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      This paper focuses on the mixture Gamma distribution and uses the maximum 

likelihood and Bayesian techniques to estimate its parameters. This study uses 

Expectation Maximization Algorithm (EM) to find the maximum likelihood estimators 

and the random Metropolis-Hastings algorithm is used to simulate the Bayesian 

estimates of the parameters of mixture gamma distribution. then these estimates are 

compared by using the sum of the modulus of the  bias (MBias), and  the  root-mean 
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1- Introduction 

 

 A random variable is always considered as a sample from a distribution. This may be  well-known distribution or not.  

Some  random variables are drawn from one single distribution , such as the normal distribution but this is not always so 

easy because in real-life the random variables might  have been generated from a mixture of several distributions. 

In studying  mixture distributions the formula of this distribution have been difficult then it is used some algorithms to 

facilitate finding the estimators , where EM algorithm is used to find the maximum likelihood estimators and the 

metropolis Hastings  algorithm to find the Bayesian estimators   . if the distribution is an exponential family , with 

density 𝑓(𝜃) = 𝐶(𝜃)ℎ(𝑥)𝑒𝑥𝑝⁡(∅(𝜃)𝑆(𝑥))  ,then a conjugate prior distribution for 𝜃 exists and the prior distribution 

𝑝(𝜃) ∝ 𝐶(𝜃)𝐸𝑋𝑃(∅(𝜃)𝑏) is conjugate to the likelihood of  the exponential family , see (Bernardo,2009). 
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  Many authors considered estimating the parameters of the mixture distributions. For example, (Newcomb ,1886) 

suggested an iterative reweighting scheme that can be viewed as an application of the EM algorithm of  (Dempster et al. 

,1977) to compute the common mean of a mixture in known proportions of a finite number of univariate normal 

distributions with known variances. (Jewell ,1982) provided maximum likelihood estimates of mixture of exponential 

distributions using EM algorithm..( Li L.A., 1983) quoted several features of mixture models and defined two types of 

mixture models. If the component distributions of a mixture belong to same family, their mixture is known as a type-I 

mixture model. Whereas, a type-II mixture model is defined as the component distributions of a mixture belong to 

different families .. (Upadhyay et. al. ,2002) proposed Bayesian inference in life testing and reliability by using Markov 

Chain Monte Carlo (MCMC). (Pang et. al. ,2004) used MCMC techniques to carry out a Bayesian estimation procedure 

using Hirose’s simulated data. (Chojogh,B,et al,2019)  presented a research in which he clarified mixture distributions  

the research include model of the normal mixture distribution and Poisson mixture distribution for tow component and 

for k-components and estimating the parameters of these model using (EM) algorithm. (“A mixture model for 

determining SARS-COV-2 variant composition in pooled samples”)  presented a research includes a mixture model 

distributions and apply it to a set of variables SARS-COV-2  the model is built by looking at a pre-defined set of data 

,the results showed that these models support these data  well.  

Gamma Distribution 

It is a type of continuous probability distribution and is used in many fields such as Statistics, Economics, Physics, 

Computer Science and others, the Gamma distribution can be determined by two parameters, the shape parameter (α) 

and the scale parameter (β), and the probability density function (pdf) for this distribution is as follows: - 

𝑓(𝑥) =
𝛽𝛼

Ґ𝛼
𝑥𝛼−1𝑒−𝛽𝑥                                                                                                                  (1) 

where α > 0 , β > 0 and x > 0. 

 

2-  Mixture Distribution Models 

It is the process of analyzing data to determine the best mixture model that can be used to describe the observed data. 

Mixture models consist of several different probability distributions and are characterized by their ability to represent 

the distribution of data more accurately than single models. 

Every random variable can be considered as a sample from a distribution, . Some random variables are drawn from one 

single distribution, such as a normal distribution. But life is not always so easy! Most of real-life random variables 

might have been generated from a mixture of several distributions and  not a single distribution. 

Random variables usually come from only one distribution, like (gamma distribution or normal distribution), but in real 

life there are some variables that come from several mixture distributions and these distribution  may be from the same 

family, i.e. from one family, for example, all of them from the normal distribution, but with different parameters, or 

these distributions may be different, for example (gamma distribution and  normal distribution)  together. 
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Let 𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛 be independent random variables and 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛 the    observations of the  random variable  

and the probability density function for the mixture distribution (pdf) containing k of the components can be expressed 

as follows:-⁡ 

           𝑓(𝑥) = ∑ 𝜆𝑗𝑓𝑗(𝑥|𝜃𝑗)
𝑘
𝑗=1                                                                                                            (2)   

 where 𝜆𝑗 represents the mixture  weights and is 0 < 𝜆𝑗  < 1 and⁡∑𝑘
𝑗=1 𝜆𝑗 = 1 and 𝑓𝑗(𝑥|𝜃𝑗) represents the probability 

density function of  the variable ( x) and 𝜃 = (𝜃1, 𝜃2, … 𝜃𝑘) represents the parameters  vector of  the  mixture distribution, 

and  it is worth noting that the parameter θ  is treated as a random variable rather than a constant (Tahir & et al, 2016). 
The mixture gamma distribution of k of components is written  as follows:- 

