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1.Introduction

In multiple regression models, multicollinearity occurs when the explanatory variables are collinear, which was first
introduced by Frisch [1]. This is a common occurrence in applied research. Using ordinary least squares (OLS) or maximum
likelihood (ML) to estimate linear regression models and logit regression models leads to high variance and unstable
parameter estimates. As a result, multicollinearity may lead to questions about the validity of the regression analysis
conclusions. In the past few decades, ridge regression (RR) has been widely used as a corrective measure for linear
regressions, with a lot of research focusing on estimating the ridge parameter k. Hoerl and Kennard [2,3]  initially proposed
ridge regression. Several studies have been conducted on the subject, including Gibbons [4], Lawless and Wang [5], Dempster
et al. [6], Hoerl and Kennard [2], Hoerl et al. [7], McDonald and Galarneau [8], Alkhamisi et al. [9], Alkhamisi and Shukur
[10], Muniz and Kibria [11], Muniz et al. [12], and Mansson et al. [13], Lukman and Ayinde [14], Ayinde et al [15] and
others too. However, much attention has not been given into the logit model and those that worked on it are researchers like
Schaeffer et al. [16], Schaeffer [17], Ménsson and Shukur [18], Kibria et al [19], and few others. These researchers only
focused on Ridge regression and no or little attention is given to other biasing parameter k emanating from other estimators
too.

The main focus of this paper is to propose some Logistic Yang and Chang (LYC) estimators based on the work of Kibra [20]
and Kibra et al [19]. Since it is anticipated that these estimators will have lower mean squared error (MSE) than that of the
logistic ridge regression (LRR) and ML. The MSE is computed in order to assess the estimators' performance.

The work is structured as follows: we provide a description of the materials and statistical methods in Section. 2. Section 3
discusses the simulation and numerical findings. Section 4 provides a succinct overview and conclusions.
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2. Materials and Methodology

On the basis of the research of Kibria [20] and Kibra et al. [19], we suggest a few LY C estimators in this section for estimating
the biasing parameter k.

Logit Regression

Logit regression has always been one of the commonest method in statistic that is applied whenever the ith value of our so
called dependent variable (y) of the regression model follows a Be (ni ) distribution with the following parameter value:

exp (xI ,B)

:1+expixi',3i 0

Where xi' is the ith row of X, and is a nx(p+1) data matrix, having p explanatory variables and such that £ is a

(p +1)><1 vector of coefficients. Using the Maximum Likelihood technique, which maximizes the following log likelihood,
is one of the most used ways to estimate £ and can be expressed as:

n n
LZZYi |Og(”i)+2(1_Yi)log(1_”i) )

i=1 i=1

This can be achieved by setting the first derivative of the above expression to be equal to zero. Hence, the ML estimates are
found by solving the subsequent equation:

Setting the first derivative of the aforementioned equation (2) to zero will do this. Therefore, the following equation below
must be solved in order to find the ML estimates:

A3y ) =0 ®3)
aﬂ = I 1 1
The iterative weighted least square (IWLS) algorithm is used:

A wi —1 S

Bue = (XWX )" X Wiz @
Where the following are the expression of W and 2 respectively

W = T (1— T ) and Z is known to be a vector where the ith element equals

Yi = 7

z, =log(#, )+ A7)

Since equation (3) is nonlinear in /S , we can express the MSE of the ML estimator as:

E(LZ )= (B — ) E(B — A)=tr(x¥iX)* =3 o
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/’tj is said to be the jth eigenvalues of the X WX matrix.

