```
المجلة العراقية للعلوم الاحصائية (18) 2010
مر مر [116–91]
```

.()) .(

()

.

Fuzzy Logic of Non-Stationary Time Series Models with an Application

Abstract:

This research is dedicated to study non-stationary time series, and the ability of using fuzzy logic in order to improve forecasting. The non-stationary time series (Mixed autoregressive and moving average model) has been linked with fuzzy logic in order to get on the parameters of fuzzy time series models (Fuzzy mixed autoregressive and moving average model), and applied on monthly purchases rates data and foreign currency sales (Dollar) for the daily bid of Iraqi central bank. The fuzzy mixed

/ / / 4/21 : 2010/ 1/ 10 : 2010/ ... [92]

autoregressive and moving average model for time series gave more appropriation forecasting than the forecasting given by fuzzy mixed autoregressive and moving average model

Time Series Analysis

Fuzzy sets Theory

" (1965)

.[2004,]

)

المجلة العراقية للعلوم الاحصائية(18) 2010 ______

(ARIMA

Time Series : .2

•

(T) (t) $\{Z(t), t \in T\}$

Stationary Time Series : (2-1)

•

.

[Hamilton, -: (z_t)

1994] : *1

 $E[Z_t] = \mu \quad \forall t \in T \qquad \dots (1)$

: *2

 $Var[Z_t] = E[(Z_t - \mu)^2] = \sigma_z^2 \quad \forall t \in T$ (2)

(t-s) *3

 $: (t > s \qquad) (s) \qquad (t)$

 $E[(Z_t - \mu)(Z_s - \mu)] = \rho_{t-s}$ (3)

[94]

(2-2)**Autocorrelation in Time : Series**

.[2004,]

$$\rho_{k} = \frac{E(Z_{t} - \mu_{z})(Z_{t+k} - \mu_{z})}{E(Z_{t} - \mu_{z})^{2}} \qquad(4)$$

$$E(Z_{t} - \mu_{z})^{2} \qquad \rho_{k}$$

(2-3)

Partial Autocorrelation in Time Series

$$Z_t \quad Z_{t\text{-}k}$$

(1,2,...,k-1) (Time lags)

$$\phi_{11} = \mathbf{r}_1 \qquad \qquad \dots (5)$$

$$\phi_{11} = r_1 \qquad \dots(5)$$

$$\phi_{kk} = \frac{r_k - \sum_{j=1}^{k-1} \phi_{k-1} \ r_{k-1,j} \ r_{k-j}}{1 - \sum_{j=1}^{k-1} \phi_{k-1,j} \ r_j} \qquad \dots(6)$$

AR Z_{i}

.[Wei, 1990]

Moving Average Model (MA): *2

Stutzky (1937) $\{ Z_t = 0, +1, +2, \dots \}$

... [96]

(Moving Average of Order q) q

: , MA(q)

$$Z_{t} = a_{t} - \theta_{1} a_{t-1} - \theta_{2} a_{t-2} - \dots - \theta_{q} a_{t-q} \qquad \dots (9)$$

 $: -\theta_1 - \dots - \theta_q$

.

*3

Autoregressive & Moving Average Models (ARMA)

Mixed

Wold (1938)

Mixed Autoregression Moving

Average Models

: $\mathbf{ARMA}(p,q)$

 $Z_{t} = \varphi_{1} Z_{t-1} + \cdots + \varphi_{p} Z_{t-p} + a_{t} - \theta_{1} a_{t-1} - \cdots - \theta_{q} a_{t-q} \qquad \dots (10)$

*4

Autoregressive Integrated Moving Average Models (ARIMA)

Box & Jenkins (1976)

.[2003,]

(d=1,2) d

ARIMA(p,d,q)

:

$$\varphi(B)(1-B)^{d} z_{t} = \theta(B)a_{t} \qquad \dots (11)$$

$$w_{t} = (1-B)^{d} z_{t}$$

$$\varphi(B)w_{t} = \theta(B)a_{t} \tag{11}$$

$$\dots(12)$$

:

$$\varphi(B) = 1 - \varphi_1 B - \varphi_2 B^2 - \dots - \varphi_P B^P$$

$$\theta(B) = 1 - \theta_1 B - \theta_2 B^2 - \dots - \theta_q B^q$$

.

