(2002-1961) (CFE) (MSE) (MAD) .(MAPE)

An Improvement Single Exponential Smoothing Method for Forecasting in Time Series

Abstract:

In this paper we describe single exponential smoothing method, which is used in time series forecasting, and suggest an improving to the single exponential smoothing method through adding the mean of the first differences for the time series for all predicting values of the single exponential smoothing. The improved method was compared with single exponential smoothing method by using real time series data for wheat national production for the period (1961-2002) through depending on Cumulative Forecasting Error (CFE), Mean Absolute Deviation (MAD), Mean Square Error (MSE), and Mean Absolute Percentage Error (MAPE) as criteria for comparison. It is clear that the improv method was more efficient than the single exponential smoothing method for forecasting in time series.

* مدرس مساعد/كلية علوم الحاسوب والرياضيات - قسم الاحصاء والمعلوماتية 200/ 10/ 26:

2010/ 2/11 :

... [260]

: -1

()

Holt C. C. (1958)

-1961)
(α) (WINQSB) .(2002

[261]	 المجلة العراقية للعلوم الاحصائية(18) 2010

: -2

(initial value) : -

(Parameters) : -

 $(0 \le \alpha \le 0.3)$

(Differences): -

. ...

: -3

[262]

:[7][2]

(Cumulative Forecasting Error):

$$CFE = \sum e_t$$

... (1)

$$e_t = X_t - F_t$$
... (2)

 $: x_t$

 $:F_t$

.() $:e_t$

(Mean Absolute deviation):

$$MAD = \frac{\sum |x_t - F_t|}{n} \qquad \dots (3)$$

(Mean Square Error):

$$MSE = \frac{\sum (x_t - F_t)^2}{n} \qquad \dots (4)$$

المجلة العراقية للعلوم الاحصائية(18) 2010 _____ المجلة العراقية للعلوم الاحصائية

(Mean Absolute Percentage: -

Error)

. :

 $MAPE = 100 * \frac{\sum [|e_i|/x_i]}{n} \qquad \dots (5)$

(Exponential Smoothing): -3

(Naïve)

.

 $F(t+1)=\alpha X(t)+(1-\alpha) F(t)$... (6)

:

X(t)

:F(t)

.(t+1) : F(t+1)

 $.(0 \le \alpha \le 1) \qquad \qquad : \alpha$

:[4]

 $s_{i} = \alpha x_{i} + (1 - \alpha)s_{i-1}$...(7)

:

.(i) : x_i

... [264]

$$.(i-1) \qquad \qquad :s_{i-1}$$

$$.(i) \qquad \qquad :s_{i}$$

$$.(0 \le \alpha \le 1) \qquad \qquad :\alpha$$

: (s_i) (s_{i-1})

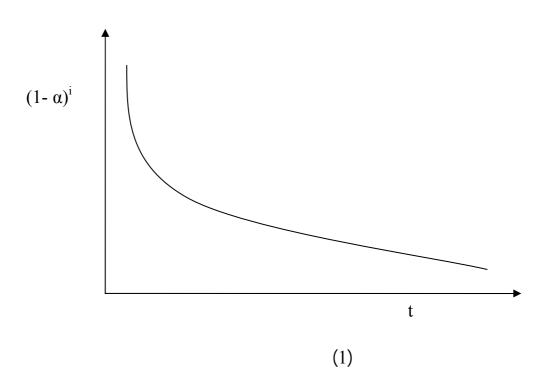
 $s_{i} = \alpha x_{i} + (1 - \alpha)[\alpha x_{i-1} + (1 - \alpha)s_{i-2}]$...(8)

 (s_i) (s_{i-2})

 $s_{i} = \alpha x_{i} + (1 - \alpha)[\alpha x_{i-1} + (1 - \alpha)[\alpha x_{i-2} + (1 - \alpha)s_{i-3}]]$...(9)

•

 $s_{i} = \alpha \ x_{i} + \alpha (1 - \alpha) x_{i-1} + \alpha (1 - \alpha)^{2} \ x_{i-2} + \ \alpha (1 - \alpha)^{3} \ x_{i-3} + ... + (1 - \alpha)^{i} \ s... (10)$


•

 $s_{i} = \alpha \sum_{j=0}^{i} (1 - \alpha)^{j} x_{i-j} + (1 - \alpha)^{i} s_{0}$...(11)

 s_0 (1- α) (1)

