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1-Introduction

Let Z(t), t>=0, be a stochastic process where M=(0,1,2,3,4,..., 1), i>1, is the finite set of states on which Z(t) is defined.
Let zero be an absorbing state and let 1,2,3,4,...., i be transient states. State zero could represent retirement in an employment
example or death in a clinical example. Suppose that a random sample (L) of realizations z,(t) representing (H) independent
individuals is selected, (0€L). Ideally, to infer properties of Z(t), each z,(t) should be observed continuously. However, this
is likely to be impossible or too expensive. Commonly, z,(t) is observed at discrete times ti<t,<tz<...... <tn, not necessarily
identical for a time all (0), so that the transition between observations is missed and the length of time spent in the states
occupied at ty, to, t3, .ty are not known precisely. Thus various standard nonparametric and semi-parametric analyses of the
data cannot be performed (Daoud et al. (2022), Aalen et al., 1980), to follow a fully parametric approach, it is necessary to
specify the conditional probability of a state being occupied at time t;, given the state occupied at tj.1, j=2,3,4,....n. these are
found by solving the forward Kolmogorov equations associated with the model chosen to represent the underlying processes.
For simplicity time homogenous makove model are often selected at least as a first approximation (Emily et al.,2020), Alamu
etal., 2022).

Two test stats are presented to examine the adequacy of this class of models. The first assesses the overall quality goodness
of fit, while the second tests local departures toward time in- homogeneity. If the time intervals between adjacent observations
are the same for all individuals and are constant, the adequacy of these models can be assessed by comparing the transition
frequencies observed at each observation time. However, in many applications, follow-up occurs depending on availability,
for example, at times of medical examinations or a survey interview. The tests proposed in this paper do not need fixed
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intervals of time between observations. The second test does not require the same periods for each individual. Hence the
presented procedure is useful when the structure of basic continuous temporal processes is inferred from these data (NHS
Choices 2011), Othman et al., 2011)

2-Methodology:

Believe the realizations zo(t), (0eL) and (t> 0) of the stochastic process Z(t). Denote by

Prs(tj-1, tj )=Pr[zo(tj )=s| zo(tj-1 )=r Q)
The provisional probability of state (s) being engaged at time( ¢; )given that state (r) was occupied at time tj-1, for j= 2, 3,...,
n.

For continuous time processes,

let

Prs(t) — llgl_r)% prob[zw(t+ﬁﬁ)=s|zw(t)=r] (2)
denote the transition rate from state (R) to state s at time (t) (Lawless, J.F 2003), Bedford, T. and Cook, R.2009). A stochastic
process defined on the state space (S) is fully specified when all pis(t) are defined. For a time-homogeneous Markov process
the transition rates do not vary with time, i.e. prs(t)=Hrs, say, and the conditional probabilities p,(t;_4,t;) are functions of
Xj= tj-tj-1, say, and not of tj; or t; (Cox and Miller (1965). Denote such time-homogeneous conditional probabilities by g,.s(X;).
For the special case S = (0, 1, 2),

aro(%7) = 1= ¢r1(6)) = 4ra (%)) @3)
qr1 (xj) = Z?nzl amexp (—/1ij) (4)
r2(%)) = Loy bmexp (—2mx;) )
Where r=1,2 and , form, 1=1,2; I=m,

1

Hm = {=(Am — W21 — Mz0)}prob [r = 1] + pyyprob[r = 2]
Ai - )lm
Hi2
by=—-——"2
Am — H21 — Hzo Him

The parameters in the exponential function, —1, < —A,, are the roots of the quadratic equation
s? + 5(ayo + Ay + az1 + azp) + (A12a20 + A100z1 + A19a5) =0 (62)

As qro (X;) tends to 1 as xj—oo, the process is absorbed in state (0). The extension of results to more than two transition states
is straightforward (Cox and Miller Heterogeneity among the zo(t) may be taken into account by defining the transition

rates (1) as functions of some explanatory variables, for example, by writing (Cox et al.,. 1984)

p-rs(Yco) = Brsexp(erTSYw) (6b)

where B, = 0 and y, is the vector of explanatory variables. If part of this individual heterogeneity is not recognised, and
therefore omitted in the specification of equation (6b), the transition rates will appear to be negatively correlated with time
even if the process is truly time homogeneous (Tony Lancaster and Stephen Nickell, 1980; Clayton and Cuzick, 1985).

