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ABSTRACT

In this paper, we have proposed a modified QN-algorithm for
solving a self-scaling large scale unconstrained optimization
problems based on a new QN-update. The performance of the
proposed algorithm is better than that used by Wei, Li, Yuan
algorithm. Our numerical tests show that the new proposed
algorithm seems to converge faster as compared with a standard
similar algorithm in many situations .
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1. Introduction

This paper analyzes the convergence properties of self-scaling
QN-methods for solving the unconstrained optimization problem

Min f (x) x e R", (1)

where f 1s twice continuously differentiable function. The

convergence of QN-methods for unconstrained Optimization has
been the subject of much analysis. The Broyden-Fletcher-Goldfarb-
Shanno (BFGS) method is generally considered to be the most
effective among other variable metric methods for unconstrained
Optimization problem. One interesting property of BFGS method is
its self correcting mechanism (A detailed explanation for example,
in Nocedal (see [11]) with this self correcting property, Powell
see[13] shows that the BFGS method with an inexact line search
satisfies Wolfe conditions is globally super-linearly convergent for
convex problem, and Byrd, Nocedal and Yuan (see [5]) extend
Powell's analysis to the restricted Broyden class excluding the DFP
method. AL-Bayati's (see [1]) presented a new self-scaling variable-
metric algorithm which was based on a known two-parameter
family of rank-two updating formulae. The best of these algorithm
are also modified to employ inexact line searches with marginal
effect thus Wei, Li and Qi (see [15]) have proposed some modified
BFGS that the average performance of their algorithm was better
than standard BFGS algorithm.

Wei, et al. (see [14]) proved the super-linear convergence of Wei,
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Li and Qi (see [15]) algorithm under some suitable conditions. In
this paper, a new modified QN-algorithm is proposed. The Basic
idea is based on the new QN-equation V, =H,y; where y,; is the

sum of y, and AV, and A is some matrix.

This paper is organized as follows in the next section; we
represent some basic properties of the modified BFGS algorithm. In
section3 we prove the super-linear convergence for the modified
QN-algorithm under some reasonable conditions. The search
direction in a VM-method is the solution of the system of equations

d, =-H,g, (2)

where the matrix H,is an approximate to G,' the new
approximation H, is chosen to take account of this new curvature
information which is done by satisfying the condition

He. Ve =<V, (called QN-like condition) 3)

where ¢, is a scalar, generally for the QN-methods ¢, =1and hence
equation (3) reduces to

HeaYe = Vi (called the QN-condition) 4)

since information has been gained about f only in one dimension
(along d, ), H,,, is allowed to differ from H, by a correction matrix
C, of at most rank two, i.e.

H., =H,+C, (5)

the matrix C,is therefore the update to H,there are an infinite

number of possible rank-two updates which satisfy the QN-
condition but our main interest is in updates which form the
Broyden one-parametric class (see [3]). The matrix H,,, is

defined by:

[3]
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H 'H V.V,
Heo=H - kgk Ve T +OW W, + = (0)
Y Hi i Vi Vi
with
vV H.y
W, = (YeH, )| o —— 2 7
= Hey) |:VkTyk yl;eryk:| (7)

where 6, is a scalar chosen such that 6, [0,1]different choice of
0,then defined different updates. the Davidon-Fletcher-

Powell(DFP)update (see [7]) 1s defined as equation(4) with
6, =0where the Broyden-Fletcher-Goldfarb-Shanno(BFGS) update

corresponds to 6, =1(see[6] and [9]). Oren (see[13]) found that a
proper scaling of the objective function improve the performance of
algorithms that use Broyden family of updated. Hence Oren's family
of self-scaling VM-updates can be expressed as:

H H YAV
Heo=[H— k%/k Y +‘9kaWkTi|77k + o (8)
Y Hy Vi Vi Vi
where
ykTVk
M = —h—— )
“ Y Hi Yy

This choice for the scalar parameter ;, was made primarily because
in this case 7, requires the quotient of two quantities which are

already computed in the updating formula. Al-Bayati (see [2]) found
another interesting family of VM-updates by further scaling of

