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ABSTRACT 

       In this paper, we have proposed a modified QN-algorithm for 
solving a self-scaling large scale unconstrained optimization 
problems based on a new QN-update. The performance of the 
proposed algorithm is better than that used by Wei, Li, Yuan 
algorithm. Our numerical tests show that the new proposed 
algorithm seems to converge faster as compared with a standard 
similar algorithm in many situations .    

 خوارزمية مطورة لأشبـاه نيوتن فوق الخطية في الامثلية غير المقيدة

  الملخص

          في هذا البحـث تم استحداث  خوارزمـية مطورة إلى أشـباه نيوتن فوق 

 تعتـمد الفـكرة الأسـاســـية. الخطـية فـي مجـال  الأمثـلية غـير المـقيدة

الخوارزمـية الجـديدة ذات كفـاءة . على أحـد نمـاذج تحـويل أشباه نيـوتن 

 ة والنتـائج الـعملي .Wei, Li, Yuanي أستـخدمها ت مـن الخـوارزمـية الاعلى
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تخدم ذات كفـاءة عالـية تقـارب أفضـل ستوضـح بأن النمـوذج الجديد المـ

 .ت عـدةمقـارنة بالخوارزميـات المماثلة في مجالا

KEYWORDS: Unconstrained Optimization, Quasi-Newton updates, Super-
liner convergence. 

 

1. Introduction 

        This paper analyzes the convergence properties of self-scaling 
QN-methods for solving the unconstrained optimization problem  

                         Min nx                              )( ℜ∈xf ,         (1)  

where f  is twice continuously differentiable function. The 
convergence of QN-methods for unconstrained Optimization has 
been the subject of much analysis. The Broyden-Fletcher-Goldfarb-
Shanno (BFGS) method is generally considered to be the most 
effective among other variable metric methods for unconstrained 
Optimization problem. One interesting property of BFGS method is 
its self correcting mechanism (A detailed explanation for example, 
in Nocedal (see [11]) with this self correcting property, Powell 
see[13] shows that the BFGS method with an inexact line search 
satisfies Wolfe conditions is globally super-linearly convergent for 
convex problem, and Byrd, Nocedal and Yuan (see [5]) extend 
Powell's analysis to the restricted Broyden class excluding the DFP 
method. AL-Bayati's (see [1]) presented a new self-scaling variable-
metric algorithm which was based on a known two-parameter 
family of rank-two updating formulae. The best of these algorithm 
are also modified to employ inexact line searches with marginal 
effect thus Wei, Li and Qi (see [15]) have proposed some modified 
BFGS that the average performance  of their algorithm was better 
than standard BFGS algorithm. 

  Wei, et al. (see [14]) proved the super-linear convergence of Wei, 
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Li and Qi (see [15]) algorithm under some suitable conditions. In 
this paper, a new modified QN-algorithm is proposed. The Basic 
idea is based on the new QN-equation ∗= kkk yHV  where ∗

ky  is the 
sum of ky and kkVA and kA is some matrix. 

         This paper is organized as follows in the next section; we 
represent some basic properties of the modified BFGS algorithm. In 
section3 we prove the super-linear convergence for the modified 
QN-algorithm under some reasonable conditions. The search 
direction in a VM-method is the solution of the system of equations 

    kkk gHd −=                                                               (2) 

where the matrix kH is an approximate to 1−
kG  the new 

approximation 1+kH is chosen to take account of this new curvature 
information which is done by satisfying the condition  

kkkk VyH ζ=+1         (called QN-like condition)              (3) 

where kζ  is a scalar, generally for the QN-methods 1=kζ and hence 
equation (3) reduces to  

kkk VyH =+1           (called the QN-condition)                (4) 

 since information has been gained about f  only in one dimension         
(along kd ), 1+kH  is allowed to differ from kH by a correction matrix 

kC  of at most rank two, i.e. 

kkk CHH +=+1                                                              (5) 

the matrix kC is therefore the update to kH there are an infinite 
number of possible rank-two updates which satisfy the QN-
condition but our main interest is in updates which form the 
Broyden   one-parametric  class   (see [3]). The matrix  1+kH  is 
defined by: 
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Τ

Τ

Τ

+ ++−= θ1                           (6) 

with 

⎥
⎦

⎤
⎢
⎣

⎡
−= ΤΤ

Τ

kkk

kk

kk

k
kkkk yHy

yH
yV

VyHyW 2
1)(                                    (7) 

where kθ is a scalar chosen such that ]1,0[∈kθ different choice of 
kθ then defined different updates. the Davidon-Fletcher-

