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 In this paper a bi-criterion fuzzy scheduling problem was presented and the problem under 

consideration is total fuzzy completion time and maximum earliness, where the processing 

times and the due dates are triangular fuzzy numbers. Each of n jobs is to be processed 

without interruption on a single machine and becomes available for processing at time 

zero. A new definition of fuzzy numbers was given namely m-strongly positive fuzzy 

numbers, through this definition we found an interval which restricts the range of the 

fuzzy lower bound and presented a relation between the fuzzy lower bound and the fuzzy 

optimal solution with number of efficient solutions. Also we found the exact solution of 

the problem through finding the Pareto set. 
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1.  Introduction 

Different approaches to fuzzy multi-objective have been considered with fuzzy parameters (Duenas and Petrovic, 2008). 

(Ishii and Tada, 1995)  studied the maximum tardiness with fuzzy precedence relation. An extensive review of scheduling 

problems with multi-objectives was introduced by ( T’kindt and Billaut, 2001) where they focused on single machine 

scheduling, parallel-machine scheduling, flow shop and fuzzy scheduling problems. Many research articles in scheduling 

problems dealt with earliness penalties. (Jayanthi et al., 2017) minimized earliness and tardiness costs where both 

processing times and due dates are fuzzy (Niroomand et al., 2016) focused on a problem of minimizing earliness and 

tardiness with common fuzzy due date on a single machine. Two important types of bi-criteria scheduling problems are 

there, the hierarchical problems and the simultaneous problems. Simultaneous problems mean that the two objectives have 

the same importance. In this case a Pareto set can be found which provides deeper insights to the decision maker to choose 

one of these solution ( Lei, 2009). Many important works were done regarding Pareto set. (Hoogeveen and Velde, 1995)  

minimized total completion time and maximum cost simultaneously. For equal processing times with respect to criteria 

𝐿𝑚𝑎𝑥 and  𝐶𝑚𝑎𝑥 (Lazarev et al., 2015) found the Pareto set for these jobs. (Nguyen and Bao,  2016)  found the efficient  

solution to the mixed shop scheduling problem by using genetic algorithm. (Abdul-Razaq and Kawi, 2010) solved 

simultaneously a function of square completion time and maximum tardiness. In this paper a bi-criterion scheduling 

problem is studied which is minimize total fuzzy completion time and maximum fuzzy earliness. A new definition of fuzzy 

numbers is introduced, a relation between the lower bound and the optimal solution with number of efficient solutions for a 

problem is given. Also an exact solution of the problem was found through the Pareto set. 

 

2.  Definitions and Notations 

Definition 1. Triangular fuzzy number is a fuzzy number represented by three points Ã = (aL, a, aU). The membership 
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function of a triangular fuzzy number Ã is defined by  

 μÃ(x) =

{
 
 

 
 0   ,   x < aL ,
x−aL

a−aL
     , aL ≤ x ≤ a,

aU−x

aU−a
     , a < x ≤ aU.

 

 

Suppose that Ã and B̃ are two triangular fuzzy numbers where Ã = (aL, a, aU) and B̃ = (bL, b, bU), then 

(i) Ã ⊕ B̃ = (aL + bL, a + b, aU + bU), which is also triangular fuzzy number, 

(ii) Ã ⊖ B̃ = (aL − bU, a − b, aU − bL), which is also triangular fuzzy number (Hsien, 2010). 

To find a crisp value of the triangular fuzzy number, the procedure that converts a fuzzy number to its crisp value is called 

defuzzification. Consider the following triangular fuzzy number Ã = (a1, a2, a3) the centroid point method of the triangular 

fuzzy number is D(Ã) =
a1+a2+a3

3
 (Cheng, 1998). Let p̃1 and p̃2 be two triangular fuzzy processing times where p̃1 =

(p1
L, p1, p1

U) and p̃2 = (p2
L, p2, p2

U), also for the due dates d̃1 and d̃2 be two triangular fuzzy due dates where d̃1 =

(d1
L, d1, d1

U) and d̃2 = (d2
L, d2, d2

U). Most of the defuzzification methods lead to a rational numbers, so let F be the 

denominator of the rational number which has a great role in this paper. 