Oren's family of updates with a scalar

sl
b

(10)

So that the updating formulas becomes
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H H VAVA
Hy. =Hk_M+WkaT+O-k( Kk

) 11
ykTHkyk VkTyk (1)

For more details see[8]

2. Modified BFGS Algorithm:
Wei, Li and Qi proposed a new QN-equation (see[15])
BV = Vi (12)

where B, =H,'where y; =y, +AV,and A is some matrix. By using
equation(12)they gave BFGS type updates

_ B.V.V, B, + YieVe

B, =B
! ‘ VBV, 'y

(13)

2(F(x) = F(x,)+(9(X,,)—g(X, DR

a

equation(13) and the following Wolf Powell step-size rule

wherey, =y, +AV,and A = | using

f(x +a,d)< f(x)+6a,9(x)"d, (14)

where 6 €(0,%) and o e(s,1)and

9(x, +a,d,)"d, >0g(x,)"d, (15)

2.1. Outline of the Modified BFGS Algorithm (MBFGS):

Corresponding (MBFGS) the outliers of MBFGS algorithms
may be listed

Stepl: choose an initial point x, e R"and an initial positive definite
matrix B set K=1.
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Step2: if |g,[=0 then stop! Go to step2.
Step3: solve H,d, +g, =0to obtain a search direction d,
Step4: find d, by Wolf-Powell step-size rule

f(x +,d)< f(%)+0a,9(x)" d, and g(x, +«,d,)"d, >09(x,)"d, where
0€(0,%) and o e(5,1)and

Step5: set x,,, =X, +«,d, .calculate A and update B,,, by formula

_ B.V.V, B, + YiVe
VBV,  V/y,

Bk+1 = Bk

2(F (%)= F (X%, ) +(9(X,) = 9(X, DR |

a

wherey, =y, +AV,and A =

Step6:set k =k +1, go to stepl

2.2. Some Properties of the MBFGS Algorithm:

The global convergence of the MBFGS algorithm needs the
following three assumptions

Assumption2.2.1:The level set Q={xf(x)< f(x,)}is contained in a
bounded convex set D

Assumption2.2.2:The function s continuously differentiable on
Dand there exists constant L>0such that |g(x)—g(y)|<L|x-y|.for

all x,yeD.

Assumption2.2.3: The function s uniformly convex that is there
are positive constants m,and m, such that

mz|’ <2"G(x)z<m,|z|’ (16)
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for all x,zeR" ,where G denotes the Hessian matrix of f

Theorem2.1: Let {x, }be generated by MBFGS algorithm then we
have (see[11])

1ki£r01inf||gk||=o. (17)
The super-linear convergence analysis of the MBFGS algorithm
needs the following assumptions:

Assumption2.2.4:x, —x"at which g(x’)=0and G(x")is positive
definite.

Assumption2.2.5:G is holder continuous at x"that is, there exists
constant r € (0,))and M >0 such that

r

l6e0-G(x)

SMHX—X*

(18)

for all xin neighborhood of x"since {f(x,)}1s a decreasing sequence
also the sequence {x, } generated by MBFGS is contained in Qand
there exists a constant f“such that

lim f (%) = f* (19)
3. A new Modified QN- Algorithm:

In this section we propose a new QN-method based on the
following QN-condition

Ve =H,y, (20)

where y; =y, + AV, and A is some matrix defined by A =—*—+*—

using equation(20)and taking H,, as Al-Bayati update (see[1]).
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T T
HkH:Hk—HkTyk—ykjwa +ak(VV )
Yi He Vi Vk Yi
where
ykTHkyk ul Vi H,y,
oy = B (y y)
AV VY WY,

and using also the following Armijo condition

fio 2 ”\/ Yi|)

wherec, €(0,%),¢, e(c,,)) in (MBFGS) yields a new QN-algorithm
given as below:

3.1. Outline of the Modified QN- Algorithm (NEW):

VY 2(1-¢,)V,'y,) (21)

The outliers of the new algorithm may be given as:

Stepl: choose an initial point x,e®R"and use-update positive
definite matrix H, setK =1.