Powell(DFP)update        (see [7]) is defined as equation(4) with 
0=kθ where the Broyden-Fletcher-Goldfarb-Shanno(BFGS) update 

corresponds to 1=kθ (see[6] and [9]). Oren (see[13]) found that a 
proper scaling of the objective function improve the performance of 
algorithms that use Broyden family of updated. Hence Oren's ُfamily 
of self-scaling VM-updates can be expressed as: 

kk

kk
kkkk

kkk

kkkk
kk yV

VVWW
yHy
HyyHHH Τ

Τ
Τ

Τ

Τ

+ +⎥
⎦

⎤
⎢
⎣

⎡
+−= ηθ1                           (8) 

where 

kkk

kk
k yHy

Vy
Τ

Τ

=η                                                                      (9) 

This choice for the scalar parameter kη was made primarily because 
in this case kη  requires the quotient of two quantities which are 
already computed in the updating formula. Al-Bayati (see [2]) found 
another interesting family of VM-updates by further scaling of 
Oren's ُfamily of updates with a scalar  

k
k η

δ 1
=                                                                  (10) 

So that the updating formulas becomes 
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  )(1
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Τ
Τ

Τ

Τ

+ ++−= σ                 (11) 

For more details see[8] 

   

2. Modified BFGS Algorithm: 

           Wei, Li and Qi proposed a  new QN-equation (see[15]) 
∗

+ = kkk yVB 1                                                                 (12) 

where 1−= kk HB where kkkk VAyy +=∗ and kA is some matrix. By using 
equation(12)they gave BFGS  type updates 

∗Τ

Τ∗∗

Τ

Τ

+ +−=
kk

kk

kkk

kkkk
kk yV

yy
VBV
BVVBBB 1                                       (13) 

where kkkk VAyy +=∗ and I
V

xgxgxfxfA
k

kkkk
k 2

11 ))()(())()((2 Τ
++ −+−

= using 

equation(13) and the following Wolf Powell  step-size rule 

 

kkkkkkk dxgxfdxf Τ+≤+ )()()( δαα                                  (14) 

where ),0( 2
1∈δ  and )1,(δσ ∈ and 

kkkkkk dxgddxg ΤΤ ≥+ )()( σα                                            (15) 

2.1. Outline of the Modified BFGS Algorithm (MBFGS): 

         Corresponding (MBFGS) the outliers of MBFGS algorithms 
may be listed  

Step1: choose an initial point nx ℜ∈0 and an initial positive definite 
matrix 1B set 1=K . 
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 Step2: if 0=kg  then stop! Go to step2. 

Step3: solve 0=+ kkk gdH to obtain a search direction kd  

Step4: find kd by Wolf-Powell step-size rule  

kkkkkkk dxgxfdxf Τ+≤+ )()()( δαα and kkkkkk dxgddxg ΤΤ ≥+ )()( σα where
),0( 2

1∈δ  and )1,(δσ ∈ and 

 Step5: set kkkk dxx α+=+1 .calculate kA  and update 1+kB  by formula 

∗Τ

Τ∗∗

Τ

Τ

+ +−=
kk

kk

kkk

kkkk
kk yV

yy
VBV
BVVBBB 1                                            

where kkkk VAyy +=∗ and I
V

xgxgxfxfA
k

kkkk
k 2

11 ))()(())()((2 Τ
++ −+−

=  

Step6:set 1+= kk  , go to step1 

2.2. Some Properties of the MBFGS Algorithm: 

         The global convergence of the MBFGS algorithm needs the 
following three assumptions 

Assumption2.2.1:The level set )}()({ 0xfxfx ≤=Ω is contained in a 
bounded convex set D  

 

Assumption2.2.2:The function f  is continuously differentiable on 
D and there exists constant 0≥L such that yxLygxg −≤− )()( ,for 
all Dyx ∈, . 

Assumption2.2.3: The function f  is uniformly convex that is there 
are positive constants 1m and 2m  such that  

 2
2

2
1 )( zmzxGzzm ≤≤ Τ                                                (16) 
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for all nzx ℜ∈,  ,where G  denotes the Hessian matrix of f . 

Theorem2.1: Let }{ kx be generated by MBFGS algorithm then we 
have (see[11]) 

 0inflim
0

=
→ kk

g .                                                            (17)   

The super-linear convergence analysis of the MBFGS algorithm 
needs the following assumptions: 

Assumption2.2.4: ∗→ xxk at which 0)( =∗xg and )( ∗xG is positive 
definite. 