N: the set {1, 2, 3,..., n}, 

Π: the set of permutation schedules, 

p̃j = (pj
L, pj, pj

U): fuzzy processing time of job j, and they are triangular fuzzy numbers (TFN), 

d̃j = (dj
L, dj, dj

U): fuzzy due date of job j, 

c̃j: fuzzy completion time of job j, 

Ẽj = max̃  {d̃j⊖ c̃j, 0̃}: fuzzy earliness of job j, where 0̃ = (0,0,0), 

Ẽmax = max̃  {Ẽj}: maximum fuzzy earliness, 

Ac: crisp value of the fuzzy number Ã, 

F: the denominator of a rational number, and can be teated as a fuzzy number as F̃j = (Fj, Fj, Fj), i.e.  Fj
L = Fj = Fj

U, 

MST (Minimum fuzzy slack times): jobs are sequenced in non-decreasing order of minimum fuzzy slack times s̃j, where 

s̃j = d̃j⊖ p̃j, 

SPT (Shortest processing time): jobs are sequenced in non-decreasing order of p̃j, 

LB̃ (Fuzzy lower bound): is a value of the objective function which is less than or equal to the fuzzy optimal value, 

UB̃ (Fuzzy upper bound): is a value of the objective function which is greater than or equal to the fuzzy optimal value. 

 

Definition 2. A feasible schedule π∗ ∈ Π is Pareto optimal, or efficient, with respect to the criteria f1 and f2 if there is no 

feasible schedule π such that both f1(π) ≤ f1(π
∗) and f2(π) ≤ f2(π

∗), where at least one of the inequalities is strict.  

  

3.  Structure of the Problem 

It is important to introduce some structures of bi-criteria problems to understand the relation among their solutions as 

illustrated in the following table.  

Let 𝑓1 and 𝑓2 be two criteria, then 

   

Types Structures Notes Possible solutions 

I f1 s.t. f2 Hierarchical problems 1//Lex(f2, f1) Optimal solution 

II f1 and f2 Simultaneous problems 1//F(f1, f2) Pareto set, no optimal solution 

III f1+f2 Sum of two problems Optimal solution 

 

Now consider a set 𝑁, 𝑁 = {1,2, . . . , 𝑛} of 𝑛 jobs to be processed on a single machine without interruption. Each job 𝑗 has a 

triangular fuzzy processing time 𝑝̃𝑗 = (𝑝𝑗
𝐿, 𝑝𝑗 , 𝑝𝑗

𝑈), and a triangular fuzzy due date 𝑑̃𝑗 = (𝑑𝑗
𝐿, 𝑑𝑗 , 𝑑𝑗

𝑈), for 𝑗 = 1,2, . . . , 𝑛. All 

jobs are available at time zero and the machine can only process one job at a time. The objective functions nuder study are 

𝑓1 = ∑
𝑛
𝑗=1 𝑐𝑗̃ and 𝑓2 = 𝐸̃𝑚𝑎𝑥. 

For the problem (𝐼𝐼𝐼), let the fuzzy lower bound 𝐿𝐵̃ = ∑𝑁𝑗=1 𝑐𝑗̃(𝑆𝑃𝑇)⊕ 𝐸̃𝑚𝑎𝑥(𝑀𝑆𝑇) and the fuzzy upper bound 𝑈𝐵̃ =

∑𝑁𝑗=1 𝑐𝑗̃(𝑆𝑃𝑇) ⊕ 𝐸̃𝑚𝑎𝑥(𝑆𝑃𝑇), where the fuzzy completion time of jobs can be calculated according to the following 

formulas: 
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 𝑐1̃ = 𝑝̃1,   
 𝑐̃2 = 𝑐1̃⊕ 𝑝̃2,                                                                                               (1) 

⋮ 
𝑐𝑗̃ = 𝑐𝑗̃−1⊕ 𝑝̃𝑗 ,   𝑓𝑜𝑟    𝑗 = 1, . . . , 𝑛. 