3.Logistic Ridge Regression Estimator

Schaeffer et al. [16], proposed LRR estimator, as a substitute to the ML estimate that mitigates the problem of
multicollinearity, Instead of directly estimating the coefficients of the regression model, the LRR estimator focuses on
estimating the inverse of the covariance matrix. By doing so, the LRR estimator effectively reduces the impact of small

eigenvalues caused by multicollinearity, resulting in a more reliable and robust estimation of the regression coefficients. The
LRR estimator is defined as:

A A —1 A A
B = (XWX + K1 ) XWX By ©)

k is the biasing parameter, W and ,@MLE is the ﬁ’MLE estimates derived by equation(4). The LRR estimator MSE can be
expressed as:

, i i
E(Lf_RR): E(IBLRR _/3) E(ﬁLRR —ﬂ):zm+kzz—1 ™)

4. Logistic Yang and Chang Estimator
The Logistic Yang and Chang (LYC) estimator, which is a special estimator of Liu and ridge estimator combined was

proposed by Awwad et al [21] and it also handle the problem of multicollinearity effectively too. The estimator LYC is
defined as:

Buve = (XVIX -+ 1) (XWX +dt XWX + kI ) "X WX By ®

k and d is the biasing parameters, W and ﬁMLE is the ﬁMLE estimates derived by equation(4). The LYC estimator MSE can
be expressed as:

ElLie )= ElAue =) ElBuc - 5)= 2, (4 + 17 (4 +K) (A + 1 (4 k) |

i=1 i=1

| Ad) ] @[ (kri-d)r +k) |
(e |

©)

where af is expressed as the jth element of yZand y is known to be the eigenvector expressed as X WX = Ay, where
A =diag (/1 j )

5.The Proposed Estimators

A ridge parameter can be chosen in many different ways, however, a number of approaches have been put out for the linear
RR model, and these have been extended to the logistic ridge regression model. In the classical RR a biasing parameter k from
the works of Hoerl and Kennard [2,3] is as expressed as follows:

2
o

kAHKl =% (10)
o

max
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The above biasing parameter was also adopted to have the following biasing parameter proposed by Kibria [20] as stated

below
2
A o
Koy =——— (12)
I 1
~2
i=1

Later on, both equation (10 & 11) was adopted into the LRR by Schaeffer et al. [16 and Kibra et al [19] respectively.

However the biasing parameter k for LYC can be gotten from the MSE

Pl A4 +d) Pl ((k+1-d)A, +k)* | ,
MSE = L + ! ; 12
boe)=3 et s [ B e 1 @
Given that d is fixed, an ideal value of k is the value that will be to minimize MSE(,BLYC )
Then, by differentiating MSE(,@LYC ) w.r.t. k and equating to 0, we have k as below:
(13)

(4 +d)-(1-d)ias

- 2
d(4; +1)a
However, k depends on the unknown ¢ ;. For practical purposes, it will be replaced by its unbiased estimatordjz. Hence, this

(14)

will be obtained as:

(4, +d)-(1-d)ra;

Kk =
(4 +1)a?
As an operational estimator for k. Furthermore, when d = 1, the above equation returns back to the k proposed by Schaeffer et

al. [17] which is expressed as:
1
a;

Chang are proposed as:
A . A +d)-(1-d)ra’
Kuax = Mammum(( ! (i +(1)0}i2) i J
~2
Kyyn, = Minimum (4 +d)_(1_ﬂdz)ﬁ‘a‘
(ﬂ’i +1)ai
~ . ((4 +d)-(1-d)réa?
Kueo = Medlan(( ' (ﬂ)«. -|-(l)di2) sl ]
RS (4 +d)-@-d)4éd
e pi= (ﬂ“i +1)di2
2 E(ﬂi +d)—(l—d)lio}i2]

K = 23 (4, +1)a?

i=1

izMR = (KMM + lZMlN )/2

k = —2
Following the works of Schaeffer et al. [16], Kibra [20] and Kibra et al [19] the following biasing parameter k for Yang and

(15)

(16)

(17)

(18)

(19)

(20)
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Furthermore, the optimal value for d can also be derived by minimizing MSE(,@LYC ) in equation (12)

MSE(d,. )= i{ A% +d) }ri{((k +1-d)A, +k) i|ai2

(414 +k) | (412 +K)