Assumption2.2.5:G is holder continuous at ∗x that is, there exists 
constant )1,0(∈r and 0>M such that  

r
xxMxGxG ∗∗ −≤− )()(                                      (18) 

for all x in neighborhood of ∗x since )}({ kxf is a decreasing sequence 
also the sequence }{ kx generated by MBFGS is contained in Ω and 
there exists a constant ∗f such that  

∗

∞→
= fxf kk

)(lim                                                           (19) 

3. A new Modified QN- Algorithm: 

        In this section we propose a new QN-method based on the 
following QN-condition 

∗= kkk yHV                                                             (20) 

where kkkk VAyy +=∗ and kA is some matrix  defined by I
yHy

VyA
kkk

kk
k Τ

Τ

=  

using equation(20)and taking 1+kH as Al-Bayati update (see[1]). 
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and using also the following Armijo condition 

kkkk yVcff Τ
+ ≥− 11 , ))(1( 2 kkkk yVcyV ΤΤ −≥                             (21) 

where )1,(c , ),0( 122
1

1 cc ∈∈  in (MBFGS) yields a new QN-algorithm 
given as below: 

3.1. Outline of the Modified QN- Algorithm (NEW): 

         The outliers of the new algorithm may be given as: 

Step1: choose an initial point nx ℜ∈0 and use-update positive 
definite matrix 1H set 1=K . 

 Step2: if 0=kg  then stop! Go to step2. 

Step3: solve 0=+ kkk gdH to obtain a search direction kd  

Step4: find kd  by Armijo line search step-size rule 

kkkk yVcff Τ
+ ≥− 11 , ))(1( 2 kkkk yVcyV ΤΤ −≥                                                     

where )1,(c , ),0( 122
1

1 cc ∈∈  

Step5: set kkkk dxx α+=+1 .calculate a new kA  and update 1+kH  by the 
following formula 
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and kkkk VAyy +=∗ and I
yHy

VyA
kkk

kk
k Τ

Τ

=       (newly defined)   (23)  

Step6:set 1+= kk  , go to step1. 

3.2. Some Theoretical Properties of the New Algorithm: 

         To show the global and super-linear convergence of the new 
algorithm use the same assumption 2.2.1,2.2.2,2.2.3 and 2.2.4 where  
used for all x  in neighborhood of ∗x since { })( kxf is a decreasing 
sequence also the sequence { kx }generated by new algorithm is 
contained in Ω and that there exists a constant ∗f such that  

∗

∞→
= fxf kk

)(lim                                             (24) 

lemma3.2.1: let ),,,( 111 +++ kkkk dgxα be generated by the new algorithm 
then 1

1
−
+kH is positive definite for all k provided that 0>∗Τ

kk yV . 

Proof:- 

            The new algorithm has the following QN-condition  

kkk yVH =+1                                                                        (25) 

and preserve positive definiteness of the matrices { kH } if kα   is 
chosen to satisfy the Armijo condition 
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 kkkk yVcff Τ
+ ≥− 11 ,        ))(1( 2 kkkk yVcyV ΤΤ −≥  

where kf  denoted )( kxf , )1,(c , ),0( 122
1

1 cc ∈∈ .Note that the second 
condition in (21) guarantees that 0>∗Τ

kk yV  whenever 0≠kg . 

lemma3.2.2: let { kx } be generated by the new algorithm then we 
have  

2
2

2
1 kkkk VmyVVm ≤≤ ∗Τ  , ,...2,1=k                                   (26) 

and 

kk VmLy )2( 2+≤∗  , ,...2,1=k                                            (27) 

 

Proof:- 

 Using assumption2.2.2 and equation (16) 
2

2
2

1 )( zmzxGzzm ≤≤ Τ    

and tailors formula we have  

k

kkkkk

VG

VggVy

)(V         

)(

1k

1

ζΤ

Τ
+

Τ∗

=

−=  

where ),( 11 +∈ kk xxζ thus (26) holds 

2
2

2
1 kkkk VmyVVm ≤≤ ∗Τ . 

To prove (27) using the equation (26) 

  2
2 kkk VmyV ≤∗Τ   

therefore 
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 2
2 kk Vmy ≤∗                                                  (28) 

also use assumption 2.2.2 

yxLygxg −≤− )()( ,for all Dyx ∈, . 

Thus 

kk VLy ≤∗                                                      (29) 

from equation (28),(29) we get 

kk VmLy )2( 2+≤∗ . 

Theorem3.1 let { kx } be generated by the new algorithm then  
kx tends to x  super-linearly.(see[2]) 

 

 

 

lemma3.2.3: suppose that ),,,( 111 +++ kkkk dgxα be generated by the new 
algorithm and that G is continuous at ∗x then we have  

0lim =
∞→

A
k

                                                        (30)    

Proof:- 

           By using Taylor's ُ formula, we have  

k

kkkkk
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VggVy

)(V         
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1
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Τ
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=
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and 
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and )1,0(, 21 ∈kk θθ .from the definition of A and lemma3.2.1 we get 
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hence 

)()( 21 ζζ GGAk −≤  Therefore (30) holds. 