 

The fuzzy earliness is defined as a fuzzy maximum of zero and the difference between the fuzzy due date and the fuzzy 

completion time of this job, this means 

 

 𝐸̃𝑗 = 𝑚𝑎𝑥̃ {𝑑̃𝑗⊖ 𝑐𝑗̃, 0̃},                                                                         (2) 

 

where the fuzzy completion time 𝑐𝑗̃ = (𝑐𝑗
𝐿, 𝑐𝑗, 𝑐𝑗

𝑈) of each job 𝑗 and can be obtained by Eq.(1)  and maximum fuzzy 

earliness is  

𝐸̃𝑚𝑎𝑥 = 𝑚𝑎𝑥 ̃  {𝑚𝑎𝑥̃{𝑑̃𝑗⊖ 𝑐𝑗̃, 0̃}} [11].                                                              (3) 

 

 4.  Pareto Set in Fuzzy Environment 

It is known that the minimum slack time MST-rule , if no idle time is allowed , 𝐸𝑚𝑎𝑥 is minimized by sequencing the jobs 

in of non-decreasing order of  𝑠𝑗 = 𝑑𝑗 − 𝑝𝑗 . Since 𝐸𝑚𝑎𝑥 is irregular function then the value of 𝐸𝑚𝑎𝑥 is in the range 

[𝐸𝑚𝑎𝑥(𝑀𝑆𝑇), 𝐸𝑚𝑎𝑥(𝑆𝑃𝑇)]. (Hoogeveen and Velde, 1995) minimized total completion time and maximum cost 

simultaneously in polynomial time. (Kurz and Canterbury, 2005)  found the Pareto set for the same problem by using 

genetic algorithm. In the fuzzy environment the problem (𝐼𝐼) is 1//𝐹(∑𝑁𝑗=1 𝑐𝑗̃, 𝐸̃𝑚𝑎𝑥). We will present a new definition of 

fuzzy numbers, and then introduce our results.  

 

4.1.  M-strongly positive numbers 

Definition 3.  Two fuzzy numbers Ã = {aL, a, aU} and B̃ = {bL , b, bU} are said to be m-strongly positive iff (aL + a + aU)-
(bL + b + bU) ≥ m, where m is any positive number greater than or equal 1.  

 

Theorem 1.  If the fuzzy processing times are comparable with the ordering " ≤ " by one of the ranking methods , then the 

SPT sequence is one of the efficient solutions.  

Proof.  Suppose that all 𝑝𝑗
𝑐, 𝑗 = 1,2, . . . , 𝑛 are different, so the unique 𝑆𝑃𝑇 sequence gives the absolute minimum of 𝑓1. 

Hence there is no sequence 𝜋 such that 𝑓1(𝜋) ≤ 𝑓1(𝑆𝑃𝑇).If more than one 𝑆𝑃𝑇 sequence exists , let 𝑆𝑃𝑇∗ be a sequence 

satisfying the 𝑆𝑃𝑇-rule and such that jobs with equal 𝑝𝑗
𝑐 are in 𝑀𝑆𝑇 sequence. Hence there is no sequence 𝜋 such that  

𝑓1(𝜋) < 𝑓1(𝑆𝑃𝑇
∗) . So the SPT is one of the efficient solution.                                                                                 

In general the MST sequence must not be an efficient solution, it is possible to a sequence to have the same value as the 

MST sequence has. 