Then, by differentiating MSE(,@LYC ) w.r.t. d and equating to 0, we have d as below:

i[((té +1)ﬂ.i + k)ﬁ.iozi2 - /1,2]

=1
o =T (21)

3 1+ 40

i=1

o,

Noting that when k =0 the above equation leads to the Liu biasing estimator, the above estimator would be

> a2 -1)2 ]

ot = 22)

Z(1+ /"Liaiz)

i=1

6.The Monte Carlo Simulation

This paper's major goal is to determine how multicollinearity impacts ML, LRR and LYC Estimators. Therefore, the most
important variable in the experiment is the degree to which the regressors were correlated. Hence, we generate the explanatory
variables by using the following formula, which lets us adjust the correlation's strength:

/12 . .
X = (1—,02)1 Zi + Py, =12...0,j=12,p (23)

The degree of correlation between the explanatory variables is referred to as p2 and Z;; is also the pseudo random numbers
from the standard normal distribution. The four various levels of p considered are said to be 0.8, 0.9, 0.95 and 0.99. Likewise
the dependent variable is also derived from the Be (7zi ) distribution where

exp (xI ,B)

= - (24)
1+exp ixiﬁi

We set 8’3 =1, according to Newhouse and Oman [22] statement that if our MSE is a function of S, o®and k if all the

explanatory variables used are fixed, we can then say that the MSE is minimized when this coefficient are choose. Models
consisting p=2 and 3 explanatory variables, sample sizes n=20, 30 and 40 are used, models, p=5 and 6 explanatory variables,
sample sizes n=200,250 and 300 and models consists of p as 9 and 10 explanatory variables, sample sizes n=800,900 and 1000
are used. With this experimental design we will be able to examine which of the Yang and Chang biasing k parameters that
will give an optimal result for the designs. From the works of Kibria [20], Lukman et al [23,24], Oladapo et al [25], Muniz
and Kibria [11], Idowu et al [26], Owolabi et al [27,28], Ménsson and Shukur [18], among others we can get more detailed
information on simulation procedures.
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7.Results and Discussion based on Simulation

Findings from Monte Carlo investigation are all presented. The MSE values of all the estimators for Monte Carlo study are
shown in Table 1- Table 3 and that of real life is in Table 4. Also, the outcome of varying the different factors we used in this
study on the ML, LRR and LYC estimators are discussed too.

Table 1 Estimated MSE for different estimator when p=2 and 4

' LYCAM LYCHM LYCMAX LYCMIN LYCMR

P2 157012 0.8669 1.2025 09676 09676 0.7260 0.8100 51743 0.9676

% b3 24.7418 1.2913 2.0600 15576 0.9536 0.7188 0.7497 7.5635 0.9519
0g 2 189648 15806 21055 17638 17638 09226 12596 63612 17638

20 P3 459319 25406 3.8055 3.4579 18574 0.6825 1.1125 2.3387 1.7788
g5 2 330799 28735 36370 35172 35172 13650 22381 159088 35172
P3 1182331 5.4285 7.3578 8.2295 4.2553 0.7580 2.1636 10.9160 3.9622

0go 2 412311 142273 152330 208501 20.8501 6.1897 125252 27.1860 20.8501
P3 323.0345 28.4999 37.3550 47.8129 28.9098 2.5166 14.6529 43.8784 27.3260

g "2 8520 08921 12706 16479 16479 06506 08444 851341 16479

P3 400 13235 20820 1.1955 0.7060 0.7367 0.6579 2.7215 0.7172

P2 33957 11102 1.6140 0.9092 0.9092 0.6925 0.7729 2.0927  0.9092

09 b3 572805 18766 28766 18023 09592 0.6693 07402 50297 09333
30 P2 6.8001 20606 27707 2.1703 2.1703 1.0832 1.5673 4.9591  2.1703
09 b3 723781 39509 53176 4.6710 23247 0.6986 14209 238521 2.2156
0go F2 336745 94476 100045 137039 137033 42315 83740 307374 137039