 

lemma3.2.4: let{ kx } be generated by the new algorithm denoted 
2

1)( −∗= xGQ then there are positive constants 1,2,3,4i , =ib and 
)1,0(∈η such that for all large k  

 ( ) kkkkkk AbbxGHAbbWxGH 43
1

21
211

1 )(1)( ++−++−≤ −∗−∗−
+ ττρ (31)  

where 

FF
AQQA . ,   Τ= is the forbenius norm of a matrix and kW is defined 

as 
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In particular ,  kH 1−
kH are bounded  

Proof:- 

            To prove (32) 
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It is the dual form of the DFP type algorithm in the sense that 
1
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                 ( )AMVQ kk +≤ τ2.     

since 0→kτ and 0→A it is clear that when k is large enough 

kkk QVVQQy β≤− −∗ 1 , 

for some constant ),0( 2
1∈β ,therefore from lemma3.2.1 (with 

identification kyV →  , kVy → , kHH →−1 , 1)( −∗→ xGA and 
1−→QM there are constants )1,0(∈p and 0, 65 >bb such that 
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where kW  is defined as more over ,there exists a constant 7b such that 
for all k large enough 

kkkk AVgQgy +−= +
∗

1  

     kkk QVAgQg −−≥ +1  

     kkk VQAxxb −−≥ +17  

     kVQAb )( 7 −=  

using 0→A the above inequality implies that there is a constant 
C such that when k is sufficiently large  

kk VCQy ≥∗  

so we may obtain that 
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from which and (33),we get (31) 

lemma3.2.5: Let { kx }be generated by the new algorithm then the 
following Dennis More condition holds for the new technique 

0
)(

lim
1

=
− ∗−

∞→
k
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k V
VxGH

                                                   (34) 

Proof:- 

           Using 0→kτ , 0→A and kH is bounded and following 
inequality 

ττ 2
111 −≤−  , )1,0(∈∀τ  

we can deduce that there are positive constants 1M and 2M such that 
for all large k ] 

 kkkkk AMMxGHWxGH 21
12

2
11 )()1()( ++−−≤− −∗−∗ τρ  
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that is 

kkkkkk AMMxGHxGHxGHW 21
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−∗−∗ τρ  

summing the above inequality over k ,we get  

+∞<−∑
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2
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where 0k is sufficiently large index such that (31) holds for all 
0kk ≥ .In particular, we have 

0)(lim 12 =− −∗
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 that is  

0
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k
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k Qy
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Moreover we have 
∗−∗−∗−∗−∗− −=− kkkkk yxGHxGHQyxGHQ 11111 )())((()((  

                             
∗−∗−∗−−∗− −−−−≥ kkkkkkk yxGVHxGHQVHxGHQ 11111 ))()()((())(((  

 

−−−−−≥ ∗−∗−∗−−∗−
kkkkkkk yxGVHxGHQVHxGHQ 11111 ))()()((())(((  

                                  kkk VxGHxGHQA 111 )())((( −∗−∗− −  

using the fact that kH and 1+kH are bounded and that )(xG is 
continuous , we have 
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∗−∗−∗− −− kkkk yxGVHxGHQ 111 )())(((                                                
∗∗−∗−∗− −−= kkkk yVxGxGHxGHQ )(()())((( 111   

)])(())()([()())((( 111
kkkkkkk yVxGVxGxGxGHxGHQ −+−−= ∗−∗−∗−   

kkkkkkk yVxGVxGxGxGHxGHQ −−−≤ ∗−∗−∗− )()()(()())((( 111  

kVO=  

and 

kkk VHxGHQA ))((( 11 −∗− −  

                              kkk VxGHxGHQA 111 )())((( −∗−∗− −≤  

                              )( kVO=                                            (36) 

therefore ,there exists a positive constant 0>k  such that  

 )()()(( 111
kkkkk VOVHxGKyxGHQ −−≥− −∗∗−∗−  

on the other hand, from equation (36)and lemma 3.2 we have 

kkk VQmLyQQy )2( 2+≤≤ ∗∗  

from the above inequality (35) and (36) we conclude that the 
Dennis-More condition holds.    □ 

Theorem3.2 

                   Let { kx } be a sequence generated by the new algorithm 
then the kx  tends to x  super-linearly. 

Proof:- 

          We will verify that 1=kα for large k  .since the sequence kH is 
bounded we have 
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0→≤= kkkkk gHgHd  

by Taylor's expansion, we get  

kkkkkkkkkk ddxGddgdgff )()1( 2
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1 θδδ ++−=−− ΤΤΤ
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                      kkkkkk ddxGddHd )()1( 2
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11

