بناء نموذج دالة التحويل باستخدام البيانات المضببة - دراسة مقارنة - إسراء عبد الجواد صالح* israa81@gmail.com

الملخص

يتضمن هذا البحث استخدام بعض التقنيات الإحصائية لدراسة السلسلة الزمنية للسعر العالمي للحنطة كسلسلة مخرجات ، والإنتاج العالمي للحنطة كسلسلة مدخلات ، وذلك باستخدام نماذج دالة التحويل على بيانات مستقرة مرة ، على بيانات مضببه ومستقرة مرة أخرى ثم المقارنة بين هاتين الحالتين للحصول على أفضل نموذج دالة تحويل للبيانات من خلال بعض معايير التنبؤ ، وكان النموذج الملائم لهذه البيانات هو نموذج دالة تحويل لبيانات مضببة ومستقرة لامتلاكه أقل قيم للمعايير .

الكلمات المفتاحية: دالة التحويل ، بوكس -جنكنز ، المنطق المضبب

Construction of the Transfer Model by Using Fuzzy Data: A Comparative Study

Abstract

This research consists of using some statistical techniques to study time series for universal prices of wheat as output series and universal product of wheat as input series. By using transfer function on stationary data first , and secondly on stationary fuzzy data , then compare between these two cases to obtain the best transfer function model for data through forecasting criteria to comparing between these two cases .The most suitable model for this data was the transfer function model for stationary fuzzy data because it has minimum value for forecasting criteria .

*مدرس مساعد / قسم الإحصاء والمعلوماتية / كلية علوم الحاسوب والرياضيات / جامعة الموصل تاريخ استلام البحث 2013/12/8 ________ تاريخ القبول 2014/1/16

1 – المقدمة

تعد طرائق تحليل السلاسل الزمنية من أكثر الطرائق الاحصائية استخداماً في مجالات عديدة منها الاقتصادية ومنها مجالات أخرى، وتُعدُّ نماذج الانحدار الحركي ومكونه دالة التحويل حالة خاصة من نماذج السلاسل الزمنية متعددة المتغيرات (Multiple Time) Series (المعماري،2004)،إذ إن من ابسط الصور التي يمكن من خلالها التعبير عن نماذج دالة التحويل هي العلاقة بين سلسلتين من السلاسل الزمنية، ويمكن بناء نموذج دالة التحويل لمدخل منفرد (Single-Input) عند ارتباط المخرجات بسلسلة مدخلات منفردة ، وكذلك يمكن أن ترتبط سلسلة المخرجات بأكثر من سلسلة للمدخلات عندها يتم بناء نموذج دالة التحويل بمدخلات متعددة (Multi-Input).

2- نماذج دالة التحويل (Transfer Function Models) :

يعرف النظام (System) بأنه تفاعل مجموعة من الأشياء التي تتتج إشارات ملحوظة تكون ذات فائدة تسمى بالمخرجات (Outputs) ، ويرمز لها ب: X فضلاً عن تأثر النظام بمؤثرات خارجية مسيطر عليها تسمى بالمدخلات (Inputs) ويرمز لها ب: X ومنها إشارات خارجية غير مسيطر عليها تعرف بالإزعاجات أو الاضطرابات (Disturbances) ويرمز لها X والعلاقة بين المدخلات والمخرجات تتحدد من خلال دالة التحويل (Transfer Function) التي تعكس شكل التغير الذي يطرأ على المدخلات لتتحول إلى المخرجات (حياوي،2006)، إذ يجب أن تكون المدخلات والمخرجات سلسلة من السلاسل الزمنية، وإن الصيغة الرياضية لنموذج دالة التحويل هي:

$$Y_{t} = v(B)X_{t} + N_{t}$$

$$\phi(B)N_{t} = \theta(B)a_{t} \implies N_{t} = \frac{\theta(B)}{\phi(B)}a_{t}$$
....(1)

. الازعاج N_t ، النبضية المخرجات N_t ، المخرجات N_t ، النبضية N_t ، النبضية N_t ، الازعاج

: (Impulse Response Function) دالة الاستجابة النبضية

تعد دالة الاستجابة النبضية (Impulse Response Function) مؤشراً للعلاقة بين المدخلات والمخرجات، وتسمى الأوزان $(v_0, v_1, v_2, v_3, ...)$ بأوزان نبضات الاستجابة (Response Weights) تمثل هذه الأوزان الأثر الذي يحدث في سلسلة المخرجات نتيجة لتغير

سلسلة المدخلات بوحدة واحدة، ويمكن تقريب دالة التحويلكنسبةبين متعددتي حدود (Polynomial) و $\delta(B)$ و $\delta(B)$ ، والموضحة بالصيغة الآتية :

$$v(B) = \frac{\omega_s(B)B^b}{\delta_r(B)}$$

إذ أن :

$$\omega_s(B) = \omega_0 - \omega_1 B - \omega_2 B^2 - \dots - \omega_s B^s$$

$$\delta_r(B) = 1 - \delta_1 B - \delta_2 B^2 - \dots - \delta_r B^r$$

(Damping وإن: $\omega(B)$: تمثل التأثير الابتدائي (Initial Effect)، (Initial Effect) وإن: $\omega(B)$: تمثل عامل التضاؤل $\omega(B)$: رتبة زمن $\omega(B)$: رتبة متعدد الحدود $\omega(B)$: رتبة زمن (الزمن الميت) . (فاندل،1992) (Box and Jenkins,1976) (فاندل،1992)

4- زمن التأخير (Delay Time) :

قد لا تتاثر Y_t مباشرة بالتغير في X_t يشار عادةً إلى زمن التأخير بالرمز d، إذ إنّ عدد صحيح موجب، يظهر زمن التأخير بشكل واضح عند رسم الارتباط المتقاطع بين سلسلة المدخلات وسلسلة المخرجات، إذ إنّ أول قيمة معنوية تقع خارج مدة الثقة تمثل زمن التأخير (الد طوي،2011)، يعني أنّ d هي معلمة التاخير الزمني المتمثلة بوقت الازاحة الفعلية المنقضي قبل أن تبدأ (X_t) بالتاثير في (Y_t) . (العمري،2006)

5- أسلوب بوكس-جنكنز في تحليل نماذج دالة التحويل

: (Box-Jenkins Methodology In Transfer Function Models Analysis)

