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Re-sampling in Linear Regression Model Using
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Abstract

Statistical inference is based generally on some estimates
that are functions of the data. Resampling methods offer strategies
to estimate or approximate the sampling distribution of a statistic. In
this article, two resampling methods are studied, jackknife and
bootstrap, where the main objective is to examine the accuracy of
these methods in estimating the distribution of the regression
parameters through different sample sizes and different bootstrap
replications.
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1- Introduction

Two of the most important problems in applied statistics
are the determination of an estimator for a particular parameter of
interest and the evaluation of the accuracy of that estimator through
estimates of the standard error of the estimator and the
determination of confidence intervals for the parameter (Chernick,
2008). Jackknife and bootstrap resampling methods are designed to
estimate standard errors, bias, confidence intervals, and prediction
error. The jackknife preceded the bootstrap. The jackknife
resampling is generated by sequentially deleting single datum from
the original sample (Friedl and Stampfer, 2002). The bootstrap is a
resampling method that draws a large collection of samples from the
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original data. It is used to select the observation randomly with
replacement from the original data sample (Efron and Tibshirani,
1993).

One of the most important and frequent types of statistical
analysis is regression analysis, in which we study the effects of
explanatory variables on a response variable. The use of the
jackknife and bootstrap to estimate the sampling distribution of the
parameter estimates in linear regression model was first proposed by
Efron (1979) and further developed by Freedman(1981), Wu
(1986).There has been considerable interest in recent years in the
use of the jackknife and bootstrap in the regression context. In this
study, we focus on the accuracy of the jackknife and bootstrap
resampling methods in estimating the distribution of the regression
parameters through different sample sizes and different bootstrap
replications. The contents of this article may be divided into seven
sections. In sections 2 and 3 we briefly review the jackknifing and
bootstrapping regression model respectively. In section 4 we
introduce our simulation design, whereas the simulation results,
conclusion, and references are given in sections 5,6, and 7
respectively.

2- Jackknifing Linear Regression Model
For the linear regression model

Y=XB+e (1)

where Y denotes the nx1 vector of the response,
X =(Xq,X5,..., X} ) IS the matrix of regressors with nxk , and e is an
nx1 vector of error which has normal distribution with zero mean
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and variance o? (Yan and Su, 2009). The least squares estimator is
given by

g =)ty )
The variance — covariance matrix of B is

var—cov(Bos ) =62 (X'’X)T (3)

If B is estimated by B, then 6 is estimated by 6=g(0), with
respective jackknife values 6=g(B;) .The jackknife estimation of
the variance and bias of the 0, =g(B.s), delete the pair
(yi,xj),(i=12,..,n) and calculate éms(J) , the least squares estimate

of 6 based on the rest of the data set (Shao and Tu,1995). The
estimation of the B, bias and variance with pseudo-values are

B, _%élﬁji ....................... @)
bias (J) = (%)é(ﬁms B e 5)
V(B;) =ﬁé@ﬁ BB B e, (6)

respectively , where the EJi is the pseudo-value and equals to

BJi = nﬁols —(n _1)[§Ji ...................... (7)
(Friedl and Stampfer, 2001).
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The following are the steps of jackknifing linear regression model
(Sahinler and Topuz, 2007):

1- Draw n sized sample from population randomly and label the
elements of the vectorw; = (y; , Xji)"-

2- Delete the first row of the vector w;=(y;,x;;)" and label the
remaining n-1 sized observation sets and estimate the ols

regression coefficients B, from w;. Then, omit second row of
the vector w; =(y;,x;;)" after that bring back the deleted first

row, label remaining n-1 sized observation sets and estimate the
ols regression coefficients f;,from w,. Similarly, omit each
one of the n observation sets and estimate the regression
coefficients as Bj alternately, where By is jackknife regression

coefficient vector estimated after deleting of ith observation set
from w;.

3- Calculate the jackknife regression coefficient, bias, and standard
error for each coefficient from equation (4),(5), and (6).

3- Bootstrapping Linear Regression Model

Efron(1979) has developed a new re-sampling procedure
named as “Bootstrap” . Bootstrap is a resample consists of n
elements that are drawn randomly from the n original data
observations with replacement (Friedl & Stampfer, 2002). The all

bootstrap samples are n", but we choose B bootstrap samples.
Consider the linear regression model in equation (1), bootstrapping
can be done by either re-sampling the residuals,in which the
regressors (xi,X»,...,X) are assumed to be fixed, or resampling the
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y; values and their associated x; values, in which the re-gressors

are assumed to be random. In our study, we deal with the residuals
resampling. So, the bootstrapping residuals steps are:

1- On the original data set estimate the regression coefficients and
compute the residuals e; .

2- For r=12..B draw a n sized bootstrap sample with
replacement (ey,eps,.-.epg) from the residuals e;,and compute
the bootstrap y values

Yo = XBO|S +€h e (8)
3- Estimate the regression coefficients based on (8), using
Bbr = B0|S + (X'X)_l X’ebr ............... (9)

and repeat steps 2 and 3for r. Then the bootstrap estimate of the
regression coefficient is:

The bootstrap bias and the variance are given below(Shao and
Tu,1995)

bias(b) = (By —PBols)  eereeeeeeeeeeienn. (11)
N 1 B A oA N
V(Bb):azl(ﬁbr —Bp)Bor —Bp)" e (12)

4- Simulation Study

In this section, we describe the design of our study. We
consider our population size that is 1000, and we have three
explanatory variables (k=3), each one has a uniform distribution
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with (0,1). The error distribution is assumed normal with mean 0
and variance 4.For multiple linear regression we consider
B=(1797.93,85.02,78.89,45.12) . We draw four samples with sizes
10,30,50,and100 respectively. Finally, we took three values of
bootstrap samples (B)=100,1000,and10000) for each sample size.
All computations are done by using R programs for windows.