P3 114.9015 20.6633 24.1214 29.3686 13.9822 1.4808 6.9275 154.2833 12.6276

P2 1.0500 0.4647 07297 04130 04130 0.4453 0.4117 0.5853 0.4130

%% b3 19671 07233 10681 06170 05642 07113 05957 12121 05819

P2 20654 07919 1.1649 0.6758 0.6758 0.6164 0.6307 1.0988 0.6758

%% b3 40375 12530 17422 10173 07921 0.6553 06757 24140 07871
0 P2 39378 13514 1.8909 1.3221 1.3221 0.9298 1.1088 2.4407 1.3221
0% b3 78012 22170 30394 21573 14233 06100 09856 49249 13904
ogo "7 194569 58467 64598 81060 81060 3.0853 54174 167178 8.1060

P3 39.6774 10.3239 13.0468 13.9107 7.1394 1.0158 3.8367 31.8973 6.5902
Bold values show the smallest MSE

In Table 1 is the estimated MSE values when n is 20, 30 and 40 for explanatory variables, p=2 and 3 it can be observed that
the LY C with the biasing parameter k of the Harmonic version gives the lowest MSE in all cases except when n is 40, p=2 and
p= 0.8 likewise for when n is 40, p=3 and p=0.8.
Table 2: Estimated MSE for different estimator when p=5 and 6

' LYCAM LYCHM LYCMAX LYCMIN LYCMR

P5 0.6437 0.3082 0.6918 0.2117 0.3041 0.7669 0.4480 0.4711 0.3707
P6 0.8897 0.3619 0.7920 0.2103 0.3533 0.8563 0.5380 0.6147 0.4492
P5 13254 0.5094 0.9017 0.2870 0.3427 0.7419 0.4584 0.8895 0.4007
P6 1.8711 0.6049 1.0433 0.3291 03711 0.8144 05079 1.1751 0.4407
P5 27185 0.8755 1.4135 0.5020 0.3785 0.6872 0.4349 1.6734 0.4054

0.95
P6 38387 1.0614 16751 0.5593 0.3860 0.7530 0.4601 2.2541 0.4239

0.8

200 0.9



0.99

0.8

0,9

250

0.95

0.99

0.8

0.9

300

0.95

0.99

P5
P6
P5
P6
P5
P6
P5
P6
P5
P6
P5
P6
P5
P6
P5
P6
P5
P6
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14.3758
21.4196
0.4684
0.6067
0.9953
1.2397
1.9988
2.5455
10.6428
14.0437
0.3884
0.5511
0.8046
1.1421
1.6083
2.4319
8.5604
13.3230

3.8963
5.2274
0.2425
0.2957
0.4108
0.4749
0.6814
0.8113
2.8765
3.6615
0.2125
0.2701
0.3458
0.4333
0.5546
0.7680
2.2965
3.4459

5.4482
7.4239
0.6515
0.9077
0.8095
0.8914
1.1652
1.3474
4.0386
5.2863
0.9185
1.4256
0.8087
0.7841
0.9556
1.3087
3.2985
5.0080

2.8161
2.6308
0.1740
0.1922
0.2422
0.2594
0.3829
0.4300
1.8822
1.8841
0.1581
0.1767
0.2116
0.2337
0.3175
0.3739
1.6024
1.6875

0.7774
0.9041
0.2409
0.3024
0.2806
0.3415
0.3210
0.3285
0.5850
0.6025
0.2271
0.2823
0.2628
0.3050
0.3013
0.3077
0.4759
0.4859

0.4529
0.5061
0.6978
0.8365
0.7148
0.8217
0.6593
0.7744
0.4465
0.5543
0.6639
0.7966
0.7029
0.7887
0.6497
0.7335
0.4506
0.5273

0.4332
0.4381
0.3713
0.4808
0.4039
0.4937
0.3888
0.4480
0.3608
0.3940
0.3415
0.4474
0.3900
0.4499
0.3789
0.4052
0.3249
0.3344

