*

) (

. SPSS

Dealing with the Contamination and Heterosedasticity Proplems In the CRD by Using the Wavelet Filter

Abstract

This paper deals with the proplems of contamination and heteroscedasticity, by using a method (the Direct Wavelet Filter that used which some method of thresholding) and comparing it with some classical method of transformation in the complete randomized design, through a Matlab code that perform the filtering process, also SPSS was also used.

/ / / /. /. /. /. /. *2010/ 9/14 : 2009/ 12/ 28:

... [238]
: : 1

Completely Randomized Design : 2

[4]

: 1.2

1

· . [1]

$$y_{ij} = \mu + \tau_i + \varepsilon_{ij} \quad \cdots \quad (1)$$

. i j y_{ij}

. μ

i au_i au_i . \overline{y} ..

i j $arepsilon_{ij}$

 ${\cal Y}_{ij}$:

 $\varepsilon_{ij} \sim NID(0, \sigma_e^2)$ $\hat{\varepsilon}_{ij} = y_{ij} - \overline{y}_{i.}$

Homogeneity of Variances

 $H_0: \sigma_1^2 = \sigma_2^2 = \dots = \sigma_k^2$ $H_1: \sigma_1^2 \neq \sigma_2^2 \neq \dots \neq \sigma_k^2$ _____ [240]

$$W = \frac{(N-k)\sum_{i=1}^{k} N_i (Z_i - Z_{..})^2}{(k-1)\sum_{i=1}^{k} \sum_{i=1}^{N} (Z_{ij} - Z_{i..})^2} \cdots (2)$$

 N_i i N_i

-- , -

$$Z_{..} = \frac{1}{N} \sum_{i=1}^{K} \sum_{j=1}^{N_{i}} Z_{ij}$$
 i $\bar{y}_{i.}$ $Z_{ij} = |y_{ij} - \bar{y}_{i.}|$ i Z_{ij} Z_{ij} . $F(\alpha, k-1, N-k)$ W . $Z_{i.} = \frac{1}{N} \sum_{j=1}^{N_{i}} Z_{ij}$

Wavelet Filter : : 3

(Details) .

 (\sin) $(-\infty,\infty)$ $(-\infty,\infty)$

`

(Threshold)

[241]

المجلة العراقية للعلوم الاحصائية(18) 2010

. [5]

:1.3

Discrete Wavelet Transformation

(Wavelet

Transformation)

(Fourier Transformation)

(DWT)

. [6]

 $\underline{X} = [x_0 \quad x_1 \quad \cdots \quad x_{n-1}]^T$

n

 J_0 2^{J_0}

n

. $\log_2(n)$

W

: [8] (Orthonormal) $(n \times n)$

 $\underline{W} = w X \qquad \cdots (3)$

... [242]

$$(DWT) \qquad W$$

$$\vdots$$

$$X \qquad W$$

$$(DWT) \qquad , \quad (X \Leftrightarrow W)$$

$$\vdots \qquad (3)$$

$$\underline{W'} = [W_1 \quad W_2 \quad ... \quad W_{J_0}]$$

$$\begin{pmatrix} n_j = n/2^j \end{pmatrix} \qquad W_j$$

$$(CD)$$

$$\tau_j \qquad j = 1, 2, ..., J_0 \qquad \tau_j = 2^{j-1}$$

$$V_{J_0} \qquad , \quad \Delta \tau_j$$

$$(Scaling) \qquad \begin{pmatrix} n_{J_0} = n/2^{J_0} \end{pmatrix}$$

$$(Approximation) \qquad (Smoothing)$$

$$. \quad (\lambda_{J_0} = 2^{J_0})$$

(DWT) as Filter : 2.3

(1999) Peravali Morris
$$L$$

$$h_0 \neq 0$$

$$\left\{h_l; l=0,1,\ldots,L-1\right\}$$
 (Filter Width)
$$L \qquad h_{L-1} \neq 0$$

$$2^{j/2}\overline{W}_{j,k} \equiv \sum_{l=0}^{L_j-1} h_{j,l} \mathcal{X}_{k-l \, \text{mod n}} \qquad ; \quad k = 0,1,...,n-1 \qquad \cdots (5)$$

$$j \qquad \qquad h_{j,l}$$

.

