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Abstract  

        In this paper, we have investigated a new  multiplier for the Lagrange 

interpolation by modifying the initial value of the multiplier in order to  

reduce the errors and avoid the use of arbitrary values for the initial λ . The 

new procedure improves the rate of convergence of the Lagrange 

interpolation. Numerical results indicate that the new approach yields very 

effective numerical  results depending on the number of iterations ; number of 

gradient and the number of function calls.  
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1- Introduction 

   Constrained optimization problems are interesting because they arise 

naturally in engineering, science, operations research, etc. In general, a 

constrained numerical optimization problem is defined as: 

                                     minimize ( )xf  

                           subject to ( ) l..  k          0         xhk ,,...2,1==     ………………..(1)    

                        

Without loss of generality we may transform any optimization problem to one 

of the minimization algorithms  and we, therefore, develop our discussion in 

such terms. Constraints define the feasible region, meaning that if the vector x 

complies with all constraints oxhk =)(  then it belongs to the feasible region. 

Traditional methods  relying on calculus demand that the functions and 

constraints have very particular characteristics (continuity, differentiability, 

second order derivability, etc.) 

   Most optimization problems have constraints. The solution or set of 

solutions which are obtained as a final result of an evolutionary search must 

necessarily be feasible, that is, satisfy all constraints. A taxonomy of 

constraints can be considered and composed of (a) number, (b)metric, (c) 

criticality and (d) difficulty. A first aspect is number of constraints, ranging 

upwards from one. Sometimes problems with multiple objectives are 

reformulated with some of the objectives acting as constraints. Difficulty in 

satisfying constraints will increase (generally more than linearly) with the 

number of constraints. A second aspect of constraints is their metric, either 

continuous or discrete, so that a violation of the constraint can be assessed in 

distance from satisfaction using that metric. A third consideration is the 

criticality of the constraint, in terms of absolute satisfaction. A constraint is 

generally formulated as hard (absolute) when in fact, it is often somewhat 

soft. That is, small violations would be considered for the final solution if the 
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solution is otherwise superior to other solutions. Evolutionary algorithms are 

especially capable of handling soft constraints since a population of solutions 

is returned at each point in the search. This allows the user to select a solution 

which violates a soft constraint (technically infeasible) over a solution which 

would be the best, technically feasible solutions found. A final aspect of 

constraints to be considered is the difficulty of satisfying the constraints. This 

difficulty can be characterized by the size of the feasible region (F) compared 

to the size of the sample space (S). The difficulty may not be known a priori, 

but can be gauged in two ways. The first way is how simple it is to change a 

solution which violates the constraint to a solution which does not violate the 

constraint. The second way is the probability of violating the constraint during 

search .INT [1] 

2- The  Lagrange  method  

     The area of Lagrange multiplier methods for constrained minimization has 

undergone a radical transformation starting with the introduction of 

augmented Lagrangian functions and methods of multipliers in 1968 by 

Hestenes and Powell. The initial success of these methods in computational 

practice motivated further efforts aimed at understanding and improving their 

properties. At the same time their discovery provided impetus and a new 

perspective for reexaminations of Lagrange multiplier methods proposed and 

nearly abandoned several years earlier. These efforts, aided by fresh ideas 

based on exact penalty functions, have resulted in a variety of interesting 

methods utilizing Lagrange multiplier iterations and competing with each 

other for solution of different classes of problems .INT [2].  

We consider the equality constrained minimization problem: 
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                               minimize ( )xf  

                           subject to ( ) l...  k          0         xhk ,,2,1==    …………………(2) 

    The classical method of solving this problem is due to Lagrange. The 

method removes the equality constraints by considering the function 

                    ( )( )∑
=

+=
l

k
kk xhxfxL

1

)(),( λλ                     …………………………(3)                     

       where . [ ] T
1  ,... lk λλλ = denotes the set of Lagrange multipliers for this 

problem  [4 ],where λ  is an ( )m*1  vector of Lagrange multipliers, one for 

each constraint. In general, we can set the partial derivatives to zero to find 

the minimum: 

                                                  0=
∂
∂

kx
L      ..lk ,........2,1=    …………………………….(4) 

  and  

                                                   0=
∂
∂

k

L
λ

..l k ,........2,1=       ………………………...(5)                          

Theorem(1): 

   If f and c are convex functions , X is a convex set , and x* is an optimal 

solution to any problem ,then there exists a Lagrange multiplier   λ ∈ R such 

that L(x*, λ)≤ L(x, λ) for  x∈ X. 

