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A new multiplier for Lagrange interpolation in constrained non linear

optimization
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Abstract

In this paper, we have investigated a new multiplier for the Lagrange
interpolation by modifying the initial value of the multiplier in order to
reduce the errors and avoid the use of arbitrary values for the initial A. The
new procedure improves the rate of convergence of the Lagrange
interpolation. Numerical results indicate that the new approach yields very
effective numerical results depending on the number of iterations ; number of

gradient and the number of function calls.
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1- Introduction

Constrained optimization problems are interesting because they arise
naturally in engineering, science, operations research, etc. In general, a
constrained numerical optimization problem is defined as:

minimize f/(x)

subject to 4, (x)=0 k=12 sl i, (1)

Without loss of generality we may transform any optimization problem to one
of the minimization algorithms and we, therefore, develop our discussion in
such terms. Constraints define the feasible region, meaning that if the vector x

complies with all constraints %, (x) =0 then it belongs to the feasible region.

Traditional methods relying on calculus demand that the functions and
constraints have very particular characteristics (continuity, differentiability,
second order derivability, etc.)

Most optimization problems have constraints. The solution or set of
solutions which are obtained as a final result of an evolutionary search must
necessarily be feasible, that is, satisfy all constraints. A taxonomy of
constraints can be considered and composed of (a) number, (b)metric, (c)
criticality and (d) difficulty. A first aspect is number of constraints, ranging
upwards from one. Sometimes problems with multiple objectives are
reformulated with some of the objectives acting as constraints. Difficulty in
satisfying constraints will increase (generally more than linearly) with the
number of constraints. A second aspect of constraints is their metric, either
continuous or discrete, so that a violation of the constraint can be assessed in
distance from satisfaction using that metric. A third consideration is the
criticality of the constraint, in terms of absolute satisfaction. A constraint is
generally formulated as hard (absolute) when in fact, it is often somewhat

soft. That 1s, small violations would be considered for the final solution if the
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solution is otherwise superior to other solutions. Evolutionary algorithms are
especially capable of handling soft constraints since a population of solutions
is returned at each point in the search. This allows the user to select a solution
which violates a soft constraint (technically infeasible) over a solution which
would be the best, technically feasible solutions found. A final aspect of
constraints to be considered is the difficulty of satisfying the constraints. This
difficulty can be characterized by the size of the feasible region (F) compared
to the size of the sample space (S). The difficulty may not be known a priori,
but can be gauged in two ways. The first way is how simple it is to change a
solution which violates the constraint to a solution which does not violate the
constraint. The second way is the probability of violating the constraint during

search JINT [1]
2- The Lagrange method

The area of Lagrange multiplier methods for constrained minimization has
undergone a radical transformation starting with the introduction of
augmented Lagrangian functions and methods of multipliers in 1968 by
Hestenes and Powell. The initial success of these methods in computational
practice motivated further efforts aimed at understanding and improving their
properties. At the same time their discovery provided impetus and a new
perspective for reexaminations of Lagrange multiplier methods proposed and
nearly abandoned several years earlier. These efforts, aided by fresh ideas
based on exact penalty functions, have resulted in a variety of interesting
methods utilizing Lagrange multiplier iterations and competing with each
other for solution of different classes of problems .INT [2].

We consider the equality constrained minimization problem:
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minimize f(x)
subject to 4, (x)=0 k=120l i, (2)

The classical method of solving this problem is due to Lagrange. The

method removes the equality constraints by considering the function
/
Lx,A)=f)+ Y 4(h(x,)) (3)
k=1

where . 1, =[4,...4,] " denotes the set of Lagrange multipliers for this
problem [4 ],where A is an (1*m) vector of Lagrange multipliers, one for

each constraint. In general, we can set the partial derivatives to zero to find

the minimum:

A Y 4)
ox,
and
oL
—=0 k=12,..... L i 5
o (5)
Theorem(1):

If f and ¢ are convex functions , X is a convex set , and x* is an optimal
solution to any problem ,then there exists a Lagrange multiplier 4 € R such

that L(x* 4)<L(x, 1) for x€ X
Proof: INTI3]
Theorem(2):

Suppose that there exists a point x" € X and A1',e R"such that x° maximize

L(x,4") over all xe X and A(x")=b solve the problem.