.3

Fuzzy Set: (3-1)

Χ .

Crisp Set :) (3-2)

2002]

... [98]

2005]

.[Bector,

$$\mu_{A}: \mathbf{x} \to [0,1]$$

$$\mu_{A}(\mathbf{x}) = \begin{cases} 0 & \text{if} & \mathbf{x} \notin \mathbf{A} \\ 1 & \text{if} & \mathbf{x} \in \mathbf{A} \end{cases} \dots (13)$$

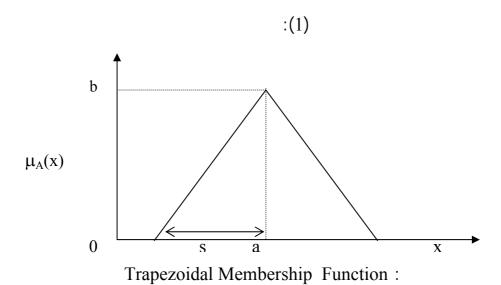
Membership degree: (3-3)

.

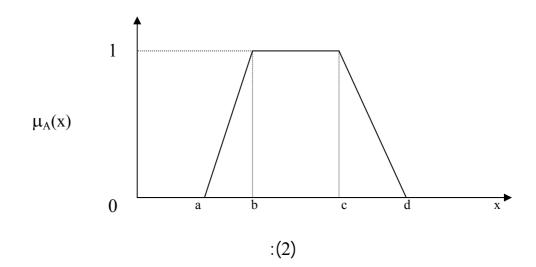
Membership Function: (3-4)

X A (Characteristic function) $X \hspace{1cm} x \hspace{1cm} \mu_A \hspace{1cm} (x)$.[Klir et al., 1995] $A \hspace{1cm} x$

Types of Membership Function: (3-4-1)


[Klir et al., 1995] :

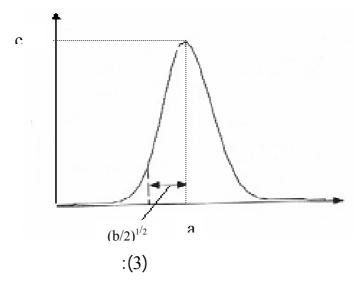
Triangular Membership Function: -1


(1) s, b a

 $\mu_{A(x)} = \begin{cases} b(1 - \frac{|x - a|}{s}) & \text{when} & a - s \le x \le a + s \\ 0 & \text{otherwise} \end{cases}$ (14)

-2

$$\mu_{A}(x) = \begin{cases} \frac{a - x}{a - b} & ; & a \le x \le b \\ 1 & ; & b \le x \le c \\ \frac{d - x}{d - c} & ; & c \le x \le d \\ 0 & ; & otherwise \end{cases}$$
 (2)


... [100]

Bell-shaped Membership Function: -3

(3) Gaussian Function

:

$$\mu_{A}(x) = ce^{-\frac{(x-a)^{2}}{b}}$$
; $-\infty < x < \infty$ (16)

Fuzzy Numbers: (3-5)

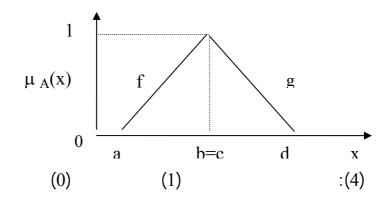
A

.

Buckley, 2002]:
$$\operatorname{core}(A) \quad) \qquad -1$$

$$.($$

$$\alpha \in (a,b] \qquad {}^{\alpha}A - 2$$


A .