Step2: if |g,| =0 then stop! Go to step2.
Step3: solve H,d, +g, =0to obtain a search direction d,

Step4: find d, by Armijo line search step-size rule

f 26 Vv VY 2 A=) vy
whereC, €(0,/4),¢, €(C,,))

Step5: set x.,, =x, +a,d, .calculate a new A and update H,, , by the
following formula
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H, yiy:"™H VAV
LYY C LW, 4 o (A

H 4 :H - * *
! ‘ Ve Hi Ve V' yi

) (22)
where

*T * *
5, =L ,sz(y:THky:)%[ Y _ Mo }
Yi Vi Vie Yo o Yo HiYe

Ye Vi

andy; =y, +AV,and A = I (newly defined) (23)

Step6:set k =k +1, go to stepl.

3.2. Some Theoretical Properties of the New Algorithm:

To show the global and super-linear convergence of the new
algorithm use the same assumption 2.2.1,2.2.2,2.2.3 and 2.2.4 where
used for all x in neighborhood of x*since {f(x,)}is a decreasing

sequence also the sequence {x, }generated by new algorithm is
contained in Q and that there exists a constant f*such that

lim f(x)="f" (24)

lemma3.2.1: let («,,%,.,»9,.,.d,,,)be generated by the new algorithm

T

then H,}, is positive definite for all k provided thatV,"y; >0.
Proof:-

The new algorithm has the following QN-condition
H., V. =Y, (25)

and preserve positive definiteness of the matrices {H, } if «, 1is
chosen to satisfy the Armijo condition
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fk - fk+l 2 C, ”VkTYk

’ VkT yk 2 (l _Cz )(VkT yk)

where f, denoted f(x,), C €(0,)5),c, €(C,l).Note that the second
condition in (21) guarantees that V,'y; >0 whenever g, #0.

lemma3.2.2: let {x, } be generated by the new algorithm then we
have

mlnvk ”2 SVkTyZ < m2"Vk|2 , k=12,... (26)
and

y: < (2L + mz)"\/k " s k= 1,2,... (27)
Proof:-

Using assumption2.2.2 and equation (16)
mz]* <z"G(x)z <m,|z|’
and tailors formula we have

y:TVk =(%y — gk)TVk
=V/G({)V,

where ¢, e (x,,X,.,) thus (26) holds

mF <y <m

To prove (27) using the equation (26)
VY <mo|V [

therefore
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[yl <mlvil (28)
also use assumption 2.2.2
lo(x)-g(y)|<L|x-y|.for all x,yeD.

Thus
<UM| 29)
from equation (28),(29) we get

Yy

[yif = @Lemo.

Theorem3.1 let {x,} be generated by the new algorithm then
x, tends to x super-linearly.(see[2])

lemma3.2.3: suppose that(«,,X,.,,9,.,,d,.,)be generated by the new
algorithm and that G is continuous at x"then we have

lim||A| =0 (30)

k—o0

Proof:-
By using Taylor's formula, we have

y:TVk =9y — gk)TVk
=V,.G({)V,

and
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fo—f =9 — gk)TVk
=V/G({,)V,

and
fk - fk+1 = _ng+1Vk +%VkTG(§2 )Vk
where

gl = Xy +01k(xk+1 _Xk)
¢y =X + 0y (X — X))

and 0,.6,, (0,1).from the definition of Aand lemma3.2.1 we get

_VHAY, VG Y,
Y Hi Vi

A

and
VkT H |<_+11Vk = VkTG (41 )Vk
hence

1A <[G(£)-G(<,)| Therefore (30) holds.

lemma3.2.4: let{x, } be generated by the new algorithm denoted
Q=G(x")"then there are positive constants b, ,i=1,2,3,4and
n € (0,1) such that for all large k

[HoGo) | < (Jl—,;Wk2 +b7, +bz||A||)\Hk ~G(x) | +b,z, +b,|A[(31)
where

”A” =HQTAQ”F ’

as

- 1s the forbenius norm of a matrix and W, is defined
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o H - i