Proof :INT|3]
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2.1- The augmented Lagrange for inequality constrained

The augmented Lagrange method combines the classical Lagrange method
with the penalty function method. We use the augmented Lagrange method to

tackle equality constraints for the problem:

Minimize  f(x)

Subjectto ! (3;8 t:fﬁ;::j ...................................... ©)
The augmented Lagrange is now defined by
ALM ) = )+ 34,0 ) lz;:r(h(xk ) e 7
WRETE A, = 27h(X, ) oot (8)

2.2- outlines of the standard augmented Lagrange algorithm [5]

1. choose a tolerance &=107,starting point x,=0, initial penalty parameter
r, =1, and initial Lagrange multipliers 4,=0

2. Perform unconstrained optimization on the augmented Lagrangian function

of eq.7
3.set 4, =2rh(x,)

5. Check the convergence criteria. If ‘

Xpoi —xZH < ¢, then stop. Otherwise, set

x, =x, and return to Step 2.
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Theorem(3):

Suppose the objective function f{x) of the constraint optimization problem
has a local minimum at the feasible point x* and N is an open set. if f{x) and

the various constraint function are continuously differentiable near x*.then

there exists unit vectors of Lagrange multiplier Aj, Ap,......ooeo...... , A and

P12 eeeeunenn...... SUch that

/IOVf(x )+ z/lthk(x )+ DA () =0 (8)
k=1 k=i+1

each of the multipliers of the A,u,u,......., .18 mnonnegative and

u, =0 if g, <0.
Proof :INT [4]
3- New proposed constrained optimization algorithm

In this section we are going to produce a new procedure to calculate the

parameter A, .This technique yields an updating to A, at each iteration instate

of taking the value as a constant parameter to obtain a new value of 4,

let L(x,, 2, )=f(x,)+4 Alx, )+ (1=2,) B2(xX,) coverereraneeieeeee, 9)

optimal values of 1, occur
f(xk)+h2(xk)+/1k(h(xk)_h2(xk)): 0

- (f(xk)+ h? (Xk)): A (h(xk )_ hz(xk ))

_f(xk)_hz(xk)
e i (10)
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3.1- The outline of new proposed algorithm

1. choose a tolerance ¢ =107 ,starting point x, =0

2. Perform unconstrained optimization (f,, search) on the augmented

Lagrangian function of eq.9

3.set 4, = — fx) =1 (%)

h(xk)_ hz(xk)

4. Check the convergence criteria. If |

X —x,f” < ¢, then stop. Otherwise, set

x, =x,and return to Step 2.

3.2- Theoretical Review

3.2.1- Augmented Lagrange with equality linear constrained
We consider the problem of finding a local minimize of the function
Jf(x)
Where x is required to satisfy general equality constraints
h(x)=0, 1<i<m
and the linear inequality constraints
Ax-b=>0
Here f and #, map R" — R, A is a n-by-n matrix and » € R”, and make the

following assumptions:

As, : The region D = {x/ Ax—b >0} is nonempty.

As, : the functions f(x) and c(x) are twice differentiable forall xeD .

As,: The iterates {x,} considers lie within a close ,bounded domain .

As,: The matrix j(x*) has a column rank no smaller than m at any limit point

x*, of the sequence {x,}.



[40] A new parameter for Lagrange...

Lemma (1): [Conn et al.(1993), Lemma 4.1]

Suppose that the parameter u, converges to zero as k increases. Then the
product 4, |4, converges to zero.
Lemma(2):
Let {x,},k € K, be a sequence which converges to the point x, and suppose

that o, _ w,, where the w, are positive scalar parameters. Then , there is a

positive constant &, and an integer &, such that

2.9, ¢, <kw,
for all k>k,, (ke K)
Theorem(4):

Assume that A4s, — 4s, hold, Let x* be any limit point of the sequence {x,}
generated by algorithm. For which 4s, and 4s, hold and let K be the set of
indices of an infinite subsequence of the x, whose limit x". Finally 2, = A(x, ).
See|2]

3.2.2- Augmented Lagrangian with equality constraints in
Hilbert spaces
Let f:x—> R and h:X —Y be twice continuously X and Y be Hilbert
space , We consider problem
min £(x)
Subject to h(x)=0 xe X
assume that x* e X solve and that 4'(x,)-) is susceptive and make the
following assumptions
Ac,: The mappings f:x—> R and h: X —»Y are twice continuously
differentiable.
Ac,:The iterates {x,} lie within a compact set.
Ac,:At any limit point x,of {x,},_, the operator 4'(x, )-) is susceptive

Ac,: The convergence tolerances are w, =7, =0
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3.3 Global convergence analysis
Lemma(3):

Assume Ac, — Ac, to be valid. Let (x,),_, be a subsequence with convergence

to x* .Further let 1(x*)be defined , assume that (1, ) is any sequence of

keKcY
vectors and that (u,),_, from anon-creasing sequence of scalars. Suppose
further ,that the iterates satisty |V é(x,,4,,u,)|<ewhere positive scalar

parameters which converge to zero as k€ K increase then there are positive

constants k, and k, such that

|4 Ceps A 1) = 20| < ko + ey ey = x.

IAGx,) = A% < ky x, = x.

||C(xk )” <ko,py + 1y ”ﬂ“k - A(x.)