2
1 θδ +−−−−= −Τ−Τ  

                      )()()( 2
2
1

kkk dOdxGd +−−= ∗Τδ  

where )1,0(∈θ and the last equality follows the Dennis More 
condition(34)thus 

01 ≤−− Τ
+ kkkk dgff δ  

for all large k .In other words 1=kα the firs inequality of the Armijo 
equation(21) for all k   sufficiently large on the other hand 

kkkkkkkkk dgdggdgdg ΤΤ
+

ΤΤ −+−=− )1()( 1 σδ  

                 kkkkkkk dHgddxGd 1)1()( −ΤΤ −−+= δθ  

                 )()()1()( 2
kkkkkkkk dOdxGdddxGd +−−+= ΤΤ δθ  

                 )()( 2
kkkk dOdxGd += Τδ  

where )1,0(∈θ so we have 

kkkk dgdg ΤΤ
+ ≥ δ1  

which means that 1=kα satisfies the Armijo equation(21) for all 
sufficiently large .Therefore we assert that 1=kα  for large k . 
Consequently, we can deduce that kx converges super-linearly. 
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4. Numerical Results: 

          In this section, we compare the numerical behavior of the new 
algorithm with the MBFGS algorithm for different dimensions of 
test functions. Comparative tests were performed with 
(41)(specified in the Appendices 1 and 2) well-known test functions 
(see [10]). All the results are show in Table (1), (2) while Table (3) 
give the percentage of NOI and NOF. All the results are obtained 
with newly-programmed FORTRAN routines which employ double 
precision. The comparative performances of the algorithms taken in 
the usual way by considering both the total number of function 
evolutions (NOF) and the total number of iterations required to 
solve the problem (NOI) .In each case the convergence criterion is 
that the value of 5101 −×<kg the Armijo fitting by Frandsen (see [2]) 
and Powell line search (see [3]) used as the common linear search 
subprogram. 

          Each of the function was solved using the following 
algorithms 

 (1) MBFGS Algorithm : 

(2)The new algorithm  

         The important thing is that the new algorithm needs less 
iteration, fewer evaluations of )(xf  and )(xg  than MBFGS. We can 
see that other algorithm may fail in some cases while the new 
algorithm always converges. Moreover numerical experiments also 
show that the new algorithm always convergence stabiles.  Namely 
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there are about (60-87) % improvements of NOI for all dimensions 
Also there are (30 -78) % improvements of NOF for all test 
functions.  

Table (1):Comparison between the New algorithm and MBFGS 
algorithms using different value of 12< N <4320 for 1st test 

function. 
MBFGS       NOI(NOF) NEW       NOI(NOF) N. 

OF   
Test 

TEST 
FUNCTIO

N 12 36 360 1080 4320 12 36 360 1080 4320 

1 GEN-
Shallow 

33 

11 

79 

26 

108 

26 

188 

52 

354 

101 

15 

11 

15 

11 

15 

11 

15 

11 

15 

11 

2 GEN-Beal 26 

14 

33 

14 

53 

21 

463 

226 

103 

28 

15 

12 

15 

12 

15 

12 

16 

13 

16 

13 

3 Arwhad 17 

7 

24 

8 

42 

13 

31 

9 

75 

16 

27 

23 

14 

9 

17 

11 

17 

10 

17 

10 

4 GEN-Edger 17 

8 

23 

10 

34 

8 

34 

8 

62 

12 

11 

8 

11 

8 

11 

8 

12 

9 

12 

9 

5 Digonal4 13 

2 

14 

2 

22 

5 

30 

4 

36 

5 

12 

8 

12 

8 

12 

8 

12 

8 

12 

8 

6 EX-
Denschnb 

45 

21 

47 

22 

53 

25 

55 

26 

57 

27 

27 

24 

28 

25 

30 

27 

31 

28 

32 

29 

7 EX-BD1 384 

181 

372 

185 

1954 

938 

508 

253 

508 

253 

68 

64 

70 

66 

76 

72 

79 

75 

82 

78 

8 Digonal5 5 

3 

6 

4 

6 

4 

6 

4 

6 

4 

5 

3 

6 

4 

6 

4 

6 

4 

6 

4 

9 GEN-Strail 43 

13 

68 

16 

103 

21 

114 

21 

321 

44 

15 

10 

15 

10 

15 

10 

15 

10 

16 

11 

10 Digonal6 7 8 8 8 8 7 7 8 8 8 
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5 6 6 6 6 5 5 6 6 6 

11 Digonal7 12 

7 

12 

7 

13 

8 

13 

8 

13 

8 

12 

7 

12 

7 

13 

8 

13 

8 

13 

8 

12 EX-
Denschnf 

16 

7 

25 

8 

61 

15 

72 

16 

116 

24 

12 

8 

12 

8 

12 

8 

13 

9 

13 

9 

13 GEN-PSC1 32 

14 

34 

15 

36 

16 

36 

16 

38 

18 

29 

25 

30 

26 

30 

26 

33 

28 

33 

28 

14   GEN-
Quadratic 

39 

22 

40 

19 

62 

24 

123 

49 

117 

42 

12 

9 

15 

12 

17 

14 

17 

14 

21 

18 

15 Digonal8 7 

4 

7 

4 

8 

5 

8 

5 

8 

5 

7 

4 

7 

4 

8 

5 

8 

5 

8 

5 

16 GEN-
penal1 

19 

8 

25 

11 

139 

52 

527 

180 

527 

180 

7 

4 

7 

4 

32 

26 

32 

26 

32 

26 

17 GEN-TRI 37 

17 

101 

45 

78 

76 

222 

87 

252 

89 

19 

15 

19 

16 

20 

16 

19 

15 

20 

16 

General TOTAL of 
first  17 functions 

752 

344 

918 

402 

2780 

1263 

2438 

970 

2601 

862 

300 

240 

295 

235 

337 

272 

346 

279 

356 

289 
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Table (2):Comparison between the New algorithm and MBFGS algorithms 
using different value of 12< N <4320 for 2nd test function  . 