3-Markove Chain Model for tests for Departures from Time Homogeneous

3.1 Goodness of Fit

Let( H,.; )be the number of the realizations zo(t), weL, in state (r) at time t, and let Qrs(x;) be the number of realisations which
have had in state r at time tj and in state s at tj+1 = tj+x;. For( H,; ) and Q,4(X;) to be observed all realisations zo(t) must be
observed at tj and tj+1. Assuming that a time homogeneous Markov process is suitable, the conditional predictable value of

Qrs(xj) is
ErS(xj) = HrJ'QrS(xj)-

Denote by grs(xj) the maximum likelihood estimate of o(x;) which is obtained, as in equations (3,4 and 5), by considering
all spaced by( xj) Then E,.¢(xj) is efficiently estimated by
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Ers(xj) = Hrjqrs(x]-). @)
A goodness-of-fit statistic for the time-homogeneous Markov specification of the process has been defined as the sum of the
chi-squared goodness-of-fit statistics defined on each of the n-1 disjoint intervals (t1, t2), (t2, t3),..., (tn-1 ,t,,),

Qrs(xj)_ﬁrs(xj)]/\z} ] (8)

Chi — Squ. (x?) = 2 {Zr,s[ Ers(xj)

Expression (8) would had have to obtain if all possible transitions among the states in (S) were treated as outcomes of a
multinomial distribution. The limiting chi-square distribution of( *2 )is degrees of freedom equal to the number of
independent cells in the multinomial distribution, namely K?(n-1), minus the number of parameters in q,.¢(Xj). While, the
transition rates were the same for all the realisations zo(t), as in equations (3,4 and 5), the parameters were K2 and the number
of degrees of freedom is therefore K2(n-2)

3.2. Inhomogeneity of Time

Let u={u,s} 1, SE S, is the vector of transition rates specified a time-homogeneous Markov model. Departures from this
model in the direction of time-inhomogeneity will imply that at least one of the elements in( L )varies with time, where time
has measured from the origin of the process. For simplicity, consider the case of just one transition rate being weakly time
dependent. Let p;,(t) be such a rate and p,, its value at the origin of the process t = 0. Assuming that it was linear sable over
the time interval of interest we can write for small(e),

p12()=pipt et )

A local test for time-inhomogeneity of the transition rate from state 1 to state 2 is then equivalent to a test for =0 in equation

(9).

As before, the conditional probabilities associated with this new specification of the Markov model can be found by solving
the forward Kolmogorov equations. An approximate solution is, for r, s€ M (see Appendix A for the explicit solutions when
i=2),

prs(tj_l, tj) = qrs(xj) + surs(tj_l, tj) +0(e?) (10)

where u,.(tj_1,t;) is the first derivative of p,s(t;_q,t;) with respect to & evaluated at ¢ = 0. The contribution to the
likelihood function of the n observations on yw(t) is

Goprob|z,(ty) = iy] 1}, prob [Z(o(tj) = ijlzw(tj—l) = ij—1] (11)
where iy, i,, ... i,, are the states occupied by z,(-) at the times ¢, t,, t, ..., t,. Denoting by GJ, the contribution associated a

time-homogeneous specification of the model, we find, under regularity conditions (Crowder, M. 2012), Crowder.and
Sweeting, 1991),

ui;_, (tj—1t)
Go=Go|l+e),LT—— 12
© co[ EZ] Qij_l.ij(xj) ( )
The score function associated with the right-hand side of equation (12) is
Ui, 'i.(tj_l,tj:w)
- o Y e D
U.(0) [Z, o G ] (13)