B CECTON B4 -
In particular |H,| , Hk”H are bounded
Proof:-
To prove (32)
H,, = H, + M H )Vk;;\\//: Ve —Hyo" (y;‘T)(V(kyET\Ijkk){;‘ AR

— Vi Vi H |- AN 4 AN
- *TV k *TV *TV
Yie Vi Yi Vi Yi Vi

It is the dual form of the DFP type algorithm in the sense that
H. —H. andV, -y, we also have

v~V <[Qlly: —Qvi]

=[Qlyi ~Gex v, ]

<fof

suQu-\Mu[

1
GO + 7V N, dr = G(X WV,
0

+||Avk||}

[GO4 +nV )V, =G (x)

dn+uAu]

5 ||Q||.|M||(M2 [0t + 1V, Ve —G(X*)dﬂ+||AIIJ

SIIQII-IMII(MzﬂHXk e, r>dn+||A||]
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<|QlV ||(M i _([(nuxk ~x+ A=+mx, —x
< |QUV M,z + [ A])

since 7, —»0and |A| - 0it is clear that when k is large enough

fanela)

lQvi —Q

for some constant Ae(0,4%),therefore from lemma3.2.1 (with
identification Vo, , Y=V, ,H'>H,,A->G((x")"and
M — Q'there are constants p < (0,1) and b;,b, >0 such that

HHKH_G(X*)_l“S \ll—ka2+b5HQ_1H—ka“ HH ~G(X') H +D, ”V (x*)‘ly;H

il o

where W, is defined as more over ,there exists a constant b, such that
for all k large enough

Ivil=los. -0, + A%]
2[Qg.. - gu |- AllQVi]
2 b [x. = x] ~|[AlQIV
= (b, —[AflQDIV|

using ||A|— 0the above inequality implies that there is a constant
C such that when k is sufficiently large

oyl =cmd

S0 we may obtain that
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HQY; -Q7YV, H

<clQlMm, 33
HQYE” <C7[Q|(M,7, +|A)) (33)

and

M -6e) M -Qyi
v v

le@yi-Q v
joxi]

_lelleyi Qv
CMd

<ClQf M.z +[AD

from which and (33),we get (31)

lemma3.2.5: Let {x, }be generated by the new algorithm then the
following Dennis More condition holds for the new technique

. [H =GV »

m
k
= Ml

Proof:-

(34)

Usingr, >0, |A|>0and |H,|is bounded and following
inequality

Nl-7<1-Y7 , Vre(0,])

we can deduce that there are positive constants M,and M, such that
for all large k ]

[H =G0 <=4 AWH, =G(X) |+ M7, + M, A
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that is
LAV [H, =GOX) < [H, =G = [Hi =G [+ Myz, + M, A
summing the above inequality over k ,we get
1oYW H, =G(x) | <+o0
k=k,

where k,is sufficiently large index such that (31) holds for all
k >k, .In particular, we have

limwkZ“Hk ~G(x) =0
that is

o Q' (H —s0) My .

: (35)
> e

Moreover we have

|7 (H, —Gex) M yi | =R (H G(x)-H |G ) My

>[Q7 (H, (G(X) - H W |-[Q (H (G(x) - HHV, -G (x )y

>[Q7 (H (GO = H W |-|Q7 (H (GO - H OV, =G () i -
JAJQ (H G )= HHG(X) 'V, |

using the fact that|H,|and|H,,|are bounded and that G(x)is

continuous , we have
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[ (H (G(x) - H W, =G) i
= Q7 (H (GO -HHGHX) GOV, - i
= Q" (H G(x)=HHGX) LUG(X) =G (X WV, + (G (X Vi = ¥
<@ (H . (G(x)—HMG() ' [[(G(x) =GO |V IG (X Vi = ¥
=0V
and
[AlQ™ (H G- H Wi
<[Afle” (Hu @)~ HNHG) Vi
=O(Vi) (36)
therefore ,there exists a positive constant k >0 such that
|7 (H, —G0ex) " yi | = K[e(x) — H' Vi —O (Vi)
on the other hand, from equation (36)and lemma 3.2 we have
|Qvi] <lQllyi] < 2L+ m.)QlM ]

from the above inequality (35) and (36) we conclude that the
Dennis-More condition holds. o

Theorem3.2

Let {x, } be a sequence generated by the new algorithm
then the x, tends to x super-linearly.