(a,b)

[Bector, 2005]:

$$\mu_{\mathbf{A}}(\mathbf{x}) = \begin{cases} f(\mathbf{x}) & \text{for } \mathbf{x} \in [\mathbf{a}, \mathbf{b}] \\ 1 & \text{for } \mathbf{x} \in [\mathbf{b}, \mathbf{c}] \\ g(\mathbf{x}) & \text{for } \mathbf{x} \in [\mathbf{c}, \mathbf{d}] \\ 0 & \text{for } \mathbf{x} < \mathbf{a} \text{ and } \mathbf{x} > \mathbf{d} \end{cases} \dots (17)$$

(1)
$$f(x)$$
 ($a \le b \le c \le d$) (c) (1) $g(x)$ (b) .(4)

$$\mu_{F^*}(B_i) = \begin{cases} 1 - \frac{|\alpha_i - B_i|}{Ci} & \text{if } \alpha_i - C_i \le B_i \le \alpha_i + C_i \\ 0 & \text{otherwise} \end{cases} \dots (18)$$

: (α_i, C_i) B_i $\mu_{Bi}(b_i) = L((\alpha_i - b_i) / c_i)$ $c_i > 0$ (19) ... [102]

Fuzzy Time Series:

.4

.

. [Tahseen et.al , 2007]

 $\{Z(t), t = :$

 $M_i(t)$...,0,1,2,...}

 \overline{Z} .Z(t) (i=1,2,...) \overline{Z}

 $. \ \overline{Z}$ $\mu i(t)$ t \overline{Z}

: Song, et.al,(1994)

: -1

Fuzzy Invariant Time Series

 \overline{Z} R(t,t-1) \overline{Z}

 \overline{Z} t R(t,t-1)=R(t-1,t-2)

•

: -2

Fuzzy variant Time Series

t R(t,t-1) \bar{Z}

 \overline{Z} t R(t-1,t-2) R(t,t-1)

 $\overline{Z_{t-1}}$ \overline{Z} :R (t, t-1)

. [Chen & Hwang, 2000] .

:

Fuzzy Autoregressive Integrated Moving Average Models

) ARIMA(p,d,q) .(

[Fang-Mei Tseng, 1998]:

$$\overline{\varphi}_{p}(B)w_{t} = \overline{\theta}_{q}(B)a_{t} \qquad \dots (20)$$

$$W_t = (1 - B)^d z_t$$

: (20)

$$\overline{W_t} = \overline{\varphi_1} W_{t-1} + \dots + \overline{\varphi_p} W_{t-p} + a_t - \overline{\theta_1} a_{t-1} - \dots - \overline{\theta_q} a_{t-q}$$

$$\overline{\theta_1}, \dots, \overline{\theta_q}, \overline{\varphi_1}, \dots, \overline{\varphi_p}$$
(21)

.

$$\overline{w_{t}} = \overline{\beta_{1}} w_{t-1} + \dots + \overline{\beta_{p}} w_{t-p} + a_{t} - \overline{\beta_{p+1}} a_{t-1} - \dots - \overline{\beta_{p+q}} a_{t-q} \qquad \dots (22)$$

$$i=1,2,\dots,p+q \qquad \overline{\beta_{i}}:$$

$$\overline{\beta_{i}} = (\alpha_{i}, c_{i})_{L} \qquad \forall i=1,...,p+q \qquad(23)$$

$$\overline{\beta_{i}} \qquad (18)$$

[Fang-Mei Tseng, 1998]:

... [104]

Linear Programming: .5

() .[1986,]

$$(\alpha_i,c_i)$$

Constituting of Linear : (5-1)

Programming

:

· () :

()

: (5-2)

Formulation of Linear Programming Fuzzy Autoregressive Integrated Moving Average Models

:

Min S =
$$c_1 + c_2 + ... + c_{p+q}$$
 ... (26)
 Z_t -2

: $(h \in [0,1])$ (threshold) (h)

$$Z(Z_t) \ge h$$
 $\forall t=1,...,K$... (27)
:(24) Z_t

$$1 - \frac{\left| z_{t} - \sum_{i=1}^{p} \alpha_{i} w_{t-i} - a_{t} + \sum_{i=p+1}^{p+q} \alpha_{i} a_{t+p-i} \right|}{\sum_{i=1}^{p} c_{i} \left| w_{t-i} \right| + \sum_{i=p+1}^{p+q} c_{i} \left| a_{t+p-i} \right|} \ge h$$

[106]

$$(1-h)\left[\sum_{i=1}^{p} c_{i} \mid w_{t-i} \mid + \sum_{i=p+1}^{p+q} c_{i} \mid a_{t+p-i} \mid \right] - \mid z_{t} - \sum_{i=1}^{p} \alpha_{i} w_{t-i} - a_{t} + \sum_{i=p+1}^{p+q} \alpha_{i} a_{t+p-i} \mid \geq 0$$
 (28)