Box-هناك ثلاث مراحل لبناء نموذج دالة التحويل، من خلال الخوارزمية التي وضعها Box-المناك ثلاث مراحل لبناء السلسلة الزمنية، وبالاعتماد على معلومات سلسلة المدخلات والمخرجات Y_t, X_t على التوالى، إذ يمكن تلخيص هذه المراحل بما يأتى:

تشخيص نموذج دالة التحويل(Identification Transfer Function Model) :

من أولى خطوات بناء نموذج Box-Jenkins هي تحديد استقرارية السلسلة من عدمه، وفي حالة الاستقرارية هل هناك تغيرات موسمية أم لا، بعد التأكد من استقرارية السلسلة تبدأ مرحلة تشخيص النموذج والمتمثلة بالخطوات الآتية:

1- تقدير أوزان دالة التحويل (Estimation of transfer function weights):

يتم تقدير أوزان دالة التحويل بطريقتين:

أ- تقدير أوزان دالة التحويل اعتماداً على دالة الارتباط المتقاطع Estimation of transfer) function weights depending on the cross-correlation function)

قدمبوكس وجنكنز طريقة لتقدير أوزان دالة التحويل ، تعتمد على دالة الارتباطات المتقاطعة (Cross Correlations Function) بافتراض أن سلسلة المدخلات تتبع نموذج ARMA فيمكن التعبير عنها بما يأتى :(اله طوي،2011) (Wei,1990) (2011)

$$\phi(B)X_{t} = \theta(B)\alpha_{t} \implies \alpha_{t} = \frac{\phi(B)}{\theta(B)}X_{t} \qquad \dots (2)$$

وبإجراء التبييض المسبق لسلسلة المخرجات بما يأتى:

$$\phi(B)Y_t = \theta(B)\beta_t \quad \Rightarrow \quad \beta_t = \frac{\phi(B)}{\theta(B)}Y_t \qquad \dots (3)$$

 \cdot β_t و α_t البواقي المحسول على سلسلتي البواقي

ويتم حساب الارتباط المتقاطع للسلسلتين المبيضتين:

$$\rho_{\alpha\beta}(k) = \frac{Cov(\alpha, \beta)}{\sigma_{\alpha}\sigma_{\beta}} \qquad(4)$$

. الانحراف المعياري لكل من $lpha_{
m f}$ على التوالى $\sigma_{
m g},\sigma_{lpha}$: إذ إن

ب-تقدير أوزان دالة التحويل اعتماداً على طريقة دالة التحويل الخطية LTF التحويل عام Function Method اقترح طريقة دالة التحويل الخطية LTF لتقدير أوزان دالة التحويل عام (1982) لنا و Hanssens ، وحظيت باهتمام خاص عام (1991) من Liu و Pankratz وعام (1992) من Liu و Hudak، ويتم تقدير أوزان دالة التحويل بالصورة الآتية:

$$Y_t = C + (v_0 + v_1 B + v_2 B^2 + \dots + v_k B^k) X_t + N_t \qquad \dots (5)$$

إذ إنَّ k يمثل حجم العينة الكافي، أي يمثل العدد الذي يحدد من أوزان دالة التحويل، N_t : هي الإزعاجات أو الاضطرابات. (الحنون، 2007)

(Determination Of the ARMA Model for the N_t لحد الإزعاج ARMA حديد نموذج حد الإزعاج N_t هي حساب Disturbance Term) إن الخطوة الأولى قبل التعرف على نموذج حد الإزعاج N_t هي حساب القيم التقديرية لسلسة الإزعاج N_t ، وذلك من خلال المعادلة (1):(الحنون،2007)

$$Y_t = V(B)X_t + N_t \implies N_t = Y_t - V(B)X_t$$

3- التحقق من دقة تشخيص النموذج (Diagnostic checking of the Model)

بعد تشخيص نموذج دالة التحويل بالصيغة النسبية وتقدير معلماته، وتحديد نموذج ARMAالمناسب لسلسلة الإزعاج، يتم التحقق من دقة اختيار النموذج في تمثيله للبيانات قبل استخدامها في التنبؤ (Makridakiset al.,1998)، لذلك سوف يتم فحص نموذج دالة التحويل لكي نتأكد أولاً من صحة النموذج المختار ومدى ملائمته للبيانات ونتأكد ثانياً من تحقيق فرضيات النموذج وهذه الفرضيات هي:

.(White Noise) سلسلة البواقي a_i تتبع عملية التشويش الأبيض A_i سلسلة البواقي A_i مستقلة عن سلسلة المدخلات A_i

يتم اختبار الفرضية (أ) عن طريق اختبار دالة الارتباط الذاتي (ACF) لسلسلة البواقي a_t فإذا ظهر أن a_t فعلاً هي عملية تشويش أبيض ، أي إنَّ جميع الارتباطات الذاتية بالنسبة لسلسلة البواقي ظهرت غير معنوية . أما الفرضية (ب) فيتم اختبارها عن طريق استخدام دالة الارتباط المتقاطع (CCF) بين سلسلة البواقي وسلسلة المدخلات التي أُجري لها إعادة تبيض α_t فإذا للنسلسلتين α_t مستقلتان النسلسلتين α_t مستقلتان النسلسلتين α_t مستقلتان المتقاطعة غير معنوية ، فهذا يدل على أن السلسلتين α_t مستقلتان .2006

6-التنبؤ بنماذج دالة التحويل:

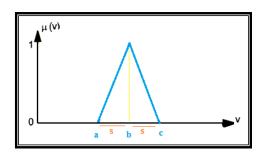
بعد ملائمة نموذج دالة التحويل للبيانات ، يمكن استخدامه للتنبؤ بسلسلة المخرجات Y_i من خلال استخدام التاريخ السابق لسلسلة المخرجات Y_i وسلسلة المدخلات المقترنة X_i ، و تمثل بالشكل الآتى

7-المنطق المضبب Fuzzy Logic:

هو نظريات وتقنيات تستخدم المجموعات المضببة (Fuzzy Set)، التي هي مجموعات بلا حدود قاطعة وصفها بديلاً ملائماً للمجموعة الكلاسيكية التي لم تعد تفي بمتطلبات الفهم الرياضي والمنطقي الجديد في الفكر العلمي المعاصر. لقد نشأ هذا المفهوم عام (1965) على يد العالم الأذربيجاني الأصلاطفي زادة (Lotfi Zadeh) من جامعة كاليفورنيا Sivanandam, et العالم الأذربيجاني الأصلاطفي زادة (20deh, فضل لمعالجة البيانات، وذلك عن طريق تطبيق طريقة تفكير أكثر شبهاً بالإنسان في برمجة البيانات. (قاسم، 2010)