Proof:-

We will verify that «, =1for large k .since the sequence H, is
bounded we have
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[d][=H.g][<[HJlg]| >0

by Taylor's expansion, we get

fo,—f—,d, =1-5)g,d, +1d,;G(x, +&d,)d,
=-(1-6)d/H'd, +1d,G(x, +&d,)d,
=—(3-0)d H"d, —3d, (H,' =G(x + &, ))d,
=—(4-&)d G(x")d, +O(|d,[)

where 60e(0,))and the last equality follows the Dennis More
condition(34)thus

feo = fi =89, d, <0

for all largek .In other words «, =1the firs inequality of the Armijo
equation(21) for all k sufficiently large on the other hand

9 Ay~ dy = (9. — )" dy +(1-0)g,d,
=dJG(x, +&d,)d, —(1-8)gH,'d,
=d G (% + @, )d, —(1-8)d G(x)d, +O(|d|)
= &/ G(x,)d, +O(d, [

where 6 <(0,1)so we have

9y.idy > 3, d,

which means thate, =1satisfies the Armijo equation(21) for all
sufficiently large .Therefore we assert that «, =1 for large k.
Consequently, we can deduce that x, converges super-linearly.
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4. Numerical Results:

In this section, we compare the numerical behavior of the new
algorithm with the MBFGS algorithm for different dimensions of
test functions. Comparative tests were performed with
(41)(specified in the Appendices 1 and 2) well-known test functions
(see [10]). All the results are show in Table (1), (2) while Table (3)
give the percentage of NOI and NOF. All the results are obtained
with newly-programmed FORTRAN routines which employ double
precision. The comparative performances of the algorithms taken in
the usual way by considering both the total number of function
evolutions (NOF) and the total number of iterations required to
solve the problem (NOI) .In each case the convergence criterion is
that the value of ||g,| <1x10~the Armijo fitting by Frandsen (see [2])

and Powell line search (see [3]) used as the common linear search
subprogram.

Each of the function was solved using the following
algorithms

(1) MBFGS Algorithm :
(2)The new algorithm

The important thing is that the new algorithm needs less
iteration, fewer evaluations of f(x) and g(x) than MBFGS. We can
see that other algorithm may fail in some cases while the new
algorithm always converges. Moreover numerical experiments also
show that the new algorithm always convergence stabiles. Namely
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there are about (60-87) % improvements of NOI for all dimensions
Also there are (30 -78) % improvements of NOF for all test
functions.

Table (1):Comparison between the New algorithm and MBFGS
algorithms using different value of 12< N <4320 for 1* test

function.
N. TEST MBFGS  NOI(NOF) NEW  NOI(NOF)
FUNCTIO
OF N 12 36 360 1080 4320 12 36 360 1080 4320
Test
1 GEN- 33 79 108 188 354 15 15 15 15 15
Shallow
11 26 26 52 101 11 11 11 11 11
2 GEN-Beal 26 33 53 463 103 15 15 15 16 16
14 14 21 226 28 12 12 12 13 13
3 Arwhad 17 24 42 31 75 27 14 17 17 17
7 8 13 9 16 23 9 11 10 10
4 GEN-Edger 17 23 34 34 62 11 11 11 12 12
8 10 8 8 12 8 8 8 9 9
5 Digonal4 13 14 22 30 36 12 12 12 12 12
2 2 5 4 5 8 8 8 8 8
6 EX- 45 47 53 55 57 27 28 30 31 32
Denschnb