+ ket x, — x.
for all k € K sufficiently large .Hence ,the sequence (4 (x,,4,,1,)),., and

(A6,
im Y §(x,, Ay 1) =V L(x., A(x)) =0

Lemma(4):
Let (xk)kelN7 (ﬂk)keIN s (nk)ke[N and (Wk)kelN be Sequences generated by

Algorithm. Further assume that step 3b is executed infinitely often

(lim,_,,, s, =0) then the product x,|4,| converges to zero.
Theorem(5):

let 4c, — Ac,be valid, let x, be a subsequence whose limit is x,. then x,
isa Kuhn Tucher (first order stationary point ), and A(x. )is the

corresponding Lagrange multiplier
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VL(x,, A(x"))= v/ (x. )+ A'(x, )= (2(x. ) =0, h(x,)=0

Where the sequence (7(x,, Ay 1y )k e K and Alx, )keK, convergence to A(x. ) and
the gradient convergence to V _L(x,,A(x,))=0for ke K

see[3 ]

3.4- Augmented Lagrangian with equality constraints in feasible
spaces

The optimization problem can be stated as follows:

Minimize f(x) subject to {hk (x)=0, ke r} (11)

xeR"

where fand the functions ¢, are all smooth, real-valued functions on a subset

of R", and r are finite sets of indices. As before, we call f'the objective

function, the #,,k e r are the equality constraints .We define the feasible set y

to be the set of points x that satisfy the constraints; 1.e.,

w=1{x:h,(x)=0, ker;} and make the following assumptions:
Ap,: The region w = {x:h,(x) =0, k e r; }is nonempty.
Ap, : the functions f{x) and c(x) are twice differentiable for all xey .
Ap,:The iterates {x,} considered lie within a closed ,bounded domain .
Ap,: The convergence tolerances are ¢, =0.00000001
New theorem (6):
let 4p, — 4p,be valid , let x, a subsequence whose limit is x, .Then x, is

a Kuhn Tucher ( first order stationary point), and A(x. )is the corresponding

Lagrange multiplier

VL(x* ,l(x* )): VF(x,)+'(x, )* (l(x* )): 0, h(x,)=0
Where the sequence (1 (xk,/ik,))k ek and Alx, )M, convergence to A(x. ) and the
gradient V _L(x,,1,,1- 4, )=0convergence to V L(x,,A(x,))=0for ke K

Proof: the proof is a combination of the theorem (4) and theorem (5).
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4.Numerical Results:

In order to assess the performance of the proposed algorithm, the
standard and new algorithms are tested over (8) non-linear constrained test
functions (see appendix )with 1<n <5 and 1< a(x)<3.

All the results are obtained using (Pentium 4 computer). All programs
are written in FORTRAN 90 language and for all cases the stopping criterion
taken to be:

|7l &

All the algorithms in this paper use the same ELS strategy which is the
cubic fitting technique fully described in [1] .

The comparative performance for all of these algorithms is evaluated by

considering NOF , NOI , number of gradient NOG.
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Table (1)

Comparison between the new method and standard

Lagrange multipliers.

Test New algorithm standard Lagrange

Function NOF (NOG)NOI multipliers algorithm
NOF (NOG)NOI

31(3)2 41(10)3

43(4)2 61(7)3

31(3)2 39(8)3

34(6)1 38(7)3

23(3)2 62(11)3

38(3)2 157(29)3

55(3)2 121(13)3

65(3)2 38(22)5

320(28)15 557 (107)26

From the above table it is clear that the new algorithm has an improvement of

43 % NOF , 75 % NOG and 43 % NOI compared with the standard algorithm .
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Appendix

. min f(x)=(x,-2)*+(x,-2x,)’
s.t
X;-x,=0

2. min f(x)=x,x3+2
s.t

2 2
X| -X; =-2

3-min f(x) = (x,-2)* +(x, -2x,)’

s.t
)f-xi =4
4-min f(x) = xlz + x%
s.t
Xf -X; =-1

5-min f(x) = 0.5x; +2.5x3
s.t
X, -X,-1=0

6-min f(x) = (x, = 1) + (X, = x,)" + (X, = x,)" + (X5 = x,)" + (x, = x5)"
s.t
X, +X§+X§+2—3\/§=O
X, +X3 +x4+2-2«/§ =0
XXs+2=0
7-min f(x) = exp(x,X,X;X,X5)
s.t
X12 +x§ +x§ +xi+x§ =1
X +x; =1

X,X; = 5X,x, =0

8-min /(x)=(x, D +(x, —x,)* +(x; ~1)* +(x, = D* + (x;, = )°
s.t
X;x, +sin(x, —x,) = 242
4.2
X, +x;x; =8+ V2