7-1المجموعة المضببة Fuzzy Set:

تعد المجموعات المضببة Fuzzy Sets تعميماً للمجموعات الهشة ، وذلك بإعطاء درجة للعضوية لكل عنصر في المجموعة ، وبهذا يمكننا تعريف المجموعة المضببة بأنها مجموعة جزئية من المجموعة الشاملة X ، ويمكن للعناصر فيها أن تكون منتمية انتماءً جزئياً ، وان درجة انتمائها يطلق عليها بدرجة العضوية وهوجة العضوية هذه بالرمز ($\mu_A(x)$) ، وتسمى بدالة ضمن المدة المغلقة [0,1]، ويعبر عن درجة العضوية هذه بالرمز X إلى المجموعة المضببة العضوية من الممكن أن تأخذ أية قيمة في المدة [0,1] وتمثل عادة بالشكل العام الآتي : (هندوش،2006)

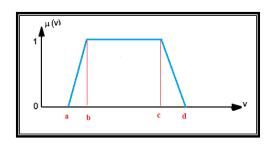

$$\mu_A \colon X \to [0,1]$$

فتكون دالة العضوية للمجموعات المضببة عبارة عن تعميم للدالة المميزة للمجموعات الهشة، ويتم من خلالها تحديد نسبة الانتماء إلى خصائص المجموعة، والشرط الأساس لهذه الدالة أن يقع مداها بين الصفر والواحد، كما أن لها أشكالاً متعددة منها (Klir, et al.;1997)(قاسم،2010):

1- الدالة المثلثية (Triangular Function): وصيغتها:

$$\mu(x) = \begin{cases} 0 & ; & x \le a \\ \frac{x - a}{b - a} & ; & a \le x \le b \\ \frac{c - x}{c - b} & ; & b \le x \le c \\ 0 & ; & c < x \end{cases}$$
.....(7)

إنَّ a و b و a هي معلمات للدالـة، و a و a تمثلان قوائم الدالـة المثلثية ، وقيمة b تمثل رأس المثلث (القمة).والشكل الآتي يوضح رسم الدالـة المثلثية :

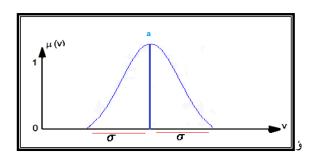


الشكل (1):يوضح رسم الدالة المثلثية

2- دالة شبه المنحرف (Trapezoidal Function): وصيغتها

$$\mu(x) = \begin{cases} 0 & ; & x \le a \\ \frac{x-a}{b-a} & ; & a \le x \le b \\ 1 & ; & b \le x \le c \\ \frac{d-x}{d-c} & ; & c \le x \le d \\ 0 & ; & d \le x \end{cases}$$
 (8)

إذ أن a و b و c و b هي معلمات للدالة ، وأن a وأن a و b تمثلان الرؤوس السفلى للشكل ، في حين a و b تمثلان الرؤوس العليا. والشكل الآتي يوضح رسم دالة شبه المنحرف :



الشكل (2):يوضح رسم دالة شبه المنحرف

: وصيغتها هي : (Gaussian Function) وصيغتها هي

$$\mu(x) = e^{-\frac{(x-c)^2}{2\sigma^2}}$$
(9)

إن المعلمات c و σ تمثلان على التوالي الرأس العلوي للشكل وبعد الأطراف عن مركز الشكل والشكل الآتي يوضح رسم دالة شبه المنحرف :

الشكل (3): يوضح رسم دالة كاوس

معايير اختبار دقة النتائج :(Wei,1990)

1- معيار معلومات بيز BIC)Bayesian Information Criteria): والصيغة

العامة لهذا المعيار هي ما يأتي:

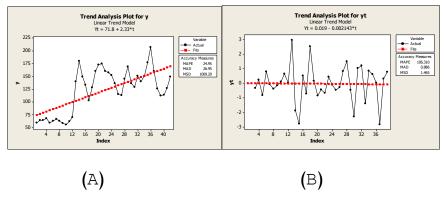
BIC =
$$n \log (\sigma^2) + k \log_e(n)$$
 (10)

. انجلين الخطأ : σ^2 ، عدد المعلمات : n : σ^2

2- معيار متوسط مربعات الخطأ (MSE(Mean Square Error:والصيغة العامة لهذا المعيار هي ما يأتي :

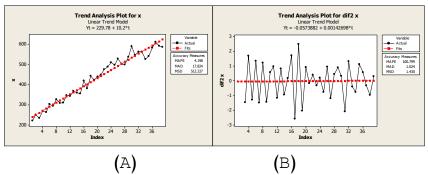
$$MSE = \frac{\sum_{t=1}^{n} (Y_t - \hat{Y}_t)^2}{n}$$
(11)

. حجم العينة : n، القيم التقديرية للبيانات : $\hat{Y_t}$ ، العينة : Y_t


الجانب التطبيقي

اولاً :ايجاد نموذج دالة التحويل في حالة أخذ البيانات الاصلية للسلسلة :

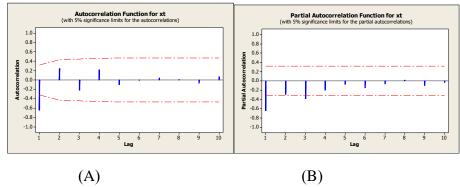
أ-تهبئة البيانات:


لتطبيق الجانب العملي تم استخدام سلسلة ادخال متمثلة بالانتاج العالمي للحنطة ، وسلسلة اخراج متمثلة بالسعر العالمي للحنطة (الحنون،2007)، وإن النقطة الأساسية الأولى هي معرفة

ما إذا كانت البيانات مستقرة أم لا لسلسلة الادخال وسلسلة الاخراج ، من خلال رسم السعر العالمي للحنطة نلاحظ عدم استقرارية السلسلة ، وبعد اخذ الجذر التربيعي و الفروق لها تم الحصول على السلسلة المستقرة والشكل الآتي يوضح ذلك:

الشكل (4): (A) يوضح رسم الاتجاه العام للسلسلة الأصلية للسعر العالمي للحنطة Y_t و (B)بعد ثبوت واستقرار السلسلة للسعر العالمي للحنطة

ومن رسم سلسلة الادخال المتمثلة بالانتاج العالمي للحنطة نلاحظ عدم استقرارية السلسلة ، وبعد أُخذ الجذر التربيعي والفروق لها تم الحصول على السلسلة المستقرة والرسم البياني الآتي يوضح سلسلة الادخال



الشكل (5): (A) يوضح رسم الاتجاه العام للإنتاج العالمي للحنطة للسلسلة الأصلية $_{\rm t}$ $_{\rm$

(Y_t) والمخرجات (X_t) والمخرجات (Y_t)

بعد تهيئة سلسلتي المدخلات (X_t) والمخرجات (Y_t) يتم تنقيتهما، إذ تتم تنقية سلسلة المدخلات من خلال تحديد النموذج الملائم لها للحصول على سلسلة بواقي (مستقلة) ، وذلك بملاحظة سلوك دالتي الارتباط الذاتي والذاتي الجزئي ، وبعد استقرارية السلسلة إذ تبين ان السلسلة

المستقرة تتبع نموذج ARMA(1,1) إذ امتلك اقل ARMA(1,1) ، وإن القيمة التقديرية $\hat{\phi} = 0.5784$ و $\hat{\theta} = 0.9521$.

الشكل(6): (A)يوضح رسم دالة الارتباط الذاتي للسلسلة و (B)يوضح رسم دالة الارتباط الذاتي الجزئي للسلسلة

$$egin{align} \phi(B)X_t &= heta(B)lpha_t \ lpha_t &= X_t - \phi_1 X_{t-1} - heta_1 lpha_{t-1} \ \end{pmatrix} \ \hat{lpha}_1 &= X_1 \ \end{pmatrix}$$

وباستخدام المعادلة المذكورة في اعلاه تم الحصول على قيم $\hat{\alpha}_{t}$ والموضحة في الجدول (1).

الجدول (1): يوضح قيم (\hat{lpha}_{t}) لمتغير الادخال (الانتاج العالمي للحنطة)

t	\hat{lpha}_{t}	t	$\hat{lpha}_{\scriptscriptstyle t}$	t	$\hat{\alpha}_{t}$	t	$\hat{\alpha}_{t}$
1	-1.45877	11	-0.45812	21	-0.18516	31	-0.43506
2	-0.54871	12	-0.91099	22	-0.17217	32	-1.41832
3	-0.83846	13	-1.23478	23	-0.83122	33	-0.67980
4	-0.20379	14	0.63532	24	-0.29209	34	0.58007
5	-0.89528	15	-0.98379	25	-0.91765	35	0.55479
6	-0.48063	16	0.04950	26	-1.12307	36	-0.64417
7	-1.19002	17	-0.55182	27	0.08538	37	-0.87537
8	-1.40522	18	-0.78646	28	0.92684		
9	-0.05034	19	-0.39258	29	-1.00913		
10	0.64513	20	-0.08327	30	-0.83871		

وللحفاظ على العلاقة الدالية بين المدخلات والمخرجات تجرى تنقية سلسلة المدخلات على سلسلة المخرجات وبالطريقة التي اتبعها (Makridakis et al.,1983) وعلى النحو الأتي:

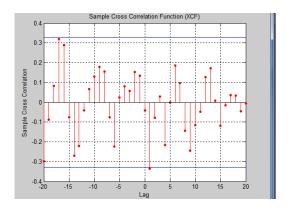
$$\phi(B)Y_{t} = \theta(B)\beta_{t}$$

$$\beta_{t} = Y_{t} - \phi_{1}Y_{t-1} - \theta_{1}\beta_{t-1}$$

والجدول (2) يوضح قيم سلسلة الخطأ ($\hat{\beta}_t$).

الجدول (2): يوضح قيم (\hat{eta}_t) لمتغير الاخراج (السعر العالمي للحنطة).

t	$\hat{oldsymbol{eta}}_{t}$	t	$\hat{oldsymbol{eta}}_{t}$	t	$\hat{oldsymbol{eta}}_{t}$	Т	$\hat{oldsymbol{eta}}_{t}$
1	-0.31885	11	3.41880	21	-0.90747	31	-0.15453
2	-0.24179	12	3.09329	22	-0.67963	32	-0.07771
3	-0.89908	13	-0.93713	23	-1.16029	33	1.07140
4	-0.50409	14	-1.97249	24 -1.64530		34	1.41773
5	-0.07430	15	-2.27774	25	-0.87889	35	-1.45649
6	-0.48440	16	-0.03063	26 1.15674		36	-2.70457
7	-0.81197	17	1.61548	27	1.51885	37	-1.61109
8	-0.72908	18	0.80519	28	-1.11244		
9	0.03373	19	-0.14238	29	-1.35344		
10	0.44713	20	-1.03860	30	0.54394		


(β_t) و (α_t) الارتباط المتقاطع بين السلسلتين

تم باستخدام المعادلة (4) ايجاد قيم الارتباط المتقاطع كما في الجدول (3) الآتي.

الجدول (3): يوضح قيم الارتباط المتقاطع بين (α_t) و (β_t) المحسوبتين.

t	$r_{\alpha\beta}$	t	$r_{\alpha\beta}$	t	$r_{\alpha\beta}$	t	$r_{lphaeta}$
0	-0.040	5	-0.001	10	-0.115	15	-0.117
1	-0.335	6	0.186	11	-0.049	16	-0.015
2	-0.079	7	0.097	12	0.126		
3	0.028	8	-0.144	13	0.171		
4	-0.217	9	-0.245	14	0.008		

والشكل الآتي يوضح رسم دالة الارتباط المتقاطع بين (α_t) و (β_t) لغرض تحديد الزمن الميت في النظام

الشكل (7): يوضح الارتباط المتقاطع بين (α_t) و (α_t) و تحديد الزمن الميت لمتغير الادخال ضمن الرسم

إذ يتضح من الشكل (7) أنَّ الزمن الميت هو b=1.