 

Let 𝑝̃𝑗 = (𝑝𝑗
𝐿, 𝑝𝑗 , 𝑝𝑗

𝑈), 1 ≤ j ≤ n be a fuzzy processing time, and 𝑝𝑗
𝑐 be its corresponding crisp value. According to the 

above defuzzify method D(p̃j) = pj
c =

pj
c∗

3
=

pj
L+pj+pj

U

3
. Also for D(d̃j) = dj

c =
dj
c∗

3
=

dj
L+dj+dj

U

3
. For the fuzzy earliness 𝐸𝑗̃ =

{𝐸𝑗
𝐿 , 𝐸𝑗 , 𝐸𝑗

𝑈}, 1 ≤ j ≤ n, Ej
c is the crisp value and can be found in the same way. 

 

5.   An algorithm 

We introduce an algorithm which finds all efficient solutions (Pareto set) for the problem (𝐼𝐼).  
Step (0): Compute  Ẽmax(MST) , and Ẽmax(SPT),  let 𝑘 = 1 , 𝐸̃𝑚𝑎𝑥(SPT) = 𝐸

∗. 

Step (1): Solve 1//𝐿𝑒𝑥(𝐸̃𝑚𝑎𝑥 , ∑
𝑛
𝑗=1 𝑐𝑗̃) [10]. 

Step (2): 𝐸∗ = 𝐸∗⊖𝐹, 𝑘 = 𝑘 + 1. 

Step (3): If 𝐸∗ < 𝐸̃𝑚𝑎𝑥(MST) stop, else , go to step (1).  

 

Theorem 2.  The algorithm generates all the efficient solutions of the problem (II) if the efficient solutions are m-strongly 

positive fuzzy numbers and m ≥ F. 
 

Proof. Since the efficient solutions (𝛼1, 𝛼2, . . . , 𝛼𝑘), where 𝑘 < 𝑛! are 𝑚-strongly positive, so the difference between 

𝐸𝑚𝑎𝑥
𝑐 (𝛼𝑖) and 𝐸𝑚𝑎𝑥

𝑐 (𝛼𝑖+1) is ≥ 𝑚, 1 ≤ 𝑖 ≤ 𝑘 − 1. 

Let  



Iraqi Journal of Statistical Sciences, Vol. 18, No. 1, 2021 ,Pp(38-44) 

41 

 

 𝐸𝑚𝑎𝑥
𝑐 (𝛼𝑖) =

𝐸𝑚𝑎𝑥
𝑐∗ (𝛼𝑖)

𝐹
  𝑎𝑛𝑑   𝐸𝑚𝑎𝑥

𝑐 (𝛼𝑖+1) =
𝐸𝑚𝑎𝑥
𝑐∗ (𝛼𝑖+1)

𝐹
      1 ≤ 𝑖 ≤ 𝑘 − 1. 

 

Therefore, the difference between 
𝐸𝑚𝑎𝑥
𝑐∗ (𝛼𝑖)

𝐹
 and 

𝐸𝑚𝑎𝑥
𝑐∗ (𝛼𝑖+1)

𝐹
 is 

𝑚

𝐹
,  1 ≤ 𝑖 ≤ 𝑘 − 1. In the steps of the algorithm we find a 

sequence of fuzzy earliness 𝐸̃𝑚𝑎𝑥, and the difference between each one is 𝑚-strongly positive. To apply the step (2) of the 

algorithm, we have 

 
𝐸𝑚𝑎𝑥
𝑐∗ (𝛼𝑖)

𝐹
− 𝐹, 

so if 𝑚 < 𝐹 then the next solution may lead to an infeasible solution(not efficient solution). Therefore 𝑚 must be greater 

than or equal to 𝐹.                                                                                                           

 