Where o is included in the notation to identify the contribution of each realization zo(t). This is valid only under the
assumption that equation (9) is a proper approximation for P12(t) and e is close to 0. A local test statistic for e=0 in equation
(9) can be defined as

T, = sign{U.(0)}U. (0)(i%|._o)~"/?] (14)
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where (i%¢|.-,) is the element of the inverse information matrix corresponding to & which is computed at the maximum
likelihood values (10) when £=0. Thus (i¥¢)~! is the variance of the score function statistic (13) when £=0. Assuming
asymptotic normality of equation (13), the test statistic has asymptotic standard normal distribution. The sign in equation
(14) indicates whether p;, (t) decreases or increases with time (Barlow, R. and Proschan, F 1975).

3. Kidney Disease Data

Table 1 in appendix B, provides information on 40 individuals with kidney illness who received from Rizgari at the Erbil
Hospital. Their capacity or inability to walk unassisted was noted before treatment started as well as at 3 months, 6 months,
one year, and two years. Assume that states 0, 1, and 2 correspond to being dead, incapable of walking, and ambulant,
respectively. Consequently, the information can be seen as discrete time observations of realizations produced by a time
continuous process specified on three states. Also utilized for data analysis are the Statistics Package Social Sciences (spss)
and easy fit. We fitted a time homogeneous Markov model with the identical transition rates (prs) for all patients as a first
approximation to this process.

Table 2 shows the maximum likelihood estimates of these parameters. As pu20 has have small compared with its standard
error-as well as in absolute value-the transitions from the ambulatory state to death were be likely to occur indirectly, via
unobserved state in the non-ambulatory state. A model with u20 constrained to be equal to 0 is fitted to test this hypothesis,
showing that there is no significant gain by estimating prs ; the likelihood ratio test statistic is equal to 0.027. Noting that the
reciprocal of ors =1/ urs , represents the expected time spent in state r before a transition to state s occurs, the estimate was
values of the other parameters show the following. On average, transitions out of the non-ambulatory state towards the
ambulatory state occur after a fairly long spell ( = 43 weeks; standard error, 14.5), while transitions out of the ambulatory
state back to the non-ambulatory state occur after a fairly short spent in the non-ambulatory state before death ( =25 weeks;
standard error, 1.1).

Table2 :Using Markov Model by (MLE) of the time homogeneous: full and restricted specification

States Full Specification Restricted Specification
R S lLlrS o-rs ILII’S GFS
1 0 0.173 4.9 0.2 4.9
(0.08) (2.1) (0.040) (1.1)
1 5 0.039 24.2 0.041 24
(0.037) (22.9) (0.029) (17.5)
5 0 0.005 187.9
(0.027) (1022.2)
9 1 0.110 10 0.110 8.9
(0.021) (2.3) (0.019) (1.9)
Maximum Likelihood -110.2 -111.54

Standard errors are given in parentheses: the standard error of T
lLlI’S

The overall equation of goodness-of-fit statistic 8, however, shows evidence against this time homogeneous specification of
the model, X2 =29.04, 12 d.f.; only the observations up to 50 weeks were used in computing the test because of sparseness
of data in the following weeks. Indeed, the transitions from state 2 to state 1 are observed more frequently at the 12 weeks
examinations than at the following examinations. The equation (14) computed to test whether the transition rate from state
2 to state 1 changes as time increases takes a negative, although not significant, value; T =-1.189. This could be an indication
of truly time dependence as well as a consequence of some heterogeneity in the individual transition rates.

To explore whether this is feasible we use information about the pretreatment status of each patient, treating it as a proxy for

=1/u _equal |0c T
s ]7/’““ g Iao-“/a’urs|times the standard error of

individual frailty (James et al., 1979). Let (z) take value 1 if the patient was in a non-ambulatory status, value 0 otherwise,

and

Table3: MLE of the time homogeneous Markov model with transition rates depending ony
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State ﬁrs érs State occupied before treatment
R State 1 s O State 2 A O
1 0,019 o 0.180 5.734 0.089 9.998
1 (8828) (_f,§5162) 0.028 28.989 0.052 20.021
2 (88\;)613) -(12773975); 0.000 0.000 0.051 20.283
2 ((())%sli (8231) 0.998 10.012 0.060 16.989
MLE -109.97

Table 4:0Observed and fitted frequencies of transition between states: time homogenous Markov specification.