د- التشخيص

1- تقدير اوزان الاستجابة النبضية

تم تقدير اوزان الاستجابة النبضية لدالة التحويل وكما في الجدول (4) الآتي الجدول (4): يوضح قيم الاستجابة النبضية لدالة التحويل

t	V	t	٧	t	٧	Т	V
0	-0.0906	5	-0.0022	10	-0.2606	15	-0.2652
1	-0.7593	6	0.4216	11	-0.1110	16	-0.0340
2	-0.1790	7	0.2198	12	0.28561		
3	0.0634	8	-0.3264	13	0.3876		
4	-0.4918	9	-0.5553	14	0.01813		

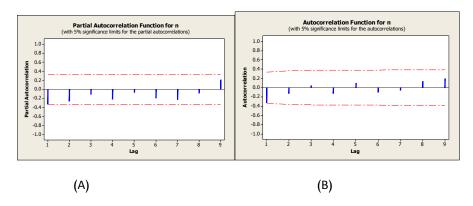
2- تحديد رتبة نموذج دالة التحويل (r,s,b)

من خلال الشكل (7) يتبين أنَّ الزمن الميت هو b=1 ، ويلاحظ أنَّ الدالة تأخذ نقطة انقلاب واحدة فتكون (s=1) وان(r=0)، وعليه فان النموذج يكون على النحو الآتى :

$$Y_{t} = (w_{0} - w_{1}B - w_{2}B^{2})X_{t-nk} + N_{t}$$

3- سلسلة الاضطراب

يتم حساب سلسلة الاضطراب من المعادلة الآتية:


$$N_t = Y_t - v_0 X_t - v_1 X_{t-1} - \dots - v_{16} X_{t-16}$$

والجدول الآتي يوضح قيم سلسلة الاضطراب N_t التي تم الحصول عليها

الجدول (5): يوضح القيم التقديرية لسلسلة الاضطراب $N_{\rm t}$

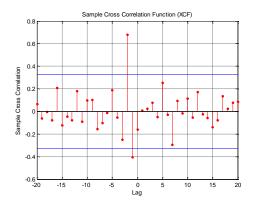
t	Nt	t	Nt	t	Nt	Т	Nt	t	Nt
1	0	9	0	17	2.00024	25	1.27426	33	-1.41963
2	0	10	0	18	-0.56763	26	-0.00138	34	0.82142
3	0	11	0	19	-1.18511	27	-0.59754	35	-0.96746
4	0	12	0	20	-0.02255	28	-0.65207	36	0.06490
5	0	13	0	21	-0.21844	29	1.21909	37	0.20653
6	0	14	0	22	-0.16071	30	-0.42080		
7	0	15	0	23	0.10039	31	0.03849		
8	0	16	0	24	-0.37813	32	0.47843		

ولتحديد نموذج ARIMA لسلسلة الاضطراب (N_t)، يتم ذلك بدر اسة سلوك دالتي الارتباط الذاتي والارتباط الذاتي الجزئي لسلسلة الاضطراب الموضحة في الشكل (8)الآتي:

الشكلِ (8): يوضح (A) دالة الارتباط الذاتي لسلسلة الاضطراب N_t (B) دالة الارتباط الذاتي الجزئي لسلسلة الاضطراب N_t الذيتبين أنَّ سلسلة الاضطراب هي سلسلة بواقي عشوائية أي $N_t=a_t$ ، وبذلك فإنَّ نموذج دالة التحويل للصيغة النسبية تكون على الشكل الآتى :

$$Y_{t} = (w_{o} - w_{1}B - w_{2}B^{2})X_{t-1} + a_{t}$$

لذا فإنَّ التقديرات النهائية تكون على النحو الآتى:


$$Y_{t} = -0.6559X_{t-1} - 0.3341X_{t-2} + a_{t}$$

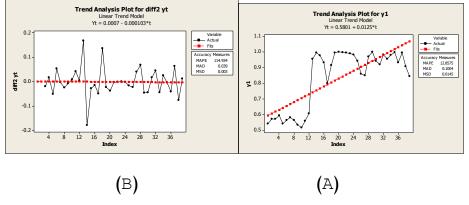
يتم حساب قيم السلسلة (a_t) من المعادلة المذكورة في اعلاه والجدول (a_t) يوضح قيم a_t التي تم الحصول عليها.

t	â _t	t	â _t	t	\hat{a}_t	Т	\hat{a}_t	t	â _t
1	0	9	0	17	2.00024	25	1.27426	33	-1.41963
2	0	10	0	18	-0.56763	26	-0.00138	34	0.82142
3	0	11	0	19	-1.18511	27	-0.59754	35	-0.96746
4	0	12	0	20	-0.02255	28	-0.65207	36	0.06490
5	0	13	0	21	-0.21844	29	1.21909	37	0.20653
6	0	14	0	22	-0.16071	30	-0.42080		
7	0	15	0	23	0.10039	31	0.03849		
8	0	16	0	24	-0.37813	32	0.47843		

الجدول (6): يوضح قيم السلسلة at لنموذج دالة التحويل

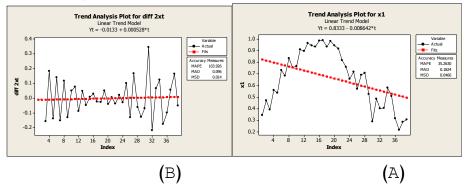
 (a_t) وسلسلة البواقي (α_t) وسلسلة البواقي السلسلة النقية للمدخلات (α_t) وسلسلة البواقي الموضحة في الشكل (9)

 a_t الشكل (9): يوضح الارتباط المتقاطع بين السلسلة النقية للمدخلات α_t وسلسلة البواقي


، a_t و α_t ، وهذا يدل على وجود ارتباط بين السلسلتين α_t و هذا يدل على وجود ارتباط بين السلسلتين و هذا يدل على عدم جودة النموذج الموفق .