Consider the set of maximum fuzzy earliness 𝑆 = {𝐸̃𝑚𝑎𝑥(𝜎𝑖)} and the set of total fuzzy completion time 𝑆1 =
{∑𝑁𝑗=1 𝑐𝑗̃(𝜎𝑖)}, where each two elements in both sets are m-strongly positive, this means that 𝐸̃𝑚𝑎𝑥(𝜎𝑖) and 𝐸̃𝑚𝑎𝑥(𝜎𝑖+1) are 

m-strongly positive , and ∑𝑁𝑗=1 𝑐𝑗̃(𝜎𝑖+1) and ∑𝑁𝑗=1 𝑐𝑗̃(𝜎𝑖) are m-strongly positive too, ∀𝑖, 𝑖 = 1, . . . , 𝑘. 𝑘 is number of 

efficient solutions. Let 𝑜𝑝𝑡̃ be the fuzzy optimal value of the problem (𝐼𝐼𝐼).  

 

Theorem 3.  If the efficient solutions are 3-strongly positive numbers of the problem (II), then there exists a fuzzy number 

r̃ such that LB̃⊕ r̃ = opt̃ and rc ∈ [N1 − 1, (Ñ2⊕
1

F
)c] where N1= number of  efficient solutions and Ñ2 = Ẽmax(SPT)⊖

Ẽmax(MST).  

  

Proof.  Since 𝐿𝐵̃ ≤ 𝑜𝑝𝑡̃ , so there exists 𝑟̃ such that 𝐿𝐵̃ ⊕ 𝑟̃ = 𝑜𝑝𝑡̃ which proves the first part of the theorem. It remains to 

show that 𝑟𝑐 ∈ [𝑁1 − 1, (𝑁̃2⊕
1

𝐹
)𝑐] or to show that 𝑁1 − 1 ≤ 𝑟

𝑐 ≤ (𝑁̃2⊕
1

𝐹
)𝑐. We have 𝑟̃ = 𝑜𝑝𝑡̃ ⊖ 𝐿𝐵̃ ≤ 𝑈𝐵̃ ⊖ 𝐿𝐵̃  

= 𝐸̃𝑚𝑎𝑥(SPT) ⊖ 𝐸̃𝑚𝑎𝑥(MST) 

 = 𝑁̃2 ≤ 𝑁̃2⊕
1

𝐹
, 

implies that 𝑟𝑐 ≤ (𝑁̃2⊕
1

𝐹
)𝑐. 

 

To prove 𝑁1 − 1 ≤ 𝑟𝑐 we will use the mathematical induction on 𝑁1. 

 

If 𝑁1 = 1, that is, there is only one efficient solution which is 𝑆𝑃𝑇 then  

𝑟̃ = ∑

𝑁

𝑗=1

𝑐𝑗̃(SPT) ⊕ 𝐸̃𝑚𝑎𝑥(SPT)⊖∑

𝑁

𝑗=1

𝑐𝑗̃(SPT)⊖ 𝐸̃𝑚𝑎𝑥(MST), 

 = 𝐸̃𝑚𝑎𝑥(SPT)⊖ 𝐸̃𝑚𝑎𝑥(MST), 
since 𝐸̃𝑚𝑎𝑥(SPT) and 𝐸̃𝑚𝑎𝑥(MST) are equal , so  

𝑟𝑐 = 0. 
  

Thus 𝑟𝑐 = 0 = 𝑁1 − 1, so the theorem is true for 𝑁1 = 1. 

If 𝑁1 = 2, that is, the number of efficient solutions is two which are SPT and 𝜎, say. Since 𝑁1 = 2, so 𝑁1 − 1 = 1. We 

have the following two cases: 

a- If SPT is fuzzy optimal then  

𝑟̃ = ∑

𝑁

𝑗=1

𝑐𝑗̃(SPT) ⊕ 𝐸̃𝑚𝑎𝑥(SPT)⊖∑

𝑁

𝑗=1

𝑐𝑗̃(SPT)⊖ 𝐸̃𝑚𝑎𝑥(MST), 

= 𝐸̃𝑚𝑎𝑥(SPT) ⊖ 𝐸̃𝑚𝑎𝑥(MST), 
 

since 𝐸̃𝑚𝑎𝑥(SPT) and 𝐸̃𝑚𝑎𝑥(MST) are strongly positive , so  

 