3 i ij+1 ij+1
Observed (0) Fitted Observed (1) Fitted Observed (2) Fitted
Subset of patents in state 1 before treatment began
1 1 8 4.289 1 0.765 2 5.897
2 0 0.445 3 7.497 5 2.031
5 1 2 3.198 2 0.487 6 3.889
2 0 0.199 2 3.220 1 0.101
3 1 5 3.679 1 0.469 2 1.679
2 1 0.678 2 2.287 1 1.221
4 1 3 2.369 1 0.198 0 0.301
2 2 1.297 3 1.023 0 0.698
Subset of patents in state 2 before treatment began
1 1 0 0 0 0 0 0
2 1 (2.1980) 12 (10.968) 3 (1.789)
5 1 0 0.489 2 0.302 1 2.298
2 1 (1.568) 9 (8.032) 1 (1.301)
3 1 1 0.559 0 0.298 2 1.089
2 6 (3.013) 5 (5.497) 0 (1.601)
4 1 3 0.989 0 0.298 0 0.669
2 2 2.602 2 (1.558) 1 (0.779)

Specify a time homogeneous Markov model with transition rates depending on y as in equation (6). Table 3 reports the values
of the estimated parameters. Significant differences in the transition rates of the two groups of patients surface: those who
were able to walk unaided before treatment began have, on average, state spells in state 2 before a transition to state 1 and in
state 1 before a transition to death, almost twice as long as the others 121 is 16.989 weeks and 10.012 weeks and 210 is
9.998 weeks and 5.734 weeks. The overall goodness of fit of this specification is satisfactory (Table 4). The test statistic 8,
soft a value of 36.32, however, should not be formally compared with a chi-squared statistic distribution with 24 degrees of

freedom since the data in the table are very sparse.

A key feature of this example is that data are available only at a few separate unequally spaced time points. It illustrates how
the procedure may be useful whenever it is required to recover information about the structure of a continuous time process
from such observations.

Appendix A:
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The expressions in equation 10 are derived as follows, for M =(0,1,2), Suppose that at time t state r is occupied, z,(t) =
r. Thus the Kolmogorov forward equations is for t > t,r = 1,2 (Crowder 2012), Lemke. 2016).

Pri(t0)= -[k1o + P12(D]pr1 (6,T) + Ha1pr2 (8, T) al

Pr2(t7)=p12 (D) pr1(t, T) — (a0 + K21 Pr2 (E, T). a2

Combining equations 9 and (al and a2), we find

pra(t )= -[11o + iz + €Tl (6,7) + pa10r2 (8, T) a3

Pr2(t7)= (M1p + &)1 (t,7) — (Mz0 + H21)pr2 (£, T). ad
A first — order Taylor expansion of p,s(t,t) around € = 0 yield
Prs(t,T) = qrs () + eup(t, 7) + 0(c?), ab

rs=1,2, where x=1 — t and u,4(t,7) is the first derivative of p,(t,7) with respect to € evaluated at e = 0 . Combining
equations (a5) and (a3, a4) and equating the coefficients of £ we find

U1 (8, 7) = —1pp1 (%) — (A10 + A12)Ur (&, T) + a1 U (8, T) ab

U (6,T) = Tpp1 () + a12ur (8, 7) — (ago + az1)up (t, 7). ar
This yields solutions

U1 (6,7) = Xioq A (X)exp (—Ymx) a8

Upp(t,7) = Yhoq b (X)exp (=A%), a9

Where —1, < —A, are the roots of equation 6a and , for I, m=1,2, | # m,
pm(x) = m [(Am — M20)c1 — R(x, p20)Cml, al0

bm(x) = 5=~ [(m = o)1 + R bio)m) all

cm = {(An — Wz21-Hp0)prob[r = 1] =y prob[r = 2]}, al2

hQe W) = [(A = 1) — (A = WAy — 4n)x + (A — W (A1 — 4)?x?/2], al3
Combining equations (a8, a9 and a3) we have