$$W_{j,k} = 2^{j/2} \overline{W}_{j,2^{j}(k+1)-1}$$
 ; $k = 0,1,...,n-1$...(6)

- (Band-pass) - j
$$\left[\frac{1}{2^{j+1}}, \frac{1}{2^{j}}\right]$$

$$g_l$$
 [0,1/2^{J₀}] - - h_l [0,1/2^{J₀+1}] (Low-pass) - (V_{J_0})

:

[3]

... [244]

$$g_{l} = (-1)^{l+1} h_{L-1-l}$$
 for $l = 0,1,..., L-1$... (7)

 $g_l h_l$ h_l

. - -

: 3.3 (DWT)

(Target Signal) ()

,

. (Mid) , (Soft) , (Hard)

(Universal δ

 $\mathbb{R}^{[8]}$ W Threshold)

 $W_{n}^{(t)} = \begin{bmatrix} 0 & ; & if |W_{n}| \leq \delta \\ some & nonzero & value & ; & otherwise \end{bmatrix} \cdots (8)$

, (

:

$$W' = W^{(t)} \qquad \cdots (9)$$

 δ (Wave shrink)

:

$$\delta = \hat{e}_{(\text{MAD})} \sqrt{2 Log \ n} \qquad \cdots (10)$$

 $\hat{e}_{ ext{(MAD)}}$

:

$$\hat{e}_{(MAD)} = \frac{MAD}{0.6745} \qquad \cdots \quad (11)$$

MAD (0.645)

 $: {}^{[9]}$, W_1

$$MAD = median \left\{ \left| W_{1,0} \right| , \left| W_{1,1} \right| , \dots , \left| W_{1,\frac{N}{2}-1} \right| \right\} \cdots (12)$$

... [246]

.

$$y = w^{T}W'$$

$$\vdots$$

$$W'$$

$$\cdots (13)$$

$$\vdots$$

$$\mathbf{4}$$

; [2] : (1)

المعاملات التكرارات	1	2	3	4
\mathbf{r}_1	10	4	15	7
r_2	37	35	5	11
r ₃	12	32	10	10
r ₄	31	19	12	8
r ₅	11	33	6	2
r_6	9	18	6	5
r ₇	44	11	9	4

r_8	12	7	11	5	
			ن المصدر ^[2]	ت مأخوذة مز	البيانا

: 1.4

, (Levene Test)

(spss)

:

(2)

Levene Statistic	df1	df2	Sig.
12.942	3	28	.000

(3)

ANOVA البيانات الأصلية							
	Sum of Squares	df	Mean Square	F	Sig.		
Between Groups	1270.844	3	423.615	4.545	.010		
Within Groups	2609.875	28	93.210				
Total	3880.719	31					

... [248]

:

(4)

Test of Homogeneity of Variances البيانات المحولة				
Levene Statistic	df1	df2	Sig.	
1.943	3	28	.146	

(5)

ANOVA البيانات المحولة							
	Sum of Squares	df	Mean Square	F	Sig.		
Between Groups	1.199	3	.400	5.592	.004		
Within Groups	2.002	28	.071				
Total	3.201	31					

: : **2.4**

 $\begin{array}{cccc} & & & & \\ & & (fh) & & \\ & & (hf) & (hm) & , (hs) & , (hh) \\ \\ , (dh) & & (fd) & (db2) \end{array}$

 $\begin{array}{cccc} (df) & & (dm) & & , (ds) \\ & & & (A &) \end{array}$

:

(6)