𝐸𝑚𝑎𝑥
𝑐 (SPT) − 𝐸𝑚𝑎𝑥

𝑐 (MST) ≥ 1. 
Thus 𝑟𝑐 ≥ 1 ≥ 𝑁1 − 1, so the theorem is true for 𝑁1 = 2. 

b- If 𝜎 is fuzzy optimal then  

𝑟̃ = ∑

𝑁

𝑗=1

𝑐𝑗̃(𝜎) ⊕ 𝐸̃𝑚𝑎𝑥(𝜎) ⊖∑

𝑁

𝑗=1

𝑐𝑗̃(SPT)⊖ 𝐸̃𝑚𝑎𝑥(MST), 
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=∑

𝑁

𝑗=1

𝑐𝑗̃(𝜎)⊖∑

𝑁

𝑗=1

𝑐𝑗̃(SPT), 

since they are strongly positive , so  

𝑟𝑐 ≥ 2 ≥ 𝑁1 − 1, 
so the theorem is true for 𝑁1 = 2. 

If 𝑁1 = 3, that is, the number of efficient solutions is three which are SPT, 𝜎 and 𝜎1, say. Since 𝑁1 = 3, so 𝑁1 − 1 = 2. We 

have the following three cases: 

(a)  If SPT is fuzzy optimal then  

𝑟̃ = ∑

𝑁

𝑗=1

𝑐𝑗̃(SPT) ⊕ 𝐸̃𝑚𝑎𝑥(SPT)⊖∑

𝑁

𝑗=1

𝑐𝑗̃(SPT)⊖ 𝐸̃𝑚𝑎𝑥(MST), 

= 𝐸̃𝑚𝑎𝑥(SPT) ⊖ 𝐸̃𝑚𝑎𝑥(MST), 
since 𝐸̃𝑚𝑎𝑥(SPT) and 𝐸̃𝑚𝑎𝑥(MST) are strongly positive , so  

𝐸𝑚𝑎𝑥
𝑐 (SPT) − 𝐸𝑚𝑎𝑥

𝑐 (MST) ≥ 2. 
Thus 𝑟𝑐 ≥ 2 ≥ 𝑁1 − 1, so the theorem is true for 𝑁1 = 3. 

 

(b)  If 𝜎 is fuzzy optimal then  

𝑟̃ = ∑

𝑁

𝑗=1

𝑐𝑗̃(𝜎) ⊕ 𝐸̃𝑚𝑎𝑥(𝜎) ⊖∑

𝑁

𝑗=1

𝑐𝑗̃(SPT)⊖ 𝐸̃𝑚𝑎𝑥(MST), 

  

=∑

𝑁

𝑗=1

𝑐𝑗̃(𝜎)⊖∑

𝑁

𝑗=1

𝑐𝑗̃(SPT) ⊕ 𝐸̃𝑚𝑎𝑥(𝜎) ⊖ 𝐸̃𝑚𝑎𝑥(MST), 

since each of the difference is strongly positive , so  

𝑟𝑐 ≥ 2 ≥ 𝑁1 − 1, 
so the theorem is true for 𝑁1 = 3. 

 

(c)  If 𝜎1 is fuzzy optimal then  

𝑟̃ = ∑

𝑁

𝑗=1

𝑐𝑗̃(𝜎1) ⊕ 𝐸̃𝑚𝑎𝑥(𝜎1)⊖∑

𝑁

𝑗=1

𝑐̃𝑗(SPT) ⊖ 𝐸̃𝑚𝑎𝑥(MST), 

  

=∑

𝑁

𝑗=1

𝑐𝑗̃(𝜎1) ⊖∑

𝑁

𝑗=1

𝑐𝑗̃(SPT) ⊕ 𝐸̃𝑚𝑎𝑥(𝜎1)⊖ 𝐸̃𝑚𝑎𝑥(MST), 

  

=∑

𝑁

𝑗=1

𝑐𝑗̃(𝜎1) ⊖∑

𝑁

𝑗=1

𝑐𝑗̃(SPT) 

since they are strongly positive , so  

𝑟𝑐 ≥ 2 ≥ 𝑁1 − 1, 
so the theorem is true for 𝑁1 = 3. 