MBFGS       NOI(NOF) NEW       NOI(NOF) N. 

OF   
Tes

t 

TEST 
FUNCTI

ON 12 36 360 1080 4320 12 36 360 1080 4320 

1 EX-
freudenst 

F F F F F 26 

20 

26 

20 

27 

21 

27 

21 

27 

21 

2 Shanno F F F F F 44 

34 

19 

13 

24 

17 

25 

17 

29 

21 

3 Liarwhd F F F F F 402 

395 

1078 

1071 

22 

16 

70 

64 

70 

64 

4 EX-BD2 F F F F F 23 

16 

24 

17 

25 

18 

25 

18 

25 

18 

5 WX-
Powell 

F F F F F 56 

50 

57 

51 

58 

52 

59 

53 

59 

53 

6 Engval F F F F F 117 

113 

114 

110 

97 

93 

81 

77 

80 

76 

7 Cosin F F F F F 26 

20 

17 

13 

27 

22 

87 

75 

16 

12 

8 Biggs F F F F F 17 

14 

33 

30 

233 

230 

669 

660 

669 

660 

9 GEN-
Cubic 

F F F F F 39 

34 

39 

34 

40 

35 

40 

35 

40 

35 

10 EX-
Himmebil 

F F F F F 17 

8 

18 

9 

18 

9 

18 

9 

18 

9 

11 EX-Host F F F F F 39 39 40 40 40 
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34 34 35 35 35 

12 EX-three 
expontial 

F F F F F 7 

4 

8 

5 

8 

5 

8 

5 

8 

5 

13 dquadratic F F F F F 25 

20 

21 

16 

17 

12 

17 

12 

18 

13 

14 Perturbed F F F F F 23 

18 

19 

14 

16 

11 

16 

11 

16 

11 

15 Raydan1 F F F F F 15 

13 

28 

25 

98 

93 

164 

163 

169 

165 

16 GEN-
Helical 

F F F F F 46 

39 

46 

39 

47 

40 

47 

40 

47 

40 

17 EX-Fred F F F F F 24 

16 

24 

16 

24 

16 

24 

16 

24 

16 

18 GEN-Non 
digonal 

F F F F F 71 

55 

74 

57 

70 

54 

65 

50 

83 

61 

19 Maratos F F F F F 158 

122 

166 

125 

161 

121 

158 

124 

158 

124 

20 Full 
Hessian 

F F F F F 8 

4 

7 

3 

8 

3 

9 

3 

9 

3 

21 Sincos F F F F F 224 

220 

234 

230 

256 

252 

266 

262 

266 

262 

22 GQ2 F F F F F 86 

79 

62 

54 

55 

47 

73 

68 

73 

68 

23 Raydon2 F F F F F 7 

5 

7 

5 

8 

6 

8 

6 

8 

6 
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Table(3): Percentage performance of the new algorithm against 
MBFGS algorithm  for 100% in both NOI and NOF. 

 

             

 

 

 

 

 

 

 

 

 

             

 

5. Conclusions: 

           In this Paper, a new modified QN-algorithm for solving a 
self-scaling algorithm for solving large-scale unconstrained 
optimization problems is proposed .The new algorithm is a self-
scaling QN- algorithm.   The basic idea is based on a new QN-
update proved to have super-linear convergence property. Our 
numerical results supports our claim and also indicate that the new 
algorithm may be competitive with the MBFGS algorithm in most 
cases of test function.  

 

N 

 

Costs

 

NEW   

12 NOI 

NOF 

60.11 

30.23 

36 NOI 

NOF 

67.87 

41.54 

360 NOI 

  
NOF 

87.88 

78.46 

108
0 

NOI 

NOF 

85.81 

71.24 

432
0 

NOI 

NOF 

86.31 

66.47 
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Appendix1:         

   All the test functions used in Table (1) for this paper are from 
general literature:   

1. Generalized Shallow Function: 

∑
=

−− −+−=
2/

1

2
12

2
2

2
12 )1()()(

n

i
iii xxxxf , 

.]2.,2.,...,2.,2[0 −−−−=x . 