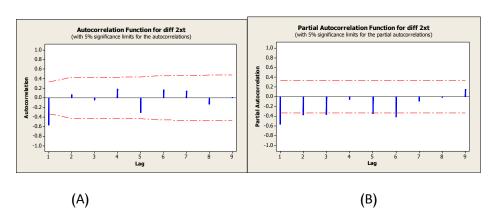
ثانياً: بناء نموذج دالة التحويل في حالة تضبيب سلسلتي الادخال والاخراج:

تم تضبيب سلسلة الإدخال (الانتاج العالمي للحنطة) ، وسلسلة الإخراج (السعر العالمي للحنطة)باستخدام البرنامج الجاهز (Matlab) فقد تم ادخال السلسلتين واستخدام الدوال العضوية لدالة كاوس الموضحة في الجانب النظري للحصول على السلسلتين المضببتين ، والخطوات الآتية تبين مراحل بناء نموذج دالة التحويل


أ- تهبئة البيانات:

من خلال رسم سلسلة الاخراج المضببة نلاحظ عدم استقرارية السلسلة ، وبعد أخذ الجذر التربيعي و الفروق لها تم الحصول على السلسلة المستقرة والشكل الآتي يوضح ذلك:

الشكل (10): يوضح (A) رسم الاتجاه العام للسلسلة المضببة للسعر العالمي للحنطة Y_t و (B) بعد ثبوت واستقرار السلسلة للسعر العالمي للحنطة


ومن رسم سلسلة الادخال المضببة نلاحظ عدم استقرارية السلسلة ، وبعد أَخذ الجذر التربيعي والفروق لها تم الحصول على السلسلة المستقرة ، والرسم البياني الآتي يوضح سلسلة الادخال

الشكل (11): (A) يوضح رسم الاتجاه العام للإنتاج العالمي للحنطة للسلسلة المضببة $_{\rm t}$ $_{\rm$

ب- تنقية سلسلتي المدخلات (X,) والمخرجات (Y) المضببتين.

بعد تهيئة سلسلتي المدخلات (X_t) والمخرجات (Y_t) يتم تنقيتهما، إذ يتم تنقية سلسلة المدخلات من خلال تحديد النموذج الملائم لها للحصول على سلسلة بواقي (مستقلة) ، وذلك بملاحظة سلوك دالتي الارتباط الذاتي والذاتي الجزئي ، وبعد استقرارية السلسلة فقد تبين انه يتبع نموذج (MA(1)) إذ امتلك أقل MSE=0.006088 ،وان القيمة التقديرية للمعلمة

الشكل(12) :(A) يوضح رسم دالة الارتباط الذاتي لسلسلة المدخلات المضببة و (B) يوضح رسم دالة الارتباط الذاتي الجزئي لسلسلة المدخلات المضببة

$$egin{align} X_t &= heta(B)lpha_t \ lpha_t &= X_t + heta_1lpha_{t-1} \ \end{pmatrix} \ \hat{lpha}_1 &= X_1 \ \end{pmatrix}$$
 لإذ ان $X_0 = 0$

وباستخدام المعادلة المذكورة أنفاً تم الحصول على قيم $\hat{\alpha}_{t}$ الموضحة في الجدول (7).

	. ^		
المتغير الادخال المضبب	(α)): به ضبح قبد	الحده أن (7)
	\ \& + <i>I</i>	۱. ټر—-) ښ	,, 0,

t	$\hat{lpha}_{ m t}$	t	$\hat{lpha}_{_t}$	t	$\hat{lpha}_{ m t}$	Т	$\hat{\alpha}_{t}$
1	-0.157326	11	-0.031271	21	-0.069981	31	-0.007558
2	0.033756	12	-0.078555	22	-0.096800	32	0.115583
3	-0.108300	13	-0.066883	23	0.009221	33	-0.679800
4	0.037550	14	-0.033930	24	-0.121545	34	0.580070
5	-0.116557	15	-0.056269	25	0.051550	35	0.554790
6	0.004363	16	-0.081232	26	-0.014295	36	-0.644170
7	-0.126449	17	-0.027286	27	-0.141486	37	-0.875370
8	-0.070467	18	-0.066718	28	-0.205680		
9	0.008057	19	-0.060272	29	0.149897		
10	-0.081255	20	-0.096175	30	-0.077634		

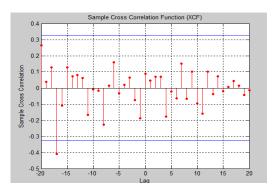
وللحفاظ على العلاقة الدالية بين المدخلات والمخرجات تجرى تنقية سلسلة المدخلات على سلسلة المخرجات، وبالطريقة التي اتبعها (Makridakis et al.,1983) وعلى النحو الآتي:

$$Y_{t} = \theta(B)\beta_{t}$$
$$\beta_{t} = Y_{t} + \theta_{1}\beta_{t-1}$$

الجدول (8) يوضح قيم سلسلة ($\hat{\beta}_t$).

الجدول (8): يوضح قيم $(\hat{\beta}_t)$ لمتغير الاخراج المضبب

t	$\hat{\beta}_t$	t	$\hat{\beta}_t$	t	$\hat{\beta}_t$	t	$\hat{\beta}_t$
1	-0.020201	11	0.185656	21	-0.0169705	31	-0.0224881
2	-0.003305	12	-0.003114	22	-0.0182663	32	0.0042228
3	-0.055051	13	-0.031155	23	-0.0338774	33	0.0004568
4	-0.000012	14	-0.043804	24	-0.0560601	34	-0.0407817
5	-0.004143	15	-0.091311	25	-0.0139686	35	0.0249445
6	-0.027970	16	0.048849	26	0.0543574	36	-0.0522657
7	-0.034757	17	0.0239633	27	0.0046134	37	-0.0382002
8	-0.025076	18	-0.0155924	28	-0.0396507		
9	0.017153	19	-0.0174939	29	-0.0217467		
10	0.019402	20	-0.0180978	30	0.0241671	·	


 (β_t) و (α_t) الارتباط المتقاطع بين السلسلتين

باستخدام المعادلة (4) يتم ايجاد قيم الارتباط المتقاطع بين السلسلتين (α_t) و (β_t) الموضح في الجدول (9) الأتي.

t t $r_{\alpha\beta}$ $r_{\alpha\beta}$ $r_{\alpha\beta}$ $r_{\alpha\beta}$ -0.012043 0 0.05047 -0.01358 10 -0.0558 15 1 0.02725 -0.0378 11 -0.0917 16 0.003647 2 0.04015 7 0.0876 12 0.058704 0.03989 -0.0382 13 -0.021438 3 -0.10273 0.0586 14 0.042291

المحسوبتين. يوضح قيم الارتباط المتقاطع بين (α_t) و (β_t) المحسوبتين.