21 22 25 26 27 24 25 27 28 29
7 EX-BD1 384 372 1954 508 508 68 70 76 79 82
181 185 938 253 253 64 66 72 75 78
8 Digonal5 5 6 6 6 6 5 6 6 6 6
3 4 4 4 4 3 4 4 4 4
9 GEN-Strail 43 68 103 114 321 15 15 15 15 16
13 16 21 21 44 10 10 10 10 11
10 Digonal6 7 8 8 8 8 7 7 8 8 8
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5 6 6 6 6 5 5 6 6 6
11 Digonal7 12 12 13 13 13 12 12 13 13 13
7 7 8 8 8 7 7 8 8 8
12 EX- 16 25 61 72 116 12 12 12 13 13
Denschnf
7 8 15 16 24 8 8 8 9 9
13 | GEN-PSCl1 32 34 36 36 38 29 30 30 33 33
14 15 16 16 18 25 26 26 28 28
14 GEN- 39 40 62 123 117 12 15 17 17 21
Quadratic
22 19 24 49 42 9 12 14 14 18
15 Digonal8 7 7 8 8 8 7 7 8 8 8
4 4 5 5 5 4 4 5 5 5
16 GEN- 19 25 139 527 527 7 7 32 32 32
penall
8 11 52 180 180 4 4 26 26 26
17 GEN-TRI 37 101 78 222 252 19 19 20 19 20
17 45 76 87 89 15 16 16 15 16
General TOTAL of 752 918 2780 2438 2601 300 295 337 346 356
first 17 functions
344 402 1263 970 862 240 235 272 279 289
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Table (2):Comparison between the New algorithm and MBFGS algorithms
using different value of 12< N <4320 for 2™ test function .

N. TEST MBFGS NOI(NOF) NEW NOI(NOF)
FUNCTI
OF ON 12 36 360 1080 | 4320 12 36 360 1080 | 4320
Tes
t
1 EX- F F F F F 26 26 27 27 27
freudenst
20 20 21 21 21
2 Shanno F F F F F 44 19 24 25 29
34 13 17 17 21
3 Liarwhd F F F F F 402 1078 22 70 70
395 1071 16 64 64
4 EX-BD2 F F F F F 23 24 25 25 25
16 17 18 18 18
5 WX- F F F F F 56 57 58 59 59
Powell
50 51 52 53 53
6 Engval F F F F F 117 114 97 81 80
113 110 93 77 76
7 Cosin F F F F F 26 17 27 87 16
20 13 22 75 12
8 Biggs F F F F F 17 33 233 669 669
14 30 230 660 660
9 GEN- F F F F F 39 39 40 40 40
Cubic
34 34 35 35 35
10 EX- F F F F F 17 18 18 18 18
Himmebil
8 9 9 9 9
11 EX-Host F F F F F 39 39 40 40 40
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34 34 35 35 35

12 | EX-three F F F F F 7 8 8 8 8
expontial

4 5 5 5 5

13 | dquadratic F F F F F 25 21 17 17 18

20 16 12 12 13

14 | Perturbed F F F F F 23 19 16 16 16

18 14 11 11 11

15 | Raydanl F F F F F 15 28 98 164 169

13 25 93 163 165

16 GEN- F F F F F 46 46 47 47 47
Helical

39 39 40 40 40

17 | EX-Fred F F F F F 24 24 24 24 24

16 16 16 16 16

18 | GEN-Non F F F F F 71 74 70 65 83
digonal

55 57 54 50 61

19 Maratos F F F F F 158 166 161 158 158

122 125 121 124 124

20 Full F F F F F 8 7 8 9 9
Hessian

4 3 3 3 3

21 Sincos F F F F F 224 234 256 266 266

220 230 252 262 262

22 GQ2 F F F F F 86 62 55 73 73

79 54 47 68 68

23 Raydon2 F F F F F 7 7 8 8 8

5 5 6 6 6
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Table(3): Percentage performance of the new algorithm against
MBFGS algorithm for 100% in both NOI and NOF.

