Property (3.2) 
Let f(x) be a quadratic function. Choose an initial approximation ,1 HH =  
where H is any symmetric positive definite matrix appropriate order. 
Obtain *H  from H where d=-Hg is the search direction and assuming exact 
line searches then 
         ,**

1 HggH i =+  for 0≤ i<k≤n .                                                (29) 
For proof see (Al-Bayati, 1991) 
 
 
 
 
4-A Modified CD-Algorithm (based on mixed quadratic & non-
quadratic model) 
    
    The fundamental strategy which we wish to present the following. If it is 
based on combining the self-scaling VM- restarts of the form (21) which 
subsequent ECG-steps will be defined in (5). 
    The new self-scaled updating can be  redefined as: 
 
   i

T
i

T
iii

T
iiii

T
ii

T
iiii yvvvwwyHyHyyHH /]/[1 ρ++=+                           (30) 

where  

      
CGVMCD ργγρρ )1( −+=                                                            (31) 

is convex combination of  
VMρ  defined in (22) and 

CGρ  defined in (5), 
 where 10 ≤≤ γ , notice that 

CGVM ρρ &  have the same effectiveness  on the 
real value  ρ of the parametic ρ  when 5.0=γ . 
 
Algorithm (4.1): (New algorithm)  
        Start with any initial point 1x . 
Step (1): Set i=1 and choose  1H  to be any positive definite matrix      
              (usually  1H =I). 
Step (2):  Determine the step size iλ  minimizes )( iii dxf λ+  where  
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              iii gHd −= , and compute iiii dxx λ+=+1 . 
Step (3): Compute the self scaled updating by equation (11) & (12). 
Step (4):  Test  for convergence: if not  put  i=i+1 and go to step (2). 
 
 
5- Some observations on the new algorithm 
 
1- Positive definite iH : have been proved in (Al-Bayati, 1991) that the self- 
       scaling updating formula 1+iH  generates identical search with standard 
       CG-algorithm and it is a positive  definite. Hence, it is clear that the new   
       algorithm verifies the positive definite property. 
2- line Search:  In the new algorithm the line search strategy must satisfy  
        the following properties 
       111 +++ < iii

T
i gdgd                                                                    (32) 

     This condition is equivalent to that iH   is a positive definite. For proof 
see  
     (Buckley, 1978). 
3- the new method preserves the super-linear and stability because the scalar  
     CDρ   depends on the linear combination values of VMρ  and CGρ  which 
have been proved to the algorithms with super-linearly  convergence 
property. 
 
 
6- The Numerical Results 
     
   In this section we have compared our new proposed CD-algorithm against 
the standard well-known BFGS algorithm which  was known as the best and 
effective VM-algorithm. Of course, the scalar  CDρ depends on a linear 
combination of  VMρ  and CGρ , the scale of the parametic γ , 0<γ <1 has been 
noticed, so 5.0=γ  is the average of value of the scalar CDρ  and it performs 
better than the values of  γ  is very small tends to zero and  γ  is very large 
tends to one. The total Number of Iteration (NOI) and total Number of 
Function  evaluations (NOF).   
The comparison test involve sixteen well-known test functions with different 
dimensions 10002 ≤≤ n  (see Appendix). From Table (6.1), taking the 
percentage of 100%  for NOI and  NOF of the standard BFGS  algorithm, 
we have found that there are  a bout overall 15% NOI and 17% NOF 
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improvements against the standard BFGS algorithm. 
Also from Table (6.2) we have found by taking the same consideration that 
there are about overall  20% NOI and 27% NOF improvements against the 
standard BFGS algorithm. 
 