Suppose the theorem is true for 𝑁1 = 𝑘, that is, the theorem is true for the 𝑘 efficient solutions SPT, 𝜎, 𝜎1, ..., 𝜎𝑘−2. Let 

 𝑁1 = 𝑘 + 1 , that means , there are 𝑘 + 1 efficient solutions SPT, 𝜎, 𝜎1, ..., 𝜎𝑘−2, 𝜎𝑘−1. If any one of the first 𝑘 efficient 

solutions is fuzzy optimal and as the theorem is true for 𝑁1 = 𝑘 we get 𝑁1 − 1 ≤ 𝑟
𝑐. 

If the last efficient solution 𝜎𝑘−1 is fuzzy optimal then  

 

𝑟̃ = ∑

𝑁

𝑗=1

𝑐𝑗̃(𝜎𝑘−1) ⊕ 𝐸̃𝑚𝑎𝑥(𝜎𝑘−1) ⊖∑

𝑁

𝑗=1

𝑐𝑗̃(SPT)⊖ 𝐸̃𝑚𝑎𝑥(MST), 

implies that  
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𝑟̃ = ∑

𝑁

𝑗=1

𝑐𝑗̃(𝜎𝑘−1) ⊖∑

𝑁

𝑗=1

𝑐̃𝑗(SPT), 

 

and  then 𝑟𝑐 ≥ 𝑘. Thus the theorem is true for 𝑁1 = 𝑘 + 1.                       

6. Conclusion and Discussion 

In this paper, we investigated the problem which was the total fuzzy completion time and maximum earliness, where the 

processing times and the due dates are triangular fuzzy numbers. 

We presented a new structure of fuzzy number , and through this  we found a relation between the fuzzy lower bound and 

the fuzzy optimal solution with number of efficient solutions. This relation restricted the range of the fuzzy lower bound 

which is a main factor to find an optimal solution. Also we found the exact solution under this structure, through finding 

the Pareto set.  
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 لمشكلة جدولة ثنائية المعايير تحت الضبابية  Paretoتعيين 

 اياد محمد رمضان 

 قسم الرياضيات، كلية العلوم ، جامعة السليمانية، السليمانية ، العراق.

بكر ، حيث  في هذا البحث تم تقديم مشكلة جدولة غامضة ثنائية المعيار والمشكلة قيد النظر هي إجمالي وقت الإكمال المبهم والحد الأقصى للوقت الم: الخلاصة

واحد وتصبح متاحة للمعالجة في    nتكون أوقات المعالجة وتواريخ الاستحقاق أرقامًا ضبابية مثلثة. تتم معالجة كل مهمة من المهام   دون انقطاع على جهاز 

، ومن خلال هذا التعريف وجدنا فاصلًا يقيد نطاق الحد الأدنى    mالوقت صفر. تم إعطاء تعريف جديد للأرقام الغامضة وهو الأرقام الغامضة الموجبة بقوة  

للمشكلة من خلال إيجاد مجموعة  الغامض وقدم علاقة بين الحد الأدنى الغامض والحل الأمثل الغامض مع عد د من الكفاءة حلول. كما وجدنا الحل الدقيق 

 باريتو. 

 مشكلة الجدولة ، مشاكل البيكريتيريون ، مجموعة باريتو ، أوقات المعالجة الضبابية ، تواريخ الاستحقاق الضبابية الكلمات المفتاحية:
 