8.8957
13.2737
0.3484
0.4507
0.6817
0.8356
1.2577
1.5805
6.0543
8.1619
0.2973
0.4114
0.5597
0.7660
1.0052
1.5117
4.6604
7.7822

0.6269
0.6521
0.2990
0.3900
0.3368
0.4199
0.3525
0.3879
0.4921
0.4920
0.2780
0.3659
0.3203
0.3782
0.3375
0.3548
0.4046
0.3986

Bold values show the smallest MSE

In Table 2 is the estimated MSE values when n is 200, 250 and 300 for explanatory variables, p=5 and 6 it can be observed
that the LY C with the biasing parameter k of the median version gives the lowest MSE when the multicollinearity level p= 0.8
and 0.9, likewise for when p= 0.95 its seen that the LYC with the biasing parameter k of the arithmetic mean version gives the
lowest MSE and when p= 0.99 its seen that the LYC with the biasing parameter k of the Maximum version gives the lowest

MSE.

Table3: Estimated MSE for different estimator when p=9 and 10

LYCAM LYCHM LYCMAX LYCMIN LYCMR
0.8 P9 03417 0.1878 0.1821 0.1397 0.2014 0.8273 0.3675 0.2725 0.2937

P10 0.3792 0.1991 0.2160 0.1432 0.2098 0.8773 0.4158 0.2961 0.3280

P9 0.7358 0.3092 0.1933 0.1907 0.2378 0.8591 0.4361 0.5263 0.3497

500 09 P10 0.8318 0.3295 0.6946 0.1929 0.2710 0.8986 0.4932 0.5817 0.4019
0.95 P9 15571 0.5153 0.9953 0.2796 0.2500 0.8421 0.4326 1.0094 0.3522

P10 1.8180 0.5708 1.1537 0.2883 0.2861 0.8821 0.4858 1.1771 0.4064

0.99 P9 85245 2.0855 3.2954 0.9461 0.2717 0.7163 0.3344 5.0472 0.2955

P10 99631 2.3190 3.6313 0.9558 0.2882 0.7667 0.3714 5.8876 0.3271

0.8 P9 0.2841 0.1687 0.8738 0.1342 0.1727 0.7936 0.3180 0.2320 0.2514

P10 0.3258 0.1833 0.3565 0.1411 0.1981 0.8583 0.3804 0.2599 0.3015

0.9 P9 0.6200 0.2810 0.2457 0.1879 0.2377 0.8452 0.4257 0.4541 0.3442

900 P10 0.6912 0.2909 0.1923 0.1835 0.2294 0.8890 0.4614 0.4912 0.3642
0.95 P9 1.2866 0.4574 1.7676 0.2558 0.2494 0.8369 0.4351 0.8609 0.3567

P10 1.4883 0.4886 1.7130 0.2607 0.2592 0.8797 0.4716 0.9635 0.3838

0.99 P9 71335 1.7859 2.9241 0.8173 0.2464 0.7161 0.3262 4.2664 0.2836

P10 83093 1.9836 3.1485 0.8233 0.2613 0.7709 0.3639 4.9146 0.3124

1000 0.8 P9 0.2530 0.1541 131.8577 0.1250 0.1581 0.7633 0.2838 0.2073 0.2267
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P10 0.2973 0.1722 90.8400 0.1343 0.1764 0.8380 0.3434 0.2409 0.2697

0.9 P9 0.5497 0.2548 385145 0.1719 0.2241 0.8338 0.4064 0.4043 0.3278

P10 0.6513 0.2848 31.8431 0.1812 0.2458 0.8691 0.4460 0.4712 0.3645
P9 0.2530 0.1541 131.8577 0.1250 0.1581 0.7633 0.2838 0.2073 0.2267
P10 0.2973 0.1722 90.8400 0.1343 0.1764 0.8380 0.3434 0.2409 0.2697
P9 0.5497 0.2548 38.5145 0.1719 0.2241 0.8338 0.4064 0.4043 0.3278