(28)(26)

:(L.P)

 $Min S = \sum_{i=1}^{p} c_i$

$$\sum_{i=1}^{p} \alpha_{i} w_{t-i} + a_{t} - \sum_{i=p+1}^{p+q} \alpha_{i} a_{t+p-i} + (1-h) \left[\sum_{i=1}^{p} c_{i} \mid w_{t-i} \mid + \sum_{i=p+1}^{p+q} c_{i} \mid a_{t+p-i} \mid \right] \ge w_{t}$$

$$t = 1, 2, ..., k$$

$$-\sum_{i=1}^{p} \alpha_{i} w_{t-i} - a_{t} + \sum_{i=p+1}^{p+q} \alpha_{i} a_{t+p-i} + (1-h) \left[\sum_{i=1}^{p} c_{i} \mid w_{t-i} \mid + \sum_{i=p+1}^{p+q} c_{i} \mid a_{t+p-i} \mid \right] \ge -w_{t}$$

 $c_i \ge 0$, $w_t \ge 0$

 $\forall t = 1, 2, \dots, k$

 c, α

S

) (LP)

2*(k -

(Tanaka)

(Tanaka) -:

$$\begin{aligned} & Min \ S = \sum_{i=1}^{p} \sum_{t=1}^{k} c_{i} |\phi_{ii}| |w_{t-i}| + \sum_{i=p+1}^{p+q} \sum_{t=1}^{k} c_{i} |\rho_{i-p}| |a_{t+p-i}| \\ & s.t. \\ & \sum_{i=1}^{p} \alpha_{i} w_{t-i} + a_{t} - \sum_{i=p+1}^{p+q} \alpha_{i} a_{t+p-i} + (1-h) [\sum_{i=1}^{p} c_{i} |w_{t-i}| + \sum_{i=p+1}^{p+q} c_{i} |a_{t+p-i}|] & \geq w_{t} \\ & t = 1, 2, \dots, k \\ & - \sum_{i=1}^{p} \alpha_{i} w_{t-i} - a_{t} + \sum_{i=p+1}^{p+q} \alpha_{i} a_{t+p-i} + (1-h) [\sum_{i=1}^{p} c_{i} |w_{t-i}| + \sum_{i=p+1}^{p+q} c_{i} |a_{t+p-i}|] & \geq -w_{t} \\ & c_{i} \geq 0 \ , \ w_{t} \geq 0 \\ & \forall t = 1, 2, \dots, k \end{aligned}$$
 (30)

:

 ϕ_{ii}

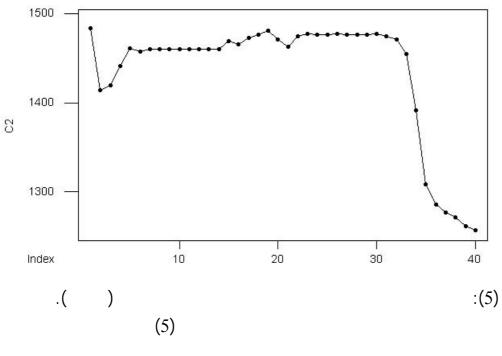
 ho_{i-p}

LINDO

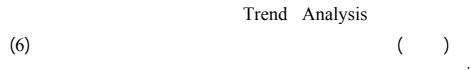
.6

(

2008/11/1 2004/1/1


(57)

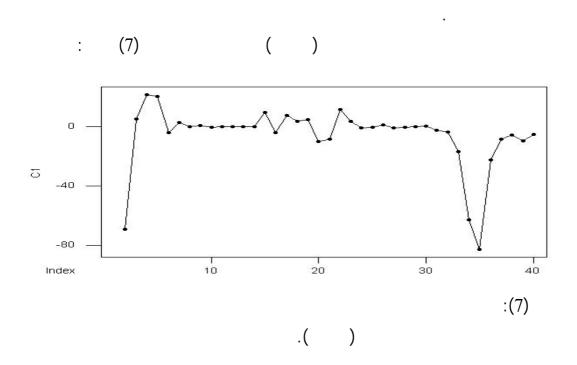
: (6-1)


2007 2004

.