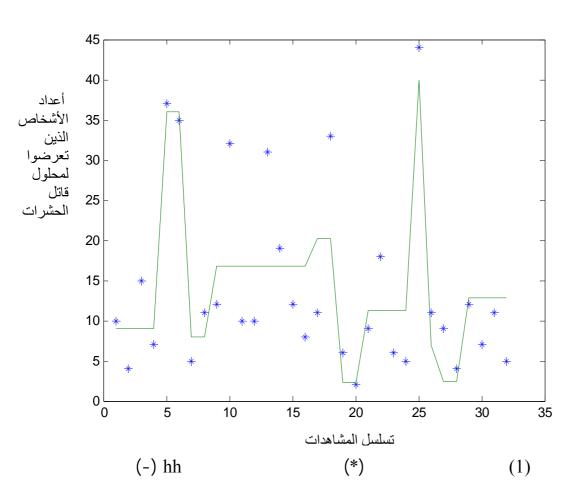
W	fh	hh	hs	hm	hf	fd	dh	ds	dm	df
Т										
1	-0.717	9.000	9.0000	14.210	11.275	3.4151	8.7472	1.5849	3.1697	7.7104
2	0.4243	9.000	9.0000	14.210	11.275	7.2811	8.8522	1.6899		
_									3.3798	7.7001
3	0.7778-	9.000	9.0000	14.2099	11.360	9.0736	13.1579	4.7295	8.0927	13.5488
4	0.5657	9.000	9.0000	14.210	11.189	10.9821	16.3381	6.9828	11.599	11.8745
1	2.1213-	36.00	16.010	28.230	36.690	18.7877	18.3926	8.4497	13.899	33.4873
2	0.1414	36.00	16.010	28.230	36.690	33.5753	20.7488	10.1274	16.522	34.1331
3	2.1213	8.000	4.5703	5.3504	8.5793	27.6340	10.9571	10.9614	17.824	8.0106
4	0.4243-	8.000	4.5703	5.3504	8.5793	8.8756	4.4205	12.0215	19.480	11.7365
1	0.0707-	16.75	10.895	16.750	14.952	8.1944	21.5027	13.4135	21.702	16.5501
2	1.4142-	16.75	10.895	16.750	30.156	19.3122	32.2562	14.7165	23.772	30.8518
3	1.5556	16.75	10.895	16.750	14.487	23.2386	20.9592	11.6039	19.505	17.0224
4	0	16.75	10.895	16.750	14.487	13.3038	15.5706	9.6745	16.936	12.2824
1	1.4849-	16.75	10.895	16.750	27.025	15.1585	16.0905	8.9282	16.065	28.9291
2	0.8485	16.75	10.895	16.750	21.842	25.4952	15.0272	7.8649	14.739	18.5073
3	0.4950	16.75	10.895	16.750	12.608	19.3349	15.1224	7.9601	15.061	14.2384
4	0.2828	16.75	10.895	16.750	12.608	10.0048	14.9071	7.7449	14.942	8.3209
1	0.2121-	20.25	6.1149	12.230	10.568	8.6519	14.3815	7.2192	14.382	13.2788
2	1.5556-	20.25	6.1149	12.230	28.277	17.9462	13.9390	6.7767	13.939	28.9285
3	1.9092	2.250	4.6752	9.3504	3.8387	22.5801	14.2930	7.1307	14.200	10.9238
4	0.2828	2.250	4.6752	9.3504	3.8387	8.4558	14.4335	7.2712	14.272	2.4464
1	0.4950-	11.25	5.3951	10.790	12.447	2.1878	14.3607	7.1984	14.156	11.8952
2	0.6364-	11.25	5.3951	10.790	13.871	11.2386	14.3450	7.1827	14.091	16.5407
3	0.8485	11.25	5.3951	10.790	10.102	13.9396	10.2858	5.7451	11.420	9.9656
4	0.0707	11.25	5.3951	10.790	10.102	7.2859	7.3100	4.6885	9.4466	6.3971
1	2.7577-	39.87	14.030	26.895	41.787	17.2877	38.5876	14.4792	29.104	42.7315
2	2.3335	6.875	4.4498	7.7345	10.297	30.0263	0.5950-	2.0266	4.2928	6.6840
3	0.1414	2.375	4.8002	8.4353	6.7002	16.0963	11.7588	4.5965	9.2877	12.7853
4	0.3536	2.375	4.8002	8.4353	6.7002	4.4067	10.3034	3.1411	6.2960	7.5929
		l	l		l	l	1		l	1

... [250]

1	0.5657-	12.875	7.0201	12.875	10.962	6.8840	9.3331	2.1708	4.3383	9.3377
2	0.3536	12.875	7.0201	12.875	10.962	9.2990	8.2329	1.0706	2.1036	9.1351
3	0.2828-	12.875	7.0201	12.875	10.962	9.4330	7.6177	0.4554	0.9029	7.4164
4	0.4243	12.875	7.0201	12.875	10.962	8.2255	6.8726	0.2897-	0.575-	6.1040

.