P10 0.6513 0.2848 31.8431 0.1812 0.2458 0.8691 0.4460 0.4712 0.3645
Bold values show the smallest MSE

In Table 3 is the MSE values for n at 800, 900 and 1000 for explanatory variables, p=9 and 10 it can be observed that the LYC
with the biasing parameter k of the median version gives the lowest MSE when the multicollinearity level p= 0.8 and 0.9,
likewise for when p= 0.95 its seen that the LYC with the biasing parameter k of the arithmetic mean version gives the lowest
MSE for both sample sizes 800 and 900. But when n =1000 its seen that the LY C with the biasing parameter k of the Median
version gives the lowest MSE.
8.Real Life Data

Pena et al [29] used a logistic model to investigate the effects of temperature, pH, and soluble solids content on the response
of Alicyclobacillus growth likelihood in apple juice. The matrix's eigenvalues are 13464.7990, 1715.9257, 56.5515, and
3.5445. As a result, the condition index (C.1) is 61.6342, indicating that multicollinearity exists in the model. Table 4 shows
the estimated regression coefficient values from each estimator, as well as the accompanying mean squared error.
When there is multicollinearity, the ML estimator performs the least well, as expected. The selection of k and d (as shrinkage
parameters) determines the efficiency of biased estimators. All of the proposed estimators performed admirably, and one of
them has the minimum mean square error, which corresponds to the simulation outcome.

0.95

0.99

Table 4: Regression coefficients and MSE

4, A A, 2 A SMsE
ﬂAML -7.24633 1.885951 -0.06628 0.110422 -0.31173 21.3513884
Blee -2.4E-06 0.008038 -0.02442 0.015783 -0.01186 | 0.28340673
ﬁLYC 8.57E-05 0.004176 -0.02095 0.01126 -0.0053 0.28280132
Blvenen -0.00629 0.2343 -0.03332 0.042609 -0.1491 0.13778692
,éLYCMIN -7.11297 1.86508 -0.06581 0.109188 -0.3117 20.5909074
:éLYCMAx -6.2E-05 0.01115 -0.02575 0.018235 -0.01707 0.20795783
Blyenr -0.00029 0.022397 -0.0278 0.023823 -0.03289 0.14054511
ﬁLYCHM 8.33E-05 0.002112 -0.01649 0.006978 -0.00223 1.43890463
ﬁLYCAM -0.00055 0.0406 -0.02908 0.029073 -0.05205 0.12388644
9.Conclusion

In this paper we were able to recommend some LY C estimators in estimating the biasing parameter k, in which both Monte
Carlo study and real life data was used to investigate the performance of these estimators. The MSE criterion was used in
evaluating the performances of the estimators to know the best among them. In the simulation study it was seen that at small
samples sizes (20, 30 and 40) and number of explanatory variable say, p= 2 and 3 the biasing parameter k with the Harmonic
version has the lowest MSE at almost all degree of correlation. Likewise for sample size (200, 250 and 300) with number of
explanatory variable say, p= 5 and 6 and the degree of correlation is low the biasing parameter k with the median version has
the lowest and when p is high biasing parameter k with the Arithmetic mean and maximum version is the best option to use.
Also when sample size (800, 900 and 1000) with number of explanatory variable say, p= 9 and 10 and the degree of
correlation is low the biasing parameter k with the median version has the lowest and when p is high biasing parameter k with



Iragi Journal of Statistical Sciences, Vol. 21, No. 1, 2024, Pp (1-11)

the Arithmetic mean is the one with lowest MSE. In addition, from the numerical example the biasing parameter k with the
arithmetic mean and the median version has the two lowest MSE respectively.
10.Recommendations

Hence, based from our findings both in simulation and numerical examples we thereby recommend to researchers and
scholars, when having the issue of multicollinearity in logistic model, let the LYC (biasing k with the version of Arithmetic
mean, Harmonic mean and the Median version) estimator be used.
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