5- Simulation Results

For each sample size we fit the ordinary least squares linear
regression model and jackknifing and for B we fit the bootstrapping
regression model. The results are shown in tables (1) and (2), which
shows that both ols and jackknife have small difference between the
MSE values when the sample size are 30 and 50, also the
jackknife’s MSE value when the sample size is 10 is greater than the
ols since the jackknife samples have size n-1. In general, the MSE
values for the bootstrap resampling with varying n and B are less
than the ols and jackknife values. Comparing the estimated
bootstrap and jackknife coefficients from equations (4) and (10)
with the coefficients that are estimated by ols, show that there are a
little bias in the jackknife and bootstrap coefficients, and the bias
decreases when the sample size and B increase. The jackknifed

standard error S.E(ﬁj) for the coefficients is greater than the
SE(B,s) and SE(Bp) when n=10,30 , but when n=50,and100 the
SE(B;)become converge as compared with the SE(B.) and
S.E(Bb) .The bootstrapped standard error S.E(Bb) of the coefficients

become smaller than the SE(B.s) When B and n increase. The
distributions of the bootstrapped and jackknifed regression
coefficients for  B,,By,B2.andB,are graphed in figures (1),(2),(3),
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and (4). The histograms of the bootstrap estimates conform quite
well to the normal distribution for all parameters when n equals to
10,30,50,and100 and B are equal to 100,1000,and10000. The

jackknife’s histograms of the estimated parameters also conform the
normal distribution especially when nis 50,and100.

Table(1): The least squares method and jackknifing results of the
regression parameters

Bois S-E(ﬁols) B bias(J) S.E(BJ)
1805.277 5.399 1806.391 -1.151 7.013
78.104 4.937 76.974 1.152 8.061
75.181 4.353 72.789 2.401 5.305
43.437 4.747 44.749 -1.251 4.634

MSE=13.880 MSE=14.165




Iragi Journal of Statistical Science (18) 2010

Table(2): The bootstrap results of the regression parameters

1799.365 2.689 1799.236 0.134 3.476
84.679 3.993 85.543 -0.869 5.368
80.065 3.141 79.538 0.528 4.217
41.807 3.287 42.178 -0.393 4.149

MSE=22.809 MSE=22.783

1798.134 2.123 1798.24 -0.098 2.323
84.986 2.363 84.928 0.0549 2.464
81.013 2.342 80.916 0.1036 2.18
43.827 2.28 43.836 -0.034 2.086

MSE=20.532 MSE=20.501

1797.095 1.391 1797.097 0.0173 1.363
85.449 1.533 85.428 0.0062 1.585
76.923 1.405 76.941 -0.026 1.448
48.545 1.48 48.537 0.0003 1.419

MSE=17.802 MSE=17.765

[67]

By bias(b) | SE(Bo) By bias(b) | SE(B) B bias(b) | SEG,)
1804.65 | -0.621 4,139 1805.51 0.234 4211 1805.27 | -0.004 4,226
78.004 -0.099 3.956 77.939 -0.164 3.877 78.136 0.031 3.894
75.674 0.492 3.292 75.013 -0.168 3411 75.136 -0.045 3.404
44.425 0.987 3.754 43.262 -0.174 3.727 43.46 0.023 3.708
MSE=8.776 MSE=8.306 MSE=8.447
1799.65 0.289 2.303 1799.53 0.167 2.464 1799.35 | -0.009 2.488
84.739 0.059 3.956 84.554 -0.125 3.671 84.729 0.049 3.71
80.136 0.071 2.544 79.984 -0.081 2.86 80.047 -0.017 2.935
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1795

200

100

41019 | -0788 | 3011 | 41669 | -0138 | 297 | 41807 | o | 3.065
MSE=19.1022 MSE=19.675 MSE=19.656
17980 | -0.035 | 2112 | 179810 | 020 | 2045 | 1798.15 | 0016 | 2.042
85.064 | 0077 | 2.008 | 85.013 | 0.027 | 2202 | 84.946 | -004 | 2251
81.054 | 004 | 2100 | 81056 | 0.042 | 2154 | 81.022 | -0.009 | 2.246
43777 | 0049 | 2306 | 43802 | -0024 | 2158 | 43822 | -0.005 | 2.9
MSE=18.918 MSE= 19.037 MSE= 18.852
17972 | 0105 | 1535 | 17970 | -0.021 | 1379 | 17971 | 0012 | 1358
8554 | 0.001 | 1544 | 85428 | -0021 | 15 | 85427 | -0.021 | 1.505
76.649 | 0.273 | 1.367 77 | 0076 | 1381 | 76921 | -0.001 | 1.372
48.609 | 0.063 | 1413 | 48527 | -0018 | 1477 | 48551 | 0.005 | 1.456
MSE=16.981 MSE= 16.877 MSE= 17.026
B1 B2 B3
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Figure(1): The histogram of the bootstrap and jackknife for n=10.
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Figure(2): The histogram of the bootstrap and jackknife for n=30.
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Figure(3): The histogram of the bootstrap and jackknife for n=50.
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6-Conclusion

Bootstrap and jackknife methods are sample reuse techniques
designed to estimate standard errors and confidence intervals. As a
conclusion, we can rely on the jackknife results when the sample
size is large enough (n>50). When B is increased we can get best
results and less bias in bootstrap resampling . The histograms
conform well to the normal distribution when the number of
bootstrap replications B is enough large ie. B=10000 and the

sample size being large too. The jackknife resampling results close
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to the results of the bootstrap resampling when n is enough
sufficient and B is large too.
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