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1. Introduction

Different approaches to fuzzy multi-objective have been considered with fuzzy parameters (Duenas and Petrovic, 2008).
(Ishii and Tada, 1995) studied the maximum tardiness with fuzzy precedence relation. An extensive review of scheduling
problems with multi-objectives was introduced by ( T’kindt and Billaut, 2001) where they focused on single machine
scheduling, parallel-machine scheduling, flow shop and fuzzy scheduling problems. Many research articles in scheduling
problems dealt with earliness penalties. (Jayanthi et al., 2017) minimized earliness and tardiness costs where both
processing times and due dates are fuzzy (Niroomand et al., 2016) focused on a problem of minimizing earliness and
tardiness with common fuzzy due date on a single machine. Two important types of bi-criteria scheduling problems are
there, the hierarchical problems and the simultaneous problems. Simultaneous problems mean that the two objectives have
the same importance. In this case a Pareto set can be found which provides deeper insights to the decision maker to choose
one of these solution ( Lei, 2009). Many important works were done regarding Pareto set. (Hoogeveen and Velde, 1995)
minimized total completion time and maximum cost simultaneously. For equal processing times with respect to criteria
Lmax and C,,q, (Lazarev et al., 2015) found the Pareto set for these jobs. (Nguyen and Bao, 2016) found the efficient
solution to the mixed shop scheduling problem by using genetic algorithm. (Abdul-Razaq and Kawi, 2010) solved
simultaneously a function of square completion time and maximum tardiness. In this paper a bi-criterion scheduling
problem is studied which is minimize total fuzzy completion time and maximum fuzzy earliness. A new definition of fuzzy
numbers is introduced, a relation between the lower bound and the optimal solution with number of efficient solutions for a
problem is given. Also an exact solution of the problem was found through the Pareto set.

2. Definitions and Notations
Definition 1. Triangular fuzzy number is a fuzzy number represented by three points A = (a®,a,aV). The membership
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function of a triangular fuzzy number A is defined by

, x<al,
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10
a-—Xx
5 a<x<aY

Suppose that A and B are two triangular fuzzy numbers where A = (a%, a,a¥) and B = (b", b, bY), then

() AP B = (a“ + b a+b,a’ + bY), which is also triangular fuzzy number,

(i A© B = (a¥ —bY,a —b,a¥ — b"), which is also triangular fuzzy number (Hsien, 2010).

To find a crisp value of the triangular fuzzy number, the procedure that converts a fuzzy number to its crisp value is called
defuzzification. Consider the following triangular fuzzy number A = (a;,a,, a3) the centroid point method of the triangular
fuzzy number is D(A) = m (Cheng, 1998). Let p, and p, be two triangular fuzzy processing times where p; =

P pLpY) and p, = (pz,pz,pz) also for the due dates d, and d, be two triangular fuzzy due dates where d, =
(d¥,d;,dY) and d, = (d5,d,,dY). Most of the defuzzification methods lead to a rational numbers, so let F be the
denominator of the rational number which has a great role in this paper.
N: the set {1, 2, 3,..., n},
IT: the set of permutation schedules,

= (p}’ pj, p}): fuzzy processing time of job j, and they are triangular fuzzy numbers (TFN),

= (df, dj, d}"): fuzzy due date of job j,

c] fuzzy completion time of job j,
E = max {d; © ¢, 0}: fuzzy earliness of job j, where 0 = (0,0,0),
max = Max {E } maximum fuzzy earliness,
AS: crisp value of the fuzzy number A,
F: the denominator of a rational number, and can be teated as a fuzzy number as F; = (F;, F;, F)), i.e. FL =F= FU
MST (Minimum fuzzy slack times): jobs are sequenced in non-decreasing order of minimum fuzzy slack tlmes §j, where
5 =d;0p;
SPT (Shortest processing time): jobs are sequenced in non-decreasing order of ;,
LB (Fuzzy lower bound): is a value of the objective function which is less than or equal to the fuzzy optimal value,
UB (Fuzzy upper bound): is a value of the objective function which is greater than or equal to the fuzzy optimal value.

L

Definition 2. A feasible schedule m* € IT is Pareto optimal, or efficient, with respect to the criteria f; and f, if there is no
feasible schedule 1 such that both f; () < f; (") and f, (1) < f, ("), where at least one of the inequalities is strict.

3. Structure of the Problem

It is important to introduce some structures of bi-criteria problems to understand the relation among their solutions as
illustrated in the following table.