  The stopping criteria in Table (6.1) has been taken to be 

        5.11 −≤+ Egi .                                                              (33) 
while in Table (6.2) the stopping criteria is taken to be  

        ii ff −+1 >5.E-10.                                                         (34) 

 
                                                        Table (6.1) 
Comparison of the new algorithm against the standard BFGS algorithm using the stopping criteria .1 ε<+ig  

Standard BFGS 
NOI       [NOF] 

New Method 
NOI       [NOF]     γ  

N Test function 

23          [74] 20          [75] 0.01 
  21          [58] 0.5 
 22          [61] 0.95 

2 Rosen 

7            [25] 7            [22]                    0.01 
 7            [19] 0.5 
 7            [19] 0.95 

2 Cubic 

9             [26] 9            [27] 0.01 
 8            [20]  0.5 
 8            [20] 0.95 

2 Beal 

6            [21] 6            [18] 0.01 
 6            [18] 0.5 
 6            [18] 0.95 

2 Fred 

9            [37] 8            [31] 0.01 
 11          [36] 0.5 
 11          [33] 0.95 

3 Bigg 

10           [33] 12          [43]  0.01 
 10          [28] 0.5 
 9            [27] 0.95 

3 Recip 

21          [87] 23          [80] 0.01 
 25          [88] 0.5 
 34          [75] 0.95 

4 Powel 

57           [165] 58          [177] 0.01 
 61          [196] 0.5 
 20          [46] 0.95 

4 Wood 

8             [25] 8            [24]  0.01 
 6            [17] 0.5 
 8            [19] 0.95 

4 Shallow 

5             [36] 5            [31] 0.01 
 4            [22] 0.5 
 4            [22] 0.95 

4 Sum 

15           [39] 13          [39] 0.01 
 14          [34] 0.5 
 15          [35] 0.95 

4 Dixon 

44           [139] 43          [132]      0.01 
 43          [132] 0.5 
 43          [132] 0.95 

6 Ex-Rosen 

44           [89] 36          [73] 0.01 
 37          [75] 0.5 
 38          [77] 0.95 

40 Ex-Wolfe 

0          [82] 40          [82] 0.01 40 Ex-Full 
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 40          [81] 0.5 
 40          [81] 0.95 
63          [149] 52          [126] 0.01 
 23          [61] 0.5 
 22          [63] 0.95 

300 Ex-Non-Diagonal 

44          [145] 38          [132] 0.01 
 40          [127] 0.5 
 41          [120] 0.95 

800 Ex-Miele 

85          [172] 47          [96] 0.01 
 46          [94] 0.5 
 46          [94] 0.95 

800  Ex-Wolfe 

39          [111] 70          [167] 0.01 
 51          [114] 0.5 
 50          [104] 0.95 

1000 Ex-Powel 

10          [27] 8            [22] 0.01 
 8            [23] 0.5 
 6            [18] 0.95 

1000 Ex-Fred 

11          [32] 14          [34] 0.01 
 8            [21] 0.5 
 7            [19] 0.95 

1000 Ex-Cubic 

10          [28] 10          [28] 0.01 
 9            [23] 0.5 
40          [82] 8            [20] 0.95 

1000 Ex-Beal 

560        [1542] 478        [1287] 
100%     [100%] 85%       [83%] 

      Total 

 
 
 
 
 
                                                              Table (6.2) 
      Comparison of the new algorithm against the standard BFGS algorithm using the stopping criteria ε<−+ ii ff 1  

Standard BFGS 
NOI       [NOF] 

New Method 
NOI       [NOF]     γ  

N Test function 

22          [72] 20          [75] 0.01 
 20          [56] 0.5 
 21          [59] 0.95 

2 Rosen 

15           [60] 22          [82]                    0.01 
 17          [52] 0.5 
 19          [55] 0.95 

2 Cubic 

8             [60] 8            [24] 0.01 
 8            [20]  0.5 
 8            [20] 0.95 

2 Beal 

6            [21] 6            [18] 0.01 
 6            [18] 0.5 
 6            [18] 0.95 

2 Fred 

9             [25] 8            [23] 0.01 
 9            [25] 0.5 
 11          [30] 0.95 