Pr1(t, ) = X2 -1 (W + €M) exp(— A x) ala
Pra(t,T) = Y21 (b + ebm) exp(—1,,%), al5

Where p,, and b,, m =1,2, were defined in equation (3,4 and 5). Since
Pro t1)=1- Pr1 (t7) - Pr2(t,T) alé

The limiting event of the process is, once again, absorbing in state 0. Better approximation to the solution of equation al and
a2 can be obtained by expanding equation a5 to higher orders and equating, in sequence, the coefficient of ¢, €2, €3,....

Appendix B:
Table 1: Kidney Disease data from Rizgari hospital Erbil Between 2020-22
Patient Initial Status at following follow-up times (in weeks)

status 0 12 24 48 96

1 2 2 2 2 2 0

2 2 2 2 2 0

3 1 1 0

4 1 2 1 2 2 0

5 2 2 2 2 2

6 2 2 2 2 0

7 2 2 1 2 2 2

8 1 2 1 0

9 2 2 2 2 2 0

10 1 1 0

11 1 1 0

12 2 2 2 2 0

13 1 1 0

14 1 2 2 2 0

15 1 1 0

16 1 1 0

17 2 2 2 2 0

18 1 1 1 0
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State 0 = death; state 1= non-ambulant status; state 2 = ambulant status; Un.k = alive but unknown status.

4-Conclusion and Recommendation:

Typically, the Markov model is used to examine the homogeneity of time series data. Due to this, we used two statistical
tests to determine whether this model was adequate. The first test evaluates the model's quality of fit, whereas the second
evaluates the homogeneity of the model using maximum likelihood. Utilizing weekly patient data on patients with kidney
disorders gathered from Rizgari Hospital for the years 2020 to 2022, by using social science software packages. The time
continuous process must be specified in terms of three states while representing the study's data as discrete time observations.
As previously mentioned, states 0 and 1 denote death and non-ambulant condition; state 2 respectively. We fitted a time
homogeneous Markov model with the identical transition rates prs for all patients as a first approximation to this process.
The transitions from the non-ambulatory state to the ambulatory state generally occur after a relatively long period of time
less than or equal to 43 weeks with standard error (14.5), while the transitions from the ambulatory state back to the non-
ambulatory state generally happen after a relatively short period of time less than or equal to 25 weeks with standard error
(1.2).

Even though the goodness-of-fit statistic for 8 weeks, x22 = 29.04 with degree of freedom equal to 12, provides evidence
against this time-homogeneous model specification, only observations up to 50 weeks were used in computing the test due
to the dearth of data in the remaining weeks. In actuality, the changes from state 2 to state 1 are seen more frequently during
the 12-week exams than throughout the subsequent exams. T = -1.189 is the result of the equation (14) that was used to
determine whether the rate of change from state 2 to state 1 varies with time. It's possible that this is both a sign of true time
dependency and the result of some heterogeneity in the individual transition rates.

The calculated parameter values are shown in Table 3. The transition rates between the two groups of patients show
significant differences: those who could walk alone before receiving therapy often spent almost twice as long in state 2 before
transitioning to state 1 and in state 1 before transitioning to death. p10 are 9.998 and 5.734 weeks, while p21 are 16.989 and
10.012 weeks.

However, the overall equation (8) of goodness-of-fit statistic (*2 = 29.04, 12 d.f.), which was used to compute the test,
provides evidence against this time homogenous specification of the model. This is because only observations up to 50 weeks
were utilized because there were insufficient data for the remaining weeks to compute the test.

This example's main characteristic is that there are just a few distinct, unevenly spaced time intervals where data are available.
This demonstrates how the method may be helpful if it is necessary to extrapolate structure-related data from such
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observations. We advise applying other statistical models, such as the Cox regression model, survival analysis, or mortality
rate to estimate the new model.
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