Proof:  INT[3] 

Theorem(2): 

  Suppose that  there exists a point Xx ∈*  and nR∈,*λ such that *x  maximize 

( )*,λxL  over all Xx∈  and ( ) bxh =*  solve the problem.  

Proof :INT[3] 
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2. 1- The augmented Lagrange for inequality constrained 

    The augmented Lagrange method combines the classical Lagrange method 

with the penalty function method. We use the augmented Lagrange method to 

tackle equality constraints for the problem: 

      Minimize       f(x)  

       Subject to     
( )
( ) .l1,2,......k         0

......i1,2,......k         0
+=≠

==
ixh

xh

k

k ………………………………..(6) 

The augmented Lagrange is now defined by  

( )( ) ( )( )
2

11
)(),,( ∑∑

+=

++=
l

i
k

i

k
kkk xhrxhxfrxALM λλ ………………………………..(7) 

where ( )kk xrh2=λ …………………………………………………………...(8) 

2.2- outlines of the standard augmented Lagrange algorithm [5]  

1. choose a tolerance 510−=ε ,starting point 00 =x , initial penalty parameter 

10 =r , and initial Lagrange multipliers 00 =λ  

2. Perform unconstrained optimization on the augmented Lagrangian function 

of eq.7 

3. set )(2 kk xrh=λ  

5. Check the convergence criteria. If εp**
1 kk xx −+ , then stop. Otherwise, set 

*
0 kxx = and return to Step 2. 
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Theorem(3): 

   Suppose the objective function f(x) of the constraint optimization problem 

has a local minimum at the feasible point x* and N is an open set. if f(x) and 

the various constraint function are continuously differentiable near x*.then 

there exists unit vectors of  Lagrange multiplier  λ1, λ2,…………….., λk and  

r1,r2,…………… such that 

( ) ( ) ( ) 0*
1

*

1

*
0 =+∇+∇ ∑∑

+==

l

ik
kkk

i

k
k xhrxhxf λλ …………………………………….…(8) 

each of the multipliers of the kµµµλ ,........,,, 210 is nonnegative and 

0      0 pjk gif=µ . 

Proof :INT [4]  

3- New proposed constrained optimization algorithm  

   In this section we are going to produce a new procedure to calculate the 

parameter kλ  .This technique yields an updating to kλ   at each iteration instate 

of taking the value as a constant parameter to obtain a new  value of 1+kλ  

let ( ) ( ) ( ) ( ) ( )kkkkkkk xhxhxfxL 2  1 , λλλ −++=  ………………………………(9) 

optimal values of kλ  occur 

( ) ( ) ( ) ( )( ) 022 =−++ kkkkk xhxhxhxf λ  

( ) ( )( ) ( ) ( )( )kkkk xhxhhxf 2
k

2 x −=+− λ  

( ) ( )
( ) ( )kk

kk
k xhxh

xhxf
2

2

−
−−

=λ ………………………………………………………(10) 
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3.1- The outline of new proposed algorithm 

1. choose a tolerance 510−=ε ,starting point 00 =x   

2. Perform unconstrained optimization ( minf search) on the augmented 

Lagrangian function of eq.9 

3. set ( ) ( )
( ) ( )kk

kk
k xhxh

xhxf
2

2

−
−−

=λ  

4. Check the convergence criteria. If εp**
1 kk xx −+ , then stop. Otherwise, set 

*
0 kxx = and return to Step 2. 

3.2- Theoretical Review  

3.2.1- Augmented Lagrange with equality linear constrained 
      We consider the problem of finding a local minimize of the function  
                                               )(xf  

 Where x  is required to satisfy general equality constraints  

                                 0)( =xhi ,  mi ≤≤1  

and the linear inequality constraints  

                                     0≥−bAx   

Here f  and ih  map RRn → , A is a n-by-n matrix and pRb∈ , and make the 

following assumptions: 

 

1As : The region }0/{ ≥−= bAxxD is nonempty. 

2As : the functions f(x) and c(x) are twice differentiable for all   Dx∈  . 