N | Costs | NEW

12 | NOI | 60.11
NOF | 30.23

36 | NOI | 67.87
NOF | 41.54

360 | NOI | 87.88

78.46
NOF

108 | NOI | 85.81
NOF | 71.24

432 | NOI | 86.31
NOF | 66.47

5. Conclusions:

In this Paper, a new modified QN-algorithm for solving a
self-scaling algorithm for solving large-scale unconstrained
optimization problems is proposed .The new algorithm is a self-
scaling QN- algorithm. The basic idea is based on a new QN-
update proved to have super-linear convergence property. Our
numerical results supports our claim and also indicate that the new
algorithm may be competitive with the MBFGS algorithm in most
cases of test function.
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Appendixl:

All the test functions used in Table (1) for this paper are from
general literature:

1. Generalized Shallow Function:

n/2

f(x)= Z(Xzzi—l X)) + (=%,

Xy =[2.,-2.,..,-2.,-2].

2. Generalized Beale Function:

>

/2

FO0 =2 (15— 5+ (- x0F +[2.25 -0, (- x2) + 2625 -, (= x3)]

1
. Xy =[~1.,~1o.=1.—-1].

3. Arwhead Function (CUTE):
n-1 n-1 )

f(x)=>(—4x +3)+ Z(xf + xﬁ) ,
i=1 i=1

Xo =[1] sl L]

4. Generalized Edger Function:

n/2

f(x)= Z(XZi—] =2)" Xy —2)7 X5 + (Xy +1)7,

X, =[1.,0.,...,1.,0.].

5. Diagonal4Function:
n/2

F0 =210, +ox),

i=l

X, =[1..].,..,1,1] , ¢=100.
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6. Extended Denschnb Function (CUTE):

n/2

f(x)= Z(XZi—] =2)? + Xy —2)7 X5 + (Xy +1)7,

X, =[0.1,0.1,...,0.1,0.1] .

7. Extended Diagonal BDI Function:

n/2

f(X) =i= IZ(XzzH + Xzzi - 2)2 + (exp(sz - 1) - Xzi )2 s

X, =[0.1,0.1,...,0.1,0.1].

8. Diagonal5 Function:

f(x)= Zn:log(exp(xi ) +exp(—X; )),

X, =[1.L1.1,...1.1,1.1].

9. Generalized Strait Function:

n/2

f(x)= Z(Xzzi—l —Xy)? +100(1 = X,,)*,

Xy =[-2.,...572.].

10. Diagonal 6 Function:
f(x)= Z(GXP(Xi )—(1+X)),
i=1

X, =[1..1.,...1.,L.].
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11. Diagonal 7 Function:
f(X) :Zn:(exp(xi)—2xi —X2), X, =[.1,..1,1].
i=1

12. Extended Denschnf Function (CUTE):

n/2

f (X) = Z(z(xzi—l + Xy )2 + (Xzi—l =Xy )2 - 8)2 + (5X22i—1 + (Xzi - 3)2 - 9)2 )
i=1

X, =[2.,0.,2.,0.,...,2.,0.].

13. Generalized pscl Function:
n-1

f(x)= Z(X.z + X7 + XX ,)? Hsin’ (X)) +cos’ (X)),
i=2

X, =[3.,0.1,...,3.,0.1].

14. Generalized quartic Function GQ1
n-1

f(X) = Z Xi2 + (Xi+1 + Xiz)2 b
i=1

X, =[1.,1.,....1.,L.].

15. Diagonal 8 Function:

f(x)= ixi exp(X) = 2% — X ,

i=1

X, =[1.,1... 1]
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16. Generalized Penall Function:

f(x)= i(xi ~1)* +eps(x’ —0.25)*,

i=1
X, =[1.,2.,...,n] , eps=1.E-5.

17. Generalized Tridiagonal-1 Function:

n-1
f (x)= (Xzi—l + X5 — 3)2 +(X2i71 — Xy * 1)4 !
1

Xo = (2200022
Appendix2:

All the test functions used in Table (2) for this paper are from
general literature:

1. Extended Freudenstein & Roth Function:

n/2

f(x)= Z(_ 134 X5 +((5 = X)Xy = 2)Xy; )2 + (_ 29+ Xy + ((Xy + DXy —14)Xy, )2

b

X, =[0.5.,-2.,0.5,-2.,...,0.5,-2.].