2. Generalized Beale Function:  

[ ] [ ] [ ]∑
=

−− −−+−−+−+−=
2/

1

22
212

22
212

2
22 )1(625.2)1(25.2)1(5.1)(

n

i
iiiiii xxxxxxxf

,  .]1.,1.,...,1.,1[0 −−−−=x . 

3. Arwhead Function (CUTE): 

( ) ( )∑∑
−

=

−

=

+++−=
1

1

222
1

1

34)(
n

i
ni

n

i
i xxxxf , 

.]1.,1.,...,1.,1[0 =x . 

4. Generalized Edger Function: 

∑
=

−− ++−+−=
2/

1

2
2

2
2

2
12

4
12 )1()2()2()(

n

i
iiii xxxxxf , 

.]0.,1.,...,0.,1[0 =x . 

5. Diagonal4Function: 

( )∑
=

− +=
2/

1

2
2

2
122

1)(
n

i
ii cxxxf , 

100c  ,  .]1.,1.,...,1.,1[0 ==x . 
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6. Extended Denschnb Function (CUTE): 

∑
=

−− ++−+−=
2/

1

2
2

2
2

2
12

2
12 )1()2()2()(

n

i
iiii xxxxxf , 

]1.0,1.0,...,1.0,1.0[0 =x . 

7. Extended Diagonal BDI Function: 

( ) ( )∑ −−+−+== −−

2/
2

212
22

2
2

12 )1exp(21)(
n

iiii xxxxixf , 

]1.0,1.0,...,1.0,1.0[0 =x . 

8. Diagonal5 Function: 

( )∑
=

−+=
n

i
ii xxxf

1
)exp()exp(log)( , 

]1.1,1.1,...,1.1,1.1[0 =x . 

9. Generalized Strait Function:  

∑
=

−− −+−=
2/

1

2
12

2
2

2
12 )1(100)()(

n

i
iii xxxxf , 

.]2.,...,2[0 −−=x . 

10. Diagonal 6 Function: 

∑
=

+−=
n

i
ii xxxf

1
))1()(exp()( , 

.]1.,1.,...,1.,1[0 =x . 
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11. Diagonal 7 Function: 

∑
=

−−=
n

i
iii xxxxf

1

2 )2)(exp()( ,   .]1.,1.,...,1.,1[0 =x . 

12. Extended Denschnf Function (CUTE): 

( ) ( )∑
=

−−− −−++−−++=
2/

1

22
2

2
12

22
212

2
212 9)3(58)()(2)(

n

i
iiiiii xxxxxxxf , 

.]0.,2.,...,0.,2.,0.,2[0 =x . 

13. Generalized pscl Function: 

)(cos)(sin)()( 22
1

2

2
1

2
1

2
ii

n

i
iiii xxxxxxxf ++++= ∑

−

=
++ , 

]1.0.,3,...,1.0.,3[0 =x . 

14. Generalized quartic Function GQ1 

∑
−

=
+ ++=

1

1

22
1

2 )()(
n

i
iii xxxxf , 

.]1.,1.,...,1.,1[0 =x . 

15. Diagonal 8 Function: 

∑
=

−−=
n

i
iiii xxxxxf

1

22)exp()(  , 

.]1.,1.,...,1.,1[0 =x . 
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16. Generalized Penal1 Function: 

∑
=

−+−=
n

i
ii xepsxxf

1

222 )25.0()1()( , 

5-1.Eeps  ,  ].,...,2.,1[0 == nx . 

17. Generalized Tridiagonal-1 Function: 

( ) ( )4
212

1

1

2
212 13)( +−+−+= −

−

=
−∑ ii

n

i
ii xxxxxf , 

.]2.,2.,...,2.,2[0 =x . 

Appendix2:         

   All the test functions used in Table (2) for this paper are from 
general literature:   

1. Extended Freudenstein & Roth Function: 

( ) ( )∑
=

−− −+++−+−−++−=
2/

1

2
22212

2
22212 )14)1((29)2)5((13)(

n

i
iiiiiiii xxxxxxxxxf

, 

.]2,5.0.,...,2,5.0.,2.,5.0[0 −−−=x . 

2. Nondia (Shanno-78) Function (Cute): 

22
11

2

2 )(100)1()( −
=

−+−= ∑ i

n

i
i xxxxf , 

.]1.,1.,...,1.,1[0 −−−−=x . 

 

 

 



Iraqi Journal of Statistical Science (18) 2010 ___________ [29]

3. Liarwhd Function (cute): 

2

11

22
1 )1()(4)( −++−= ∑∑

==

n

i
i

n

i
i xxxxf , 

.]4.,...,4.,4[0 =x . 

4. Extended Block-Diagonal BD2 Function: 

∑
=

−− −+−+−+=
2/

1

23
212

22
2

2
12 .)2.)1(exp(.)2()(

n

i
iiii xxxxxf , 

.]2,5.1.,...,2,5.1[0 =x . 