3As : The iterates }{ kx  considers lie within a close ,bounded  domain . 

4As :  The matrix *)(xj  has a column rank no smaller than m at any limit point 

x* , of the sequence }{ kx . 
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Lemma (1): [Conn et al.(1993), Lemma 4.1] 

    Suppose that the parameter kµ  converges to zero as k  increases. Then the 

product  kk λµ  converges to zero.  

Lemma(2): 

Let Kkxk ∈,}{ , be a sequence which converges to the point ∗x  and suppose 

that kk w≤σ , where the kw  are positive scalar parameters. Then , there is a 

positive constant 1k  and an integer 0k  such that  kkx
T wkZ 1≤∇∗ φ              

for all )(,0 Kkkk ∈≥  

Theorem(4): 

     Assume that 21 AsAs − hold, Let *x  be any limit point of the sequence }{ kx  

generated by algorithm. For which 3As  and 4As  hold and let K be the set of 

indices of an infinite subsequence of the kx whose limit *x . Finally ( )∗∗ = xλλ .  

See[2] 

3.2.2- Augmented Lagrangian with equality constraints in 

Hilbert spaces                
     Let  Rxf →:  and  YXh →:  be twice continuously X and  Y  be Hilbert 

space , We consider  problem 
                                 )(min xf  

                                Subject to X  0h(x) ∈= x  

assume that Xx ∈*  solve and that ( )( )⋅′ ∗xh    is susceptive and make the 

following assumptions 

1Ac : The mappings Rxf →:  and YXh →:   are twice continuously 

differentiable. 

2Ac :The  iterates  }{ kx  lie within a compact set. 

3Ac :At any limit point ∗x of Nkkx ∈}{  the operator ( )( )⋅′ ∗xh  is susceptive 

4Ac : The convergence tolerances are 0== ∗∗ ηω  
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3.3 Global convergence analysis 

Lemma(3):  

   Assume 21 AcAc − to be valid. Let ( ) Kkkx ∈  be a subsequence with convergence  

to x* .Further let *)(xλ be defined , assume that ( ) YKkk ⊂∈λ    is any sequence of 

vectors and that ( ) Kkk ∈µ   from anon-creasing  sequence of scalars. Suppose 

further ,that the iterates satisfy εµλφ p),,( kkkX x∇ where positive scalar 

parameters which converge to zero as Kk ∈   increase then there are positive 

constants 1k  and 2k  such that  

*21*)(),,( xxkkxx kkkkk −+≤−− ωλµλλ  

*2*)()( xxkxx kk −≤− λλ  

*2*1 )()( xxkxkxc kkkkkkk −+−+≤ µλλµµω  

for all Kk∈  sufficiently large .Hence ,the sequence Kkkkkx ∈
− )),,(( µλλ and 

kkx ))((λ    

0))(,(),,(lim ** =∇=∇
∈

xxLx xkkkXKk
λµλφ  

 

Lemma(4):  
      Let INkkx ∈)( , INkk ∈)(λ , INkk ∈)(η  and INkkw ∈)(  be sequences generated by 

Algorithm. Further assume that step 3b is executed infinitely often 

( )0lim =∞→ kk µ  then the product kk λµ  converges to zero. 

Theorem(5):  
       let 41 AcAc − be valid,  let kx    be a subsequence  whose limit is ∗x . then ∗x  

is a  Kuhn  Tucher (first order stationary point ), and ( )∗xλ is the 

corresponding  Lagrange multiplier 
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( )( ) ( ) ( ) ( )( ) ( ) 0                       ,0, ==∗′+∇=∇ ∗∗∗
∗

∗ ∗ xhxxhxfxxL λλ  

Where the sequence ( )( ) Kkx kkk ∈µλλ ,, and ( )
Kkkx

∈
λ , convergence to ( )∗xλ  and 

the gradient convergence to  ( )( ) 0, =∇ ∗⋅∗ xxLx λ for Kk ∈  

see[3 ] 

3.4- Augmented Lagrangian with equality constraints in feasible 

spaces                        
    The optimization problem can be stated as follows: 

{ }τ  k    ,0)( osubject  t    )(  Minimize
nRx

∈=
∈

xhxf k    (11) 

where f and the functions ,kc  are all smooth, real-valued functions on a subset 

of nR , and τ  are finite sets of indices. As before, we call f the objective 

function, the τ∈k ,kh  are the equality constraints .We define the feasible set ψ  

to be the set of points x  that satisfy the constraints; i.e.,  

{ } ; k  ,0)(: τψ ∈== xhx k  and make the following assumptions: 

1Ap : The region { } ; k  ,0)(: τψ ∈== xhx k is nonempty. 