Let f; and £, be two criteria, then

Types Structures Notes Possible solutions
I f, st f, Hierarchical problems 1//Lex(f,, f;) Optimal solution
11 f, and f, Simultaneous problems 1//F(fy, f,) Pareto set, no optimal solution
111 £+, Sum of two problems Optimal solution

Now consider aset N, N = {1,2,...,n} of n jobs to be processed on a single machine without interruption. Each job j has a
triangular fuzzy processing time §; = (p¥,p;, pY), and a triangular fuzzy due date d; = (df,d;,d/"), for j = 1,2,...,n. All
jobs are available at time zero and the machine can only process one job at a time. The objective functions nuder study are
fi= Z?:l G and f, = Emax-

For the problem (II1), let the fuzzy lower bound LB = 29;1 ¢;i(SPT) & Epnax(MST) and the fuzzy upper bound UB =
Z?Ll ¢;(SPT) @ Epnax (SPT), where the fuzzy completion time of jobs can be calculated according to the following
formulas:
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51 = p:lt
¢ =¢ @ Py, @)

¢ =c”j_1EBﬁj, for j=1,...,n

The fuzzy earliness is defined as a fuzzy maximum of zero and the difference between the fuzzy due date and the fuzzy
completion time of this job, this means

where the fuzzy completion time ¢; = (ch, Cj) c]-U) of each job j and can be obtained by Eqg.(1) and maximum fuzzy
earliness is

Fnax = max {max{d; © ,0}}[11]. ?)

4. Pareto Set in Fuzzy Environment

It is known that the minimum slack time MST-rule , if no idle time is allowed , E,,,, is minimized by sequencing the jobs
in of non-decreasing order of s; =d; —p; . Since Epq, is irregular function then the value of E,,, is in the range
[Emax(MST), Epax (SPT)]. (Hoogeveen and Velde, 1995) minimized total completion time and maximum cost
simultaneously in polynomial time. (Kurz and Canterbury, 2005) found the Pareto set for the same problem by using
genetic algorithm. In the fuzzy environment the problem (I1) is 1//F(Z} 1 6 max) We will present a new definition of
fuzzy numbers, and then introduce our results.

4.1. M-strongly positive numbers
Definition 3. Two fuzzy numbers A = {a% a,a"} and B = {b", b, b"} are said to be m-strongly positive iff (a + a + a’)-
(b“ + b + bY) = m, where m is any positive number greater than or equal 1.

Theorem 1. If the fuzzy processing times are comparable with the ordering " < " by one of the ranking methods , then the
SPT sequence is one of the efficient solutions.

Proof. Suppose that all p7, j = 1,2,...,n are different, so the unique SPT sequence gives the absolute minimum of f;.
Hence there is no sequence m such that f; () < f,(SPT).If more than one SPT sequence exists , let SPT* be a sequence
satisfying the SPT-rule and such that jobs with equal pj are in MST sequence. Hence there is no sequence r such that
fi(m) < fi(SPT™) . So the SPT is one of the efficient solution. O

In general the MST sequence must not be an efficient solution, it is possible to a sequence to have the same value as the
MST sequence has.

Let p; = (p},pj,p}’), 1 <j <n be a fuzzy processing time, and pj be its corresponding crisp value. According to the

L : dc* d!_, d: d-U
above defuzzify method D(p;) = pf = p; m Also for D(d)) = df = - R

{E,-L, ,-,Ej”}, 1 <j <n, Ej is the crisp value and can be found in the same Way.

. For the fuzzy earliness E, =

5. Analgorithm

We introduce an algorithm which finds all efficient solutions (Pareto set) for the problem (I1).
Step (0): Compute E,.,(MST), and E, . (SPT), letk =1, E, 4, (SPT) = E*.

Step (1): Solve 1//Lex(Epqyx, X1 &) [10].

Step(2):E*=E*©F, k=k+1.

Step (3): If E* < E,,q.(MST) stop, else , go to step ().

Theorem 2. The algorithm generates all the efficient solutions of the problem (II) if the efficient solutions are m-strongly
positive fuzzy numbers and m > F.

Proof. Since the efficient solutions (a,, a,,..., a), where k < n! are m-strongly positive, so the difference between
Efac(@) and Efux(aip)is=2m, 1 <i<k—1.
Let
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C* . C* .
Efuan(a) = 20 and Efyg(ang) = 2 1<i<k-1

Therefore, the difference between and E’C';“"}(f"“) is % 1 <i<k—1. In the steps of the algorithm we find a

sequence of fuzzy earliness E,,,,, and the difference between each one is m-strongly positive. To apply the step (2) of the
algorithm, we have

Efnax (i)

Efiax (i)
—maxt s __ F’

so if m < F then the next solution may lead to an infeasible solution(not efficient solution). Therefore m must be greater
than or equal to F. 0

Consider the set of maximum fuzzy earliness S = {E,,4,(c;)} and the set of total fuzzy completion time S; =
{Z?Ll Ej(ai)}, where each two elements in both sets are m-strongly positive, this means that E,,,, (¢;) and E, 4, (0,41) are
m-strongly positive , and ijzl ¢j(0i4+1) and Z?’zl ¢j(o;) are m-strongly positive too, Vi,i =1,...,k. k is number of
efficient solutions. Let opt be the fuzzy optimal value of the problem (II).