3 Powel 3 

 56          [162] 57          [170]  0.01 
 60          [194] 0.5 
 19          [44] 0.95 

4 Wood 

18           [76] 21          [73] 0.01 
 24          [69] 0.5 
 29          [63] 0.95 

4 Powel 

8             [25] 7            [21]  0.01 
 6            [17] 0.5 
 7            [16] 0.95 

4 Shallow 

6             [43] 6            [37] 0.01 
 8            [58] 0.5 
 7            [55] 0.95 

4 Sum 

14           [37] 12          [37] 0.01 
 13          [32] 0.5 

4 Dixon 
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 14          [33] 0.95 
86           [278] 85          [225]      0.01 
 21          [58] 0.5 
 22          [61] 0.95 

20 Ex-Rosen 

38           [89] 38          [77] 0.01 
 38          [77] 0.5 
 38          [77] 0.95 

40 Ex-Full 

32            [96] 43          [105] 0.01 
 45          [97] 0.5 
 39          [82] 0.95 

40 Ex-Powel 

5              [14] 5            [13] 0.01 
 5            [14] 0.5 
 5            [13] 0.95 

80 Ex-Strait 

56            [134] 55          [131] 0.01 
 23          [63] 0.5 
 21          [61] 0.95 

800 Ex-N0n-Diagonal 

379          [1157] 303        [850] 
100%       [100%] 80%       [73%] 

 Total Total 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
' 
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                                      Appendix  
 
 
1- Wolfe Function: 
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nnniiii xxxxxxxxxxf(x)

       
x0=(-1;…)T. 
 
2- Generalized Recipe Function: 
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23i13i
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19i
2

-13i )x(x
xx5)(xf(x)

,         
  x0=(2,5,1;…)T. 
 
3- Generalized Miele Function: 

∑
= −−

−−−−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
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+−+−
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34i
4
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6
14i24i

2
14i34i

1)(xx))x(tan(x

)x100(x)xexp(x
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,  
  x0=(1,2,2,2;…)T. 
 
 4- Generalized Powell Function: 

∑
= −−−

−−−

⎥
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⎦

⎤
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⎢
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2
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,       
   x0=(3,-1,0,3;…)T. 
 

5- Generalized Powell 3 Function: 

 
∑
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2
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x
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2
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)x(x1
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, 

         x0=(0,1,2;…)T. 
 
6- Non-Diagonal Variant of Rosenbrok  Function: 

∑
=

>−+−=
n

i
ii nxxxxf

2

222
1 ,1;)1()(100[)(

          
    x0=(-1;…)T.   
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7- Dixon Function: 

 
∑
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, 
     x0=(-1;…)T.  
  
 8- Rosenborck Function: 
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, 
       x0=(-1.2,1;…)T. 
 
 
  9- Generalized Cubic Function: 
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10- Generalized Beale Function: 
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11- Generalized Shallow Function: 

 
[ ]∑

=
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,                               
x0=(-2,2;…)T.  

 
12- Generalized Strait Function: 

                         ,)1(100)()( 2
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2
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1

2
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i
i xxxxf

  
x0=(2,-2;…)T. 

 
13- Sum of Quadrics (SUM) function: 

 .                                  ixxf
n

i
i

4

1
)()( −= ∑

=  
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x0=(1 ,…)T. 
 
14- Full Set of Distainct Eigenvalues Function: 

∑
=

−−+−=
n

i
ii xxxxf

2

2
1

2
1 ]2[)1()(

, 
x0=(1;,…)T.  

 
 
15- Biggs Function: 

2
10

1
231 )]10exp(5)exp()exp()[exp()( ∑

=

−+−−−−−=
i

iiii zzzxxzxxf
, 

Where    
izi )1.0(= , and         

   x0=(1,2,1)T. 
 
16- Freudenstein and Roth Function: 

,]14)1((29[])2)5((3[)( 2
2221

2
2221 xxxxxxxxxf −++++−−++−=  

   x0=(30,3)T.   
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