و الشكل الآتي يوضح رسم دالة الارتباط المتقاطع بين (α_t) و (β_t) و (β_t)

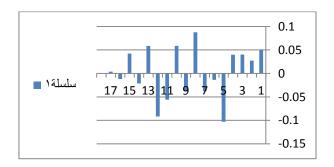
الشكل (13): يوضح الارتباط المتقاطع بين (α_t) و (α_t) ، وتحديد الزمن الميت لمتغير الادخال ضمن الرسم

إذ يتضح من الشكل (13) بأنه لايمكن تحديد الزمن الميت ، لذا تم الاعتماد على الاوزان التي يتم تقدير ها في مرحلة التشخيص.

د- التشخيص

1- تقدير أوزان الاستجابة النبضية

تم تقدير اوزان الاستجابة النبضية لسلسلتي المدخلات (X_t) والمخرجات (Y_t)المضببتين وهو الموضح في الجدول (10) الآتي


الجدول (10): يوضح قيم الاستجابة النبضية لدالة تحويل السلاسلا المضببة

t	V	t	V	t	V	t	V
0	0.050480	5	-0.013588	10	-0.0558337	15	-0.0120437
1	0.027255	6	-0.0378113	11	-0.0917393	16	0.0036471
2	0.040155	7	0.0876968	12	0.0587046		
3	0.039890	8	-0.0382581	13	-0.0214384		
4	-0.102732	9	0.0586624	14	0.0422919		

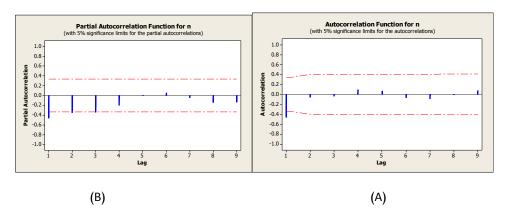
2- تحديد رتبة نموذج دالة التحويل (r,s,b)

من خلال الشكل (14) يتبين أَنَّ الزمن الميت هو b=0 (حسب القاعدة (1) يتبين أَنَّ الزمن الميت هو u=4 (al.,1983) وانv=1و v=1و v=1و النحو v=1و النحو النحو الآتى :

$$Y_{t} = \frac{(w_{o} - w_{1}B - w_{2}B^{2} - w_{3}B^{3} - w_{4}B^{4} - w_{5}B^{5})}{(1 - \delta_{1}B - \delta_{2}B^{2})}X_{t} + N_{t}$$
(4.3)

الشكل (14)رسم الاوزان(٧)لتحديد رتبة النموذج

3- سلسلة الاضطراب


يتم حساب سلسلة الاضطراب من المعادلة الآتية:

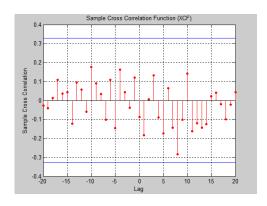
$$N_t = Y_t - v_o X_t - v_1 X_{t-1} - \dots - v_{16} X_{t-16}$$

والجدول الآتي يوضح قيم سلسلة الاضطراب N_t التي تم الحصول عليها الجدول N_t : يوضح القيم التقديرية لسلسلة الاضطراب N_t .

t	Nt	t	N _t		N _t	t	N _t	t	N _t
1	0	9	0	17	0.0091777	25	0.0369667	33	0.0572839
2	0	10	0	18	-0.0735817	26	0.0560047	34	-0.0544429
3	0	11	0	19	0.0343297	27	-0.0223792	35	0.0771397
4	0	12	0	20	-0.0182635	28	-0.0553188	36	-0.0716567
5	0	13	0	21	0.0046186	29	0.0272644	37	0.0037852
6	0	14	0	22	0.0026677	30	0.0363829		
7	0	15	0	23	-0.0294417	31	-0.0501727		
8	0	16	0	24	-0.0185728	32	-0.0193583		

ولتحديد نموذج ARIMA لسلسلة الاضطراب (N_t) ، يتم ذلك بدراسة سلوك دالتي الارتباط الذاتي والارتباط الذاتي الجزئي للاضطراب الموضحة في الشكل (15)الآتي:

الشكل (15): يوضح (A)دالة الارتباط الذاتي لسلسلة الاضطراب N_e(B) دالة الارتباط الذاتي الجزئي لسلسلة الاضطراب N_t.


إذ يتبين أنَّ سلسلة الاضطراب تتبع نموذج ARMA ، وبعد توفيق عدة نماذج تبين أنَّ سلسلة الاضطراب تتبع نموذج MA(1) الاضطراب تتبع نموذج دالة التحويل للصيغة النسبية يكون بالشكل الآتى:

 $a_t = N_t + 0.9657 a_{t-1}$ يتم حساب قيم السلسلة (a_t) من المعادلة المذكورة في اعلاه والجدول (a_t) يوضح قيم (a_t) الحصول عليها.

t	â _t	t	$\hat{a}_{_t}$		$\hat{a}_{\scriptscriptstyle t}$	t	\hat{a}_t	t	â _t
1	0	9	0	17	0.0091777	25	-0.0401924	33	-0.0028691
2	0	10	0	18	-0.0647187	26	0.0171909	34	-0.057213
3	0	11	0	19	-0.0281692	27	-0.0057779	35	0.0218885
4	0	12	0	20	-0.0454666	28	-0.0608986	36	-0.0505189
5	0	13	0	21	-0.0392885	29	-0.0315453	37	-0.0450009
6	0	14	0	22	-0.0352732	30	0.0059196		
7	0	15	0	23	-0.0635051	31	-0.0444561		
8	0	16	0	24	-0.0798997	32	-0.0622895		

الجدول (12): يوضح قيم السلسلة a_t الناتجة لمتغير الادخال

ثم تم ايجاد دالة الارتباط المتقاطع بين السلسلة النقية للمدخلات (α_t) وسلسلة البواقي (a_t) وكما موضح في الشكل (16)

.a, وسلسلة البواقى α_t الشكل (16): يوضح الارتباط المتقاطع بين السلسلة النقية للمدخلات

إذ نلاحظ بأنَّ قيم الارتباط المتقاطع بين سلسلتي المدخلات النقية (α_t) والبواقي (a_t) غير معنوية وهذا يعني عدم وجود ارتباط بين السلسلتين ، وبالتالي جودة النموذج.