			(7)	
MSE	F-	p-	p-	
67.348	1.074	0.321	0.001	fh
69.684	3.010	0.047	0.287	hh
10.982	1.312	0.290	0.717	hs
28.771	2.003	0.136	0.628	hm
32.045	2.718	0.051	0.003	hf
46.724	4.694	0.009	0.150	fd
55.026	1.063	0.381	0.388	dh
17.860	0.236	0.870	0.890	ds
51.611	0.327	0.806	0.852	dm
68 209	1 403	0.234	0.008	df


 $\begin{array}{ccc} & \text{(hh, hs, hm, fd, dh, ds, dm)} \\ F & \text{(hh, fd)} \\ . \ MSE & \text{hs} \end{array}$

p)

, MSE

(fd) , fd hh

:

hh

:

... [252]

(8)

MSE	F-	p-	
2609.875	4.545	.000	
.071	5.592	.146	
69.684	3.010	.287	
			hh

		((10	p)	
MSE	()	MSE		

: 5

:

-1

·

-2

[253]	لمجلة العراقية للعلوم الاحصائية (18) 2010	المجلة الع	
	-3	3	
()	MSE -4	ļ	
	· :		
	·) -1		
	· -2	2	
	-3	3	
	-4	ļ	
	لمصادر	١	
, "	: ", (1980)	-1	

... [254]

•

1. Abraham Maslow, (2002), Histogram Smoothing Via the Wavelet Transform, University of Washington, NewYork.

- 2. Cochran , W. G. and Cox D. R. (1957) , "Experimental Designs", Second Edition, John Wiley and Sons , Inc. , NewYork , USA.
- 3. Donald B. Percival, Muyin Wang and James E. Overland, (2004), An Introduction to Wavelet Analysis with Application to Vegetation Time Series, University of Washington, NewYork, USA, p.7, p.31.
- 4. Donoho D. L. and Johnstone I. M., (1994), Ideal Spatial Adaptation by Wavelet Shrinkage, Biometrika, 81, 425-55.
- 5. Daubechies I., (1992), Ten Lectures on Wavelet, Philadelphia:SIAM, pp.17-52, pp.53-106
- David L. Donoho and Iain M. Johnstone , (1994) , Minimax Estimation via Wavelet Shrinkage , University of Stanford .
- 7. David M. Blei and John D. Lafferty, (2006), Dynamic Topic Model, University of Stanford.
- 8. Leven, Howard, (1960), "Robust Tests for Equality of Variances", Stanford university press, pp. 287-292.

A

```
y=[10;4;15;7;37;35;5;11;12;32;10;10;31;19;12;8;11;33;6;
2;9;18;6;5;44;11;9;4;12;7;11;5]
% Haar filter Wavelet only
n=32;
t=1:32;
fh=filter([-1,1]/sqrt(2),10,y)
% haar filter with Thresholding
J=log(n)/log(2);
[c,1]=wavedec(y,J-2,'db1');
c(t);
i=n/2+1:n;
W1=c(i);
% Estimate of Delta (level of Threshold) for haar
wavelet filter
MAD=median(abs(W1));
sigmaMAD=MAD/0.6745;
Delta=sigmaMAD*((2*log(n))^0.5);
% Hard Thresholding for haar wavelet filter
i=1:n;
W(i)=c;
for i=1:n
    if abs(W(i))<=Delta</pre>
        Wh(i)=0;
    else
        Wh(i)=W(i);
    end
    Wh(i);
end
Wh=Wh';
Dhadhh=waverec(Wh',1,'db1');
Dhadhh=Dhadhh'
% Soft Thresholing for haar wavelet filter
for i=1:n
    if W(i) > 0
        signW(i)=1;
    else if W(i) == 0
            signW(i)=0;
        else
            signW(i) = -1;
        end
    end
end
signW';
for i=1:n
```