2Ap : the functions f(x) and c(x) are twice differentiable for all   ψ∈x  . 

3Ap :The iterates }{ kx  considered  lie within a closed ,bounded  domain . 

4Ap : The convergence tolerances are 00000001.0=∗ε  

New theorem (6):  
      let 41 ApAp − be valid  , let kx    a subsequence  whose limit is ∗x  .Then ∗x  is 

a  Kuhn  Tucher ( first order stationary point), and ( )∗xλ is the corresponding  

Lagrange multiplier 

   

( )( ) ( ) ( ) ( )( ) ( ) 0                       ,0, ==∗′+∇=∇ ∗∗∗
∗

∗ ∗ xhxxhxfxxL λλ  

Where the sequence ( )( ) Kkx kk ∈,,λλ and ( )
Kkkx

∈
λ , convergence to ( )∗xλ  and the 

gradient ( ) 01,, =−∇ ∗ kkx xL λλ convergence to  ( )( ) 0, =∇ ∗⋅∗ xxLx λ for Kk ∈  

Proof: the proof is a combination of the theorem (4) and theorem (5).  
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4.Numerical Results: 
In order to assess the performance of the proposed algorithm, the 

standard and new algorithms are tested over (8) non-linear constrained test 

functions (see appendix )with 51 ≤≤ n  and 3)(1 ≤≤ xh . 

 All the results are obtained using (Pentium 4 computer). All programs 

are written in FORTRAN 90 language and for all cases the stopping criterion 

taken to be: 

ε≤ih  

All the algorithms in this paper use the same ELS strategy which is the 

cubic fitting technique fully described in [1] . 

The comparative performance for all of these algorithms is evaluated by 

considering NOF , NOI , number of gradient NOG . 
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Table (1) 

Comparison between the  new method and standard 

Lagrange multipliers.  

Test 

Function 

New algorithm 

 NOF (NOG)NOI 

standard  Lagrange 

multipliers algorithm 

NOF (NOG)NOI 

1 31(3)2 41(10)3 

2 43(4)2 61(7)3 

3 31(3)2 39(8)3 

4 34(6)1 38(7)3 

5 23(3)2 62(11)3 

6 38(3)2 157(29)3 

7 55(3)2 121(13)3 

8 65(3)2 38(22)5 

Total 320(28)15 557 (107)26 

 

From the above table it is clear that the new algorithm has an improvement of 

NOF%43   , NOG%75  and NOI%43 compared with the standard algorithm . 
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Appendix 

1. min 2
21

4
1 )2x-(x2)-(x)( +=xf  

     s.t  
                       0x-     x 2

2
1 =  

 
2. min 2xx)( 2

21 +=xf  
      s.t 
                         2-x-   x 2

2
2
1 =  

 
3-min 2

21
2

1 )2x-(x2)-(x)( +=xf  
    s.t  
                     4x-   x 2

2
2
1 −=  

 
4-min 2

2x2
1x)( +=xf  

      s.t  
                        1-x-   x 2

2
2
1 =  

 
5-min 2

2
2
1 x5.2x5.0)( +=xf  

      s.t 
                      01-x-      x 21 =  
 
6-min 4

54
4

43
2

32
2

21
2

1 )x()x()x()x()1x()( xxxxxf −+−+−+−+−=  
    s.t   
                0232xxx 3

3
2
21 =−+++  

     
02x    x

022-2xx    x

51

4
2
32

=+
=+++

 

7-min )xxxx(xexp)( 54321=xf  
    s.t   
        1xxxxx 2

5
2
4

2
3

2
2

2
1 =++++  

    
0x5    x

1x    x

5432

3
2

3
1

=−
=+

xx
 

 
8-min 6

5
4

4
2

3
2

21
2

1 )1x()1x()1x()x()1x()( −+−+−+−+−= xxf  
      s.t 
            22)xxsin(x 544

2
1 =−+x  

                    282
4

4
32 +=+ xxx  

     