 $(\alpha=1)$

 $(\alpha=0)$ (α) (α) (α)

(Proposition Method): -4

•

:

:
$$-1$$

F(t+1)= α X(t)+(1- α) F(t) ... (12)

- 2

:

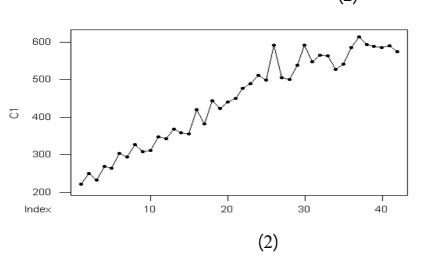
$$F^*(t+1) = F(t+1) + \overline{d}$$
 ...(13)

:

$$.(t+1)$$
 : $F(t+1)$

$$(t+1)$$
 : $F*(t+1)$

... [266]


.

.

: -6

.[1] (2002-1961)

(2)

:() (α) -1

(WINQSB) (CFE)

•

(1)

(CFE)

1961	222	*	*	1982	477	450.000	458.585

1962	250	222.000	230.585	1983	490	477.000	485.585
1963	233	250.000	258.585	1984	512	490.000	498.585
1964	269	233.000	241.585	1985	499	512.000	520.585
1965	264	269.000	277.585	1986	592	499.000	507.585
1966	304	264.000	272.585	1987	505	592.000	600.585
1967	294	304.000	312.585	1988	501	505.000	513.586
1968	327	294.000	302.585	1989	538	501.000	509.585
1969	309	327.000	335.585	1990	592	538.000	546.585
1970	311	309.000	317.585	1991	547	592.000	600.585
1971	348	311.000	319.585	1992	565	547.000	555.585
1972	343	348.000	356.585	1993	564	565.000	573.585
1973	369	343.000	351.585	1994	527	564.000	572.585
1974	359	369.000	377.585	1995	542	527.000	535.585
1975	356	359.000	367.585	1996	585	542.000	550.585
1976	420	356.000	364.585	1997	613	585.000	593.585
1977	382	420.000	428.585	1998	593	613.000	621.585
1978	444	382.000	390.585	1999	588	593.000	601.585
1979	423	444.000	452.585	2000	586	588.000	596.585
1980	440	423.000	431.585	2001	590	586.000	594.585
1981	450	440.000	448.585	2002	574	590.000	598.585

 $(\alpha) \qquad \qquad -2$ (WINQSB) (MAD)

: .

(2)

(MAD)

1961	222	*	*	1982	477	443.976	452.562
1962	250	222.000	230.585	1983	490	464.781	473.367

... [268]

1963	233	239.640	248.225	1984	512	480.669	489.254
1964	269	235.457	244.042	1985	499	500.408	508.993
1965	264	256.589	265.174	1986	592	499.521	508.106
1966	304	261.258	269.843	1987	505	557.783	566.368
1967	294	288.185	296.771	1988	501	524.530	533.115
1968	327	291.849	300.434	1989	538	509.706	518.291
1969	309	313.994	322.579	1990	592	527.531	536.117
1970	311	310.848	319.433	1991	547	568.146	576.732
1971	348	310.944	319.529	1992	565	554.824	563.410
1972	343	334.289	342.875	1993	564	561.235	569.820
1973	369	339.777	348.362	1994	527	562.977	571.562
1974	359	358.188	366.773	1995	542	540.312	548.897
1975	356	358.699	367.285	1996	585	541.375	549.961
1976	420	356.999	365.584	1997	613	568.859	577.444
1977	382	396.690	405.275	1998	593	596.668	605.253
1978	444	387.435	396.020	1999	588	594.357	602.942
1979	423	423.071	431.656	2000	586	590.352	598.937
1980	440	423.026	431.612	2001	590	587.610	596.196
1981	450	433.720	442.305	2002	574	589.116	597.701

 $(\alpha) \qquad \qquad -3$ (WINQSB) (MSE)

.