لذا فإنَّ التقديرات النهائية تكون على النحو الآتي:

$$Y_{t} = \frac{(0.1267 + 0.2129 B + 0.2405 B^{2} + 0.2211 B^{3} + 0.04733 B^{4} + 0.03534 B^{5})}{(1 + 0.4594 B + 0.2556 B^{2})} X_{t} + (1 - 0.9657 B) a_{t}$$

اختيار افضل طريقة

ولاختيار أفضل طريقة من الطرائق المستخدمة (دالة التحويل للبيانات الاصلية، دالة التحويل بعد اجراء تضبيب للبيانات مع اخذ الاستقرارية لها)، تم استخدام المعايير الاحصائية (MSE,BIC) ، والنتائج التي تم الحصول عليها موضحة في الجدول (13) الآتي :

المعيار الطريقة	MSE	BIC
دالة التحويل للبيانات الاصلية	0.3764141	-32.5404990
دالة التحويل بعد اجراء تضبيب للبيانات مع	0.0011139	-226.318318
اخذ الاستقرارية للبيانات		

الجدول(13): يوضح المعابير الاحصائية المستخدمة للمقارنة

إذ يلاحظ من الجدول المذكور في اعلاه تفوق الطريقة الثانية دالة التحويل بعد اجراء تضبيب للبيانات مع اخذ الاستقرارية للبيانات على الطريقة الأخرى .

التنبؤ بنموذج دالة التحويل بعد اجراء تضبيب للبيانات مع أخذ الاستقرارية للبيانات

بعد ان اجتازت الطريقة الثانية للفحوص التشخيصية يمكن استخدام النموذج في التنبؤ بالقيم المستقبلية للبيانات

$$\begin{split} \hat{Y}_{t+l} &= -0.4594Y_{(_{t+l})-1} - 0.2556Y_{(_{t+l})-2} + 0.1267X_{(_{t+l})} + 0.2129X_{(_{t+l})-1} + 0.2211X_{(_{t+l})-2} \\ &+ 0.04733X_{(_{t+l})-3} + 0.03534X_{(_{t+l})-4} - 0.5063a_{(_{t+l})-1} - 0.188a_{(_{t+l})-2} - 0.2468a_{(_{t+l})-3} + a_{(_{t+l})-3} \end{split}$$

وبما ان a_i هي قيمة مستقبلية لايمكن التنبؤ بها لذلك فإنها تكون مساوية للصفر دائماً وباستخدام المعادلة التنبؤية في الجدول (14)الآتي:

t+l	actual	Forecasting
38	0.0386685	0.0693935
39	0.0249774	0.00440016
40	0.0039759	-0.0082996

الجدول (14) يوضح القيم الحقيقية والقيم التنبؤية التي تم الحصول عليها

الاستنتاجات

- -1 من خلال التطبيق العملي على البيانات يلاحظ بأنه يمكن الاعتماد على رسم الأوزان لتحديد رتبة دالة التحويل بدلاً من رسم الارتباط المتقاطع بين α_t كما في الطريقة الثانية .
 - 2- إنَّ استخدام التضبيب ثم أَخذ الاستقرارية للبيانات أَعطى أَفضل نموذج دالة تحويل وتم الاعتماد عليه في ايجاد القيم التنبؤية .

المصادر

- 1- الحنون، أسامة بشير شكر ،(2007): "نماذج دالة التحويل الآنية مع تطبيق"، رسالة ماجستير غير منشورة ،كلية علوم الحاسبات والرياضيات، جامعة الموصل، العراق .
- 2- العمري، هيلاء انس عبد المجيد، (2005): "بعض طرائق الكشف عن التغذية العكسية فيالنماذج الحركية مع التطبيق على بيانات الانواء الجوية في محافظة نينوى"، رسالة ماجستير، كلية علوم الحاسوب والرياضيات، جامعة الموصل، العراق.
- 3- آل طوي، احمد سالم إسماعيل، (2011). "توظيف التحليل ألعاملي في نماذج دالة التحويللتنبؤ بالمعدلات بالمعدلات الشهرية للتبخر -نتح "، رسالة ماجستير، كلية علوم الحاسوب والرياضيات، جامعة الموصل، العراق.

- 4- المعماري، نوال محمود ، (2004): "التنبؤ بواسطة نماذج الانحدار الحركي مع التطبيق"، رسالة ماجستير غير منشورة ،كلية علوم الحاسوب والرياضيات، جامعة الموصل، العراق.
- 5- حياوي، هيام عبد المجيد، (2006): تشخيص النظم الحركية الخطية التصادفية من خلال علاقتها مع الزمن"، أطروحة دكتوراه غير منشورة، كلية علوم الحاسبات والرياضيات، جامعة الموصل ، العراق.
- 6- فاندل، والتر، (1992): "السلاسل الزمنية من الوجهة التطبيقية ونماذج بوكس_جنكنز"، تعريب د.عبد المرضى حامد عزام، دار المريخ للنشر،الرياض، المملكة العربية السعودية.
- 7- قاسم ،عمر صابر 2010: تطبيق التقنيات الذكائية في المعلوماتية الحياتية"، أطروحة دكتوراه غير منشورة،كلية علوم الحاسوب والرياضيات،جامعة الموصل ،العراق.
- 8- هندوش. رنا وليد بهنام، 2006: "دراسة عن النمذجة المضببة مع تطبيقات"؛ رسالة ماجستير غير منشورة، كلية علوم الحاسوب والرياضيات ، جامعة الموصل، العراق.
 - 9- Box, G.E.P and Jenkins, G.M. (1976): "Time series Analysis Forecasting and Control", Holden Day, San Francisco.
 - 10-Klir, G.J., Clair, U.St. and Yuan, B. (1997), "Fuzzy Set Theory", Prentice Hall PTR.
 - 11-Liu, L.-M. and Hudak, G.B., (1994): "Forecasting and Time Series Analysis Using the SCA Statistical System", Volume 1, Scientific Computing Associates Crop., Chicago.
 - 12-Liu, L.-M., (2006): "**Time Series Analysis and Forecasting**", 2nd ed., Scientific Computing Associates Crop., Illinois, USA.
 - 13-Makridaskis, S. Wheelwright, S. and Hyndman, R. (1998): "Forecasting: Methods and Applications", 3rd ed., John Wiley and Sons, New York, USA.
 - 14-Makridakis, S. and Wheelwright, S.C. and Mcgree V.E. (1983) "Forecasting Methods and Application", 2nd ed. John-Wiley and Sons. Inc.
 - 15-Wei, W. W. S. (1990): "Time Series Analysis Univariate and Multivariate Methods", Addison-Wesley Publishing Company, Inc., The Advanced Book Program, California, USA.