... [256]

```
plus(i)=abs(W(i))-Delta;
    if plus(i)<0</pre>
        plus(i)=0;
    else
        plus(i)=plus(i);
    end
end
plus';
for i=1:n
    WST(i)=signW(i)*plus(i);
end
WST';
Dhadhs=waverec(WST,1,'db1');
Dhadhs=Dhadhs'
% Mid Thresholing for haar wavelet filter
for i=1:n
    if abs(W(i))<2*Delta</pre>
        plusplus(i)=2*plus(i);
    else
        plusplus(i)=abs(W(i));
    end
end
plusplus';
for i=1:n
    WMT(i)=signW(i)*plusplus(i);
end
WMT';
Dhadhm=waverec(WMT,1,'db1');
Dhadhm=Dhadhm'
% Firm Thresholing for haar wavelet filter
Delta1=Delta-11;
Delta2=Delta+11;
for i=1:n
    if abs(W(i))<=Delta1</pre>
        Wf(i)=0;
    else if Delta1<abs(W(i))<=Delta2</pre>
            Wf(i) = signW(i) *Delta2*(abs(W(i)) -
Delta1)/(Delta2-Delta1);
        else
             Wf(i)=W(i);
        end
    end
end
Wf';
Dhadhf=waverec(Wf,1,'db1');
Dhadhf=Dhadhf'
% Daubechies Wavelet filter only
fd=filter([1+sqrt(3),3+sqrt(3),3-sqrt(3),1-
sqrt(3)]/4,2,y)
```

```
% Daubechies filter with Thresholding
[d,1]=wavedec(y,J-2,'db2');
d;
i=n/2+1:n+7;
w11=d(i);
% Estimate of Delta (level of Threshold) for Daubechies
Wavelet filter
MAD1=median(abs(w11));
sigmaMAD1=MAD1/0.6745;
Deltad=sigmaMAD1*((2*log(n))^0.5);
% Hard Thresholding for Daubecheies wavelet filter
i=1:n+7;
w(i)=d;
for i=1:n+7
    if abs(w(i))<=Deltad</pre>
        wh(i)=0;
    else
        wh(i)=w(i);
    end
    wh(i);
end
wh';
Dhaddh=waverec(wh,1,'db2');
Dhaddh=Dhaddh'
% Soft Thresholing for Daubechies wavelet filter
for i=1:n+7
    if w(i) > 0
        signw(i)=1;
    else if w(i) == 0
             signw(i)=0;
        else
             signw(i) = -1;
        end
    end
end
signw';
for i=1:n+7
    plus1(i)=abs(w(i))-Deltad;
    if plus1(i)<0</pre>
        plus1(i)=0;
    else
        plus1(i)=plus1(i);
    end
end
plus1';
for i=1:n+7
    wst(i)=signw(i)*plus1(i);
```

... [258]

```
end
wst';
Dhadds=waverec(wst,1,'db2');
Dhadds=Dhadds'
% Mid Thresholing for Daubechies wavelet filter
for i=1:n+7
    if abs(w(i))<2*Deltad</pre>
        plusplus1(i)=2*plus1(i);
    else
        plusplus1(i)=abs(w(i));
    end
end
plusplus1';
for i=1:n+7
    wmt(i)=signw(i)*plusplus1(i);
end
wmt';
Dhaddm=waverec(wmt,1,'db2');
Dhaddm=Dhaddm'
% Firm Thresholing for Daubechies wavelet filter
Delta1=Delta-12;
Delta2=Delta+12;
for i=1:n+7
    if abs(w(i))<=Delta1</pre>
        wf(i)=0;
    else if Delta1<abs(w(i))<=Delta2</pre>
            wf(i) = signw(i) *Delta2*(abs(w(i)) -
Delta1)/(Delta2-Delta1);
        else
             wf(i)=w(i);
        end
    end
end
wf';
Dhaddf=waverec(wf,1,'db2');
Dhaddf=Dhaddf'
end
```