(3) (MSE)

1961	222	*	*	1982	477	444.935	453.521
1962	250	222.000	230.585	1983	490	466.419	475.004

1964 269 235.561 244.146 1985 499 502.172 510 1965 264 257.965 266.550 1986 592 500.047 508	0.804 0.757 0.632 0.241 0.282
1965 264 257.965 266.550 1986 592 500.047 508	3.632
	.241
1966 304 262.009 270.594 1987 505 561.655 570	
	282
1967 294 290.143 298.728 1988 501 523.696 532	.202
1968 327 292.727 301.312 1989 538 508.490 517	.075
1969 309 315.690 324.275 1990 592 528.262 536	.847
1970 311 311.208 319.793 1991 547 570.966 579	.552
1971 348 311.068 319.654 1992 565 554.909 563	.494
1972 343 335.813 344.398 1993 564 561.670 570	.255
1973 369 340.628 349.213 1994 527 563.231 571	.816
1974 359 359.637 368.223 1995 542 538.956 547	.542
1975 356 359.210 367.796 1996 585 540.996 549	.581
1976 420 357.059 365.645 1997 613 570.479 579	.064
1977 382 399.230 407.815 1998 593 598.968 607	'.553
1978 444 387.686 396.271 1999 588 594.969 603	.555
1979 423 425.416 434.002 2000 586 590.300 598	3.885
1980 440 423.797 432.383 2001 590 587.419 596	.004
1981 450 434.653 443.238 2002 574 589.148 597	7.734

(α) -4

(WINQSB) (MAPE)

: .

(4)

(MAPE)

1961	222	*	*	1982	477	443.976	452.562
1962	250	222.000	230.585	1983	490	464.781	473.367
1963	233	239.640	248.225	1984	512	480.669	489.254
1964	269	235.457	244.042	1985	499	500.408	508.993
1965	264	256.589	265.174	1986	592	499.521	508.106
1966	304	261.258	269.843	1987	505	557.783	566.368
1967	294	288.185	296.771	1988	501	524.530	533.115
1968	327	291.849	300.434	1989	538	509.706	518.291
1969	309	313.994	322.579	1990	592	527.531	536.117
1970	311	310.848	319.433	1991	547	568.146	576.732
1971	348	310.944	319.529	1992	565	554.824	563.410

... [270]

1972	343	334.289	342.875	1993	564	561.235	569.820
1973	369	339.777	348.362	1994	527	562.977	571.562
1974	359	358.188	366.773	1995	542	540.312	548.897
1975	356	358.699	367.285	1996	585	541.375	549.961
1976	420	356.999	365.584	1997	613	568.859	577.444
1977	382	396.690	405.275	1998	593	596.668	605.253
1978	444	387.435	396.020	1999	588	594.357	602.943
1979	423	423.071	431.656	2000	586	590.352	598.938
1980	440	423.026	431.612	2001	590	587.610	596.196
1981	450	433.720	442.305	2002	574	589.116	597.701

:(α)

(5)

	215.61	22.46	834.81	5.05	0.63
	CFE	MAD	MSE	MAPE	α
CEE	352.00	26.00	1152.48	6.00	1.00
CFE	0.00	25.91	1078.78	6.03	1.00
	567.61	23.28	998.81	5.31	0.63
MAD	215.61	22.46	834.81	5.05	0.63
) (CE	532.83	23.40	996.17	5.33	0.67
MSE	180.83	22.80	846.73	5.15	0.67
MAPE	567.61	23.28	998.81	5.31	0.63

(a) -7 -1 -2 WINQSB -3 (a) (CFE,MAD,MSE,MAPE) -8 (2005) . -1 (2002-1961) -2 " (2009) "WINQSB " (1992) -3

4- Engineering Statistics Handbook, (2006), US, Commerce Departments, Technology Administration.

_____ [272]

5- Lawrance, S., (2001), "Demand Forecasting Time Series Models", College of Business and Administration, University of Colorado.

- 6-Liu, L. M., (2006), "Time Series Analysis and Forecasting", 2nd ed, Scientific Computing Associates Corp. USE.
- 7- Makridaskis, s., Wheelright, S. C., & Hyndman, R. J., (1998), "Forecasting: Methods and Applications ", 3th ed, John-Wiley and Sons, New York, USE.
- 8- Makridaskis, s., Wheelright, S. C., & McGee, E., (1983), "Forecasting Methods and Application", 2nd ed, John-Wiley and Sons.
- 9- Sela, R., (2004), "Forecasting Time Series Data", Stern Business School.
- 10- Simon Shaw, (2003), "Exponential Smoothing Example", s.c.shaw@maths.bath.ac.uk, 2003/04 semester II.