... [108]

•

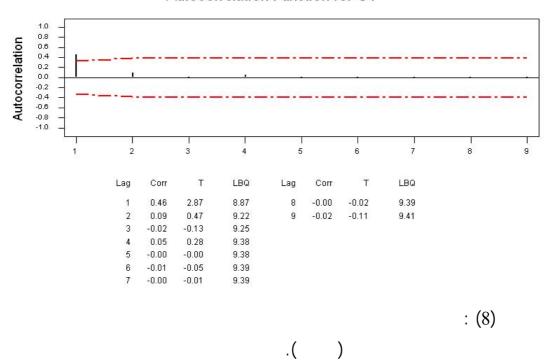

Trend Analysis for C2

Linear Trend Model

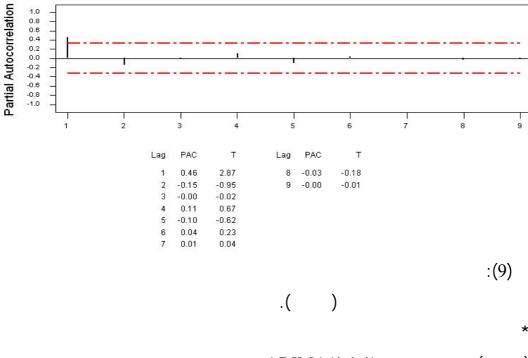
Yt = 1502.31 - 3.28455*t

Actual
Fits
Actual
Actual
Fits
Ac

.()



(8) (9)


ARIMA(1,1,1)

... [110]

Autocorrelation Function for C1

Partial Autocorrelation Function for C3

ARIMA(1,1,1) ()

Ishibuchi & Tanaka

FARIAM(1,1,1) (30)
$$\frac{1}{w_t} = 75.089 + (0.4044, 0.788117) w_{t-1} + a_t - (-0.4615, 0.688034) a_{t-1} \quad \dots (33)$$

... [112]

FARIMA(1,1,1) :(1)

D	Actual value	ARIMA Predicted value	FARIA M lower bound	FARIMA Upper bound	D	Actual value	ARIMA Predicted value	FARIAM lower bound	FARIMA Upper bound
1	13.83	*	*	*	17	87.73	108.766	38.1918	179.341
2	88.12	70.994	45.6507	96.337	18	73.02	114.873	52.1501	177.595
3	103.50	132.644	95.8736	169.414	19	74.55	99.317	33.8652	164.769
4	79.24	123.966	52.8631	195.068	20	94.72	107.821	52.9197	162.723
5	85.75	100.506	28.1748	172.837	21	86.60	121.362	58.5900	184.133
6	83.12	116.970	60.1296	173.811	22	82.14	108.081	36.8051	179.357
7	83.70	107.094	39.1884	175.000	23	82.87	110.348	48.6568	172.040
8	82.54	112.155	50.9858	173.323	24	84.29	109.934	46.6095	173.259
9	83.12	108.815	44.2804	173.349	25	82.40	111.355	48.1732	174.537
10	83.12	110.858	48.5639	173.153	26	82.87	109.063	45.0925	173.033
11	83.12	109.915	46.2147	173.616	27	83.00	110.528	48.0876	172.968
12	83.12	110.351	47.2989	173.402	28	83.59	109.964	46.5031	173.425
13	92.67	110.150	46.7985	173.501	29	80.87	110.735	47.6027	173.867
14	78.90	118.512	54.3430	182.680	30	79.54	108.024	44.6334	171.414
15	90.79	102.729	34.1845	171.273	31	66.29	108.124	46.7316	169.515
16	86.83	120.309	61.4341	179.183	32	60.44	96.604	36.4700	156.739

	(33)			FARIMA(1,1,1)
(2007)		()	
			(2008)	
				ARIMA(1,1,1)
	:	(2)		(31)

:(2) (FARIMA(1,1,1)) (ARIMA(1,1,1))