5. Extended Powell Function: 

∑
=

−−−−− −+−++=
4/

1

4
434

4
1424

2
2434 )(10)2(5)10()(

n

i
iiiiii xxxxxxxf ,

]1,0,1,3...,1,0,1,3[0 −−=x . 

6. Engval1 Function (CUTE): 

( ) ( )∑ ∑
−

=

−

=
+ +−++=

1

1

1

1

22
1

2 34)(
n

i

n

i
iii xxxxf , 

.]2.,...,2.,2[0 =x . 

7. Cosine Function (CUTE): 

∑
−

=
+ +−=

1

1

2
1 )5.0cos()(

n

i
ii xxxf , 

.]1.,1.,...,1.,1[0 =x . 
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8. Biggsb1 Function (CUTE): 

 ∑
−

=
+ −+−+−=

1

1

22
1

2 )1()()1()(
n

i
niii xxxxxf , 

.]1.,1.,...,1.,1[0 =x . 

9. Generalized Cubic function: 

∑
=

−− −+−=
2/

1

2
12

23
122 ])1()(100[)(

n

i
iii xxxxf , 

.]1,2.1.,...,1,2.1[0 −−=x . 

10. Extended Himmelblau Function: 

( ) ( )∑
=

−− −++−+=
2/

1

22
212

2
2

2
12 711)(

n

i
iiii xxxxxf , 

]1.1,1.1,...,1.1,1.1[0 =x . 

 

11. Extended White & Holst Function: 

∑
=

−− −+−=
2/

1

2
12

23
122 )1()()(

n

i
iii xxxcxf , 

100c   ,  ]1,2.1.,...,1,2.1[0 =−−=x . 

12. Extended Three Exponential Terms Function: 

( )∑
=

−−− −−+−−+−+=
2/

1
12212212 )1.0exp()1.03exp()1.03exp()(

n

i
iiiii xxxxxxf , 

]1.0,1.0,...,1.0,1.0[0 =x . 
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13. Dqudrtic Function (CUTE): 

( )∑
−

=
++ ++=

2

1

2
2

2
1

2)(
n

i
iii dxcxxxf , 

100d100,c  ,  .]3.,3.,...,3.,3[0 ===x . 

14. Perturbed Penalty Function: 

∑ ∑
= =

⎟
⎠

⎞
⎜
⎝

⎛
+=

n

i

n

i
ii xixxf

1

2

1
100

12)( , 

]5.0,5.0,...,5.0,5.0[0 =x . 

15. Raydan 1 Function: 

( )∑
=

−=
n

i
ii

i xxxf
1

10 )exp()( , 

.]1.,1.,...,1.,1[0 =x . 

16. General Helical Function: 

( ) 2
3

2
3/

1

2
3 )1(100*10100)( ii

n

i
ii xRHxxf +−+−= ∑

=

, 

where 
0 tan)2(5.0

0 tan)2(
),(

23
23

1311

23
23

1311

2
13

2
23

<+

>
=+=

−
−

−−−

−
−

−−−

−−

i
i

i

i
i

i

iiii

xif
x
x

xif
x
x

HxxsqrtR
π

π
 

.0.],0.,1....,0.,0.,1[0 −−=x . 

17. Extended Fred Function: 

∑ ∑
= =

−− −+−++−+−+−++−=
2/

1

2/

1

2
22212

2
22212 ,)))(14()1(29()))(2()5(13()(

n

i

n

j
iiiiiiii xxxxxxxxxf

  ].,...,2.,1[0 nx =  
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18. Generalized Non diagonal function: 

∑
=

−+−=
n

i
ii xxxxf

2

222
1 )1()(100[)( ,  

.].1.,...,1[0 −−=x  

19. Extended Martos Function: 

∑
=

−− −++=
2/

1

22
2

2
1212 )1(100)(

n

i
iii xxxxf , 

]1.0,1.1,...,1.0,1.1[0 =x . 

20. Full Hessian Function: 

∑∑
==

−−+⎟
⎠

⎞
⎜
⎝

⎛
=

n

i
iiii

n

i
i xxxxxxf

1

2
2

1
)2)exp(()( , 

.]1.,1.,...,1.,1[0 =x . 

21. SINCOS Function: 

)(cos)(sin)()( 2
2

12
2

2/

2

2
212

2
2

2
12 ii

n

i
iiii xxxxxxxf ++++= −

=
−−∑ , 

]1.0.,3,...,1.0.,3[0 =x . 

22. Generalized Quartic Function GQ2: 

∑
=

− −−+−=
n

i
ii xxxxf

2

2
1

222
1 )2()1()( ,  .]1.,1.,...,1.,1[0 =x . 

23. Raydan 2 Function: 

( )∑
=

−=
n

i
ii xxxf

1
)exp()( ,   .]1.,1.,...,1.,1[0 =x . 
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