2. Nondia (Shanno-78) Function (Cute):
f(x)=(x -1+ ilOO(x1 -x2)7,
i=2

X, =[-1.~1.,...—1.—-1].
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3. Liarwhd Function (cute):
F0 =3 40% +x)7 + 305 1),

X, =[4.4.,..,4].

4. Extended Block-Diagonal BD2 Function:

n/2

FOO) =D G + X3 =27 +(exp(Xy, — 1)+ X5, =2,
i=1

X, =[1.5,2.,...1.5,2.].

5. Extended Powell Function:

n/4

f(x)= Z(X4i—3 + 10X4i—2)2 +5(X45 — 2X4i—1)4 +10(X45 = X, )4 s
i=1
X, =[3,-10,1...,3,-1,0,1].

6. Engvall Function (CUTE):

(x2+x2, F + D (—4x+3),

1 i=1

f(x)=

n-1 n-1
i=
X, =[2.2.,...,2.].

7. Cosine Function (CUTE):

n-1
f(x) = cos(-0.5x,,, + %),

i=1

Xo =[1.]pnsl L]
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8. Biggsbl Function (CUTE):
f(x) = (X, _1)2 +§(Xi+l _Xi)2 +(1_Xn)2 >
i=1

X, =[1.1.,...1.,L.].

9. Generalized Cubic function:
n/2

f(x) =D [100 (Xx,; = X5, )> + (1= x,,_,)°1,

i=1

X, =[-121.,..~1.21].

10. Extended Himmelblau Function:
n/2 2 2
(XzzH + Xzi -1 1) + (Xzi—l + Xzzi - 7) )

f(x)=

i=1

X, =[1.LL1,...L.LL1].

11. Extended White & Holst Function:

n/2

f(x)= ZC(Xzi =) +H(1=%,)7,
i1
X, =[-1.2,1.,....-1.2,1] , ¢=100.

12. Extended Three Exponential Terms Function:

n/2

f(x) = Z(exp(sz +3Xy —0.1) +exp(Xy; —3Xy —0.1) + exp(—X,_, 0. 1)) )
i1

X, =[0.1,0.1,...,0.1,0.1].
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13. Dqudrtic Function (CUTE):
f(x)= nZ(x +OX2, + dtz)

X, =[3.3.1..3.3.], ¢=100,d =100.

14. Perturbed Penalty Function:

n 2
f(x)= le +100(inj ,
=1
X, =[0.5,0.5,...,0.5,0.5].

15. Raydan 1 Function:

f(x)= Zn:ﬁ exp(X) X

i=1
X, =[1.1.,...1.,1.].

16. General Helical Function:

n/3

f(x)=>(100x; —10*H, )" +100(R; - 1)* + X3,
i=1

(2z) ' tan™ i X5, >0
where R =sqrt(x;_, +X;_,),H, = X“‘;
0.5+(27) " tan” ==L if x,; , <0
)(3i72
X, =[-1.,0.,0....,-1.,0.],0..
17. Extended Fred Function:
n/2 n/2

f(x)= Z( 134 X1y + (5= Xy) + (X = 2%y ) + D (=29 + Xy + (L= Xy) + (X,

j=1

X, =[1.,2.,...,n]

—14)(xy))*,
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18. Generalized Non diagonal function:
(0= Y0004 —) +(1-x,)°
i=2

X, =[~1.,...~L.].

19. Extended Martos Function:

n/2
f(x)= Z Xy IOO(X;—I + Xzzi - 1)2 >

i=1
X, =[1.1,0.1,...,1.1,0.1].
20. Full Hessian Function:

f(x){ixi] £ (% exp(x) — 2% —x2),

X, =11yl L].
21. SINCOS Function:

f(x)= g(x;% + X5+ Xy Xy; ) +sin? (X, ) +cos’ (X)),

=

X, =[3.,0.1,...,3.,0.1].

22. Generalized Quartic Function GQ2:

FX) = (¢ 12+ (¢ =%, 27, % =Ll L],

i

23. Raydan 2 Function:

f(x)= Zn:(exp(xi)— X), X, =[.1,..1,1].
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