Theorem 3. If the efficient solutions are 3-strongly positive numbers of the problem (II), then there exists a fuzzy number
¥such that LB ¥ = optandr¢ € [N; — 1,(N, @ %)C] where N, = number of efficient solutions and N, = E, ., (SPT) ©
Epnax (MST).

Proof. Since LB < opt , so there exists # such that LB @ # = opt which proves the first part of the theorem. It remains to
show that ¢ € [N; — 1, (N, @© %)C] ortoshowthat N; —1 <r¢ < (N, @ %)C. We have # = opt © LB < UB © LB
= Epax (SPT) © Eppgx (MST)
=N, <N, ®
implies that r¢ < (N, @ %)C.

To prove N; — 1 < r¢ we will use the mathematical induction on N;.

IfN, = 1 that is, there is only one efﬁment solution which is SPT then

Z &/(SPT) @ Epax (SPT) O Z &/(SPT) © Epnax (MST),
j=1
= mgx(SPT) © Ema;ﬁ(MST)r
since E,4,(SPT) and E,, ., (MST) are equal , so
r¢=0.

Thus r¢ = 0 = N; — 1, so the theorem is true for N; = 1.
If N; = 2, that is, the number of efficient solutions is two which are SPT and o, say. Since N; =2,s0 N; —1 =1. We

have the following two cases:
a- If SPT |s fuzzy optimal then

F= Z &/(SPT) @ Eymax (SPT) © Z &/(SPT) © Epar (MST),
= max(SPT) © Emax(MST),

since E,,q,(SPT) and E,,,,,(MST) are strongly positive , so
EC,0x (SPT) — ES,0x (MST) > 1.

Thus r¢ = 1 = N; — 1, so the theorem is true for N; = 2.

b- If o is fuzzy optimal then
N

N
7= ,Z &1(0) ® Enax(0) © Z &/(SPT) © Eynax (MST),
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N N
=Y G@ 6 ) gspm,
j=1 =1
since they are strongly positive , so
re=2=N, -1,
so the theorem is true for N; = 2.
If N, = 3, that is, the number of efficient solutions is three which are SPT, o and o4, say. Since N; = 3,s0 N; — 1 = 2. We
have the following three cases:
(a) If SPT is fuzzy optimal then

7= Z &/(SPT) @ Eyax (SPT) © Z &/(SPT) © Epax (MST),
j=1
= ax(SPT) S Emax(MST)
since E 4, (SPT) and E,,,,, (MST) are strongly positive , so
Efax (SPT) — Ef 0 (MST) = 2.
Thus r¢ = 2 > N; — 1, so the theorem is true for N; = 3.

(b) Ifo |s fuzzy optimal then

T—Zq@@%m@GZQWDG%MWU

j=1 j=1
N N
=) 5010 ) GEPT) ® Frnar(0) © Enax (MST),
= '

since each of the difference is strongly positive , so
T'C 2 2 2 N1 - 1,
so the theorem is true for N; = 3.

(©) Ifoy |s fuzzy optimal then

7= Z C} (01) @ Emax(al) o Z CJ(SPT) S) Emax(MST)

N

=) 5000 ) GEPT) ® Frnax(61) © Eynax (MST),
=1

j=1

N N
=Y G © Y 5P
j=1 j=1
since they are strongly positive , so
re=2=N, -1,
so the theorem is true for N; = 3.
Suppose the theorem is true for N; = k, that is, the theorem is true for the k efficient solutions SPT, g, gy, ..., Gy_5. Let
N, =k + 1, that means , there are k + 1 efficient solutions SPT, @, o0y, ..., 0x_3, 0x_,. If any one of the first k efficient
solutions is fuzzy optimal and as the theorem is true for Ny = k we get N; — 1 < r°.
If the last efficient solution ay,_; is fuzzy optimal then

N
f=z %ﬂ®%M%JGZQWD9%MWU

|mpI|es t
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N
&(SPT),
j=1

and then r¢ > k. Thus the theorem is true for N; = k + 1. 0

6. Conclusion and Discussion

In this paper, we investigated the problem which was the total fuzzy completion time and maximum earliness, where the
processing times and the due dates are triangular fuzzy numbers.

We presented a new structure of fuzzy number , and through this we found a relation between the fuzzy lower bound and
the fuzzy optimal solution with number of efficient solutions. This relation restricted the range of the fuzzy lower bound
which is a main factor to find an optimal solution. Also we found the exact solution under this structure, through finding
the Pareto set.
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