Date	Actual value	ARIMA Predicted value	FARIAM lower bound	FARIMA Upper bound
2007\7\1	75.27	*	*	*
2007\8\1	74.20	104.295	41.7660	165.725
2007\9\1	74.09	103.016	46.8307	163.532
2007\10\1	84.80	110.828	45.1280	163.744
2007\11\1	77.77	106.597	54.1682	173.925
2007\12\1	72.73	102.095	37.9918	169.261
2008\1\1	80.50	106.954	45.8446	162.084
2008\2\1	79.39	106.366	51.4032	169.667
2008\3\1	81.44	108.216	43.1750	170.049
2008\4\1	77.99	106.011	49.1581	171.159
2008\5\1	79.12	106.767	42.5286	168.613
2008\6\1	80.36	107.954	48.5504	168.688
2008\7\1	80.40	108.544	46.0712	170.561
2008\8\1	75.64	105.105	46.4455	170.532
2008\9\1	77.01	105.505	42.6060	165.973
2008\10\1	80.32	107.887	48.3713	166.367
2008\11\1	80.49	108.570	47.4430	170.246

FARIMA(1,1,1)

()

ARIMA

... [114]

```
Conclusions & Recommendations:
                                                                 .7
                                (ACF)
                                                                   .1
                         )
                                                           (PACF)
                                     .ARIMA(1,1,1)
                                                                   .2
                                                                  .3
                                       Ishibuchi & Tanaka
                            ARIMA(1,1,1)
                                                                   .4
     \overline{w_t} = 75.089 + 0.4044 w_{t-1} + a_t + 0.4615 a_{t-1}
                                   FARIMA(1,1,1)
\overline{w_t} = 75.089 + (0.4044, 0.788117)w_{t-1} + a_t - (-0.4615, 0.688034)a_{t-1}
                        ARIMA(1,1,1)
                                                     FARIMA(1,1,1)
                                  FARIMA(1,1,1)
```

		FARIMA(1,1,1)	-a
		.(
		FARIMA(1,1,1)	-b
		.ARIMA(1,1,1)	
		Recommendations	
:			
			-1
			-2
			-3
	M	ultivariate Time Series	
			المصادر 1.
	" :(2003)		.1
.73		"(1989-1949)	
.73	" (2009)		.2
	(2007)	<i>I</i> II	۷.
			.(15)
п		" (2004)	.(10)
		(2001)	.0
•		" (1986)	.4
	ı		
		" (1992)	.5
		` ,	_

المجلة العراقية للعلوم الاحصائية(18) 2010 _____

[115]

.6

http://ar.wikipedia.org

- 7.Bector, C.R. and Chandra Suresh (2005), "Fuzzy Mathematical Programming and Fuzzy Matrix Games", Springer-Verlag Berlin Heidelberg Printed in Germany.
- 8.Buckley , James J .(2002),"An introduction to fuzzy logic and fuzzy sets " , Esfandiar Eslami Heidelberg ,ISBN 3-7908-1447-4
- 9.Chen, Shyi-Ming and Hsu, Chia-Ching (2004),"Anew Method to Forecast Enrollment Using Fuzzy Time Series", ISSN 2, 3,234-244, Taipei, Taiwan, R.O.C.
- 10.Fang-Mei;Tseng , Gwo-Hshiung; Yu , Hsiao-Cheng and Yuan, Benjamin and J.C.(1998),"Fuzzy ARIMA model for forecasting the foreign exchange market", National Chiao,Tung University, Taiwan.
- 11. Hamilton, J. D. (1994). "Time Series Analysis", Princeton University Press, New Jersey.
- 12.Klir ,G.J., and Yuan,B., (1995),"Fuzzy Set and Fuzzy logic Theory and Applications" ,Prentice Hall PTR.
- 13. Tahseen Ahmed Jilani, Syed Muhammad Aqil Burney, and Cemal Ardil,(2007), "Fuzzy Metric Approach for Fuzzy Time Series Forecasting based on Frequency Density Based Partitioning", Proceedings of Word Academy of Science, Engineering and Technology Vol.(23)ISSN(1307-6884).
- 14. Wei W:W.S., (1990) "Time Series Analysis: Univariate and Multivariate Methods", Addison-Wesley Publishing Company Inc The Advanced Book Program, Gaifornia, USA.