𝑓(𝑥, 𝛼, 𝛽, 𝜆) = ∑ 𝜆𝑗
𝛽𝑗

𝛼𝑗

Ґ𝛼𝑗
𝑥𝛼𝑗−1𝑒−𝛽𝑗𝑥𝑖𝑘

𝑗=1                                                                                           (3) 

             𝛼𝑗 > 0  ,  𝛽
𝑗
> 0 , ×> 0 , 𝑘 > 1 . 

 
3- SOME METHODS OF ESTIMATE THE PARAMETERS OF MIXTURE DISTRBUTION    

Mixture distributions are common  statistical distributions, which are used in many fields such  as data analysis, 

machine learning, and others, and these distributions depend on the idea of collecting several simple distributions 

together to produce a complex distribution. And these distributions need to estimate a set of parameters  that  determine 

the distribution of  mixture data. 

 When we have a sample size n (𝑥1, 𝑥3, 𝑥2, … 𝑥𝑛) are randomly drawn from a known distribution but the distribution 

parameters are unknown, for example a sample drawn from the normal distribution with unknown parameters (mean and 

variance), the main objective is to estimate the parameters of  this distribution. In this study, we will discuss two methods  

for estimating parameters of mixture distribution. 

A- Maximum Likelihood Estimation (MLE): 

This method is one of the most important methods of point estimation and was proposed by the famous statistician 

Fisher in 1920, as it assumes that the parameters to be estimated for a particular population is an unknown fixed quantity 

which estimated based on the sample data. 

Assume we have a sample with size n, i.e., (𝑥1, 𝑥3, 𝑥2, … 𝑥𝑛) Also assume that we  know the distribution from which 

this sample has been randomly drawn but we do not know the parameters of that distribution. The principle of this 

method is to find an estimate such as 𝜃
̂  

for the parameter θ which makes the likelihood function at its maximum value. 

If 𝑥1, 𝑥3, 𝑥2, … 𝑥𝑛 are random variables and these variables have an independent and identically distributed (iid) and size 

(n) and drawn from a population with a probability density function 𝑓(𝑥|𝜃), the estimator of the likelihood function that 

makes the likelihood function at its maximum value can be obtained by deriving the likelihood function and equating it 

to zero. The likelihood function will be as follows:- 

𝐿(𝜃𝑗) = ∏ 𝑓(𝑥𝑖|𝜃𝑗)
𝑛
𝑖=1                                                                                                                          (4) 

by used (2) 

𝐿(𝜃𝑗) = ∏ ∑ 𝜆𝑗𝑓(𝑥𝑖|𝜃𝑗
𝑘
𝑗=1 )𝑛

𝑖=1 ⁡                                                                                                            (5) 

by given log: 

𝑙𝑛𝐿(𝜃𝑗) = ∑ 𝑙𝑛⁡[∑ 𝜆𝑗𝑓(𝑥𝑖|𝜃𝑗
𝑘
𝑗=1

𝑛
𝑖=1 )]⁡                                                                                                   (6) 
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Then we take the partial derivative of 𝜃𝑗 once and for 𝜆𝑗 again to get the equation for each parameter, but it will be 

difficult to solve the equations formed directly because of the presence of addition operations inside the logarithm, so it 

is necessary to rely on numerical methods and algorithms that use iterative operations in order to reach the maximum 

likelihood estimator (Friedman & et al, 2009). 

Expectation Maximization Algorithm (EM): 

The expectation maximization algorithm (EM) was proposed by (Dempster, Laird & Rubin ,1977) and still to this day, 

and it is one of the most important methods to find the maximum likelihood estimators in the case of latent variables or 

missing values. And this algorithm is used in statistics and machine learning to solve problems related to statistical 

analysis of data such as classification, aggregation and factor analysis (Filho, 2008). 

For example, assuming the collection of data about a particular disease, where the severity of the disease was not 

recorded, but the presence or absence of the disease was recorded, i.e. the absence of the disease was expressed by zero, 

and the presence of the disease was expressed in  x> 0, in this case we do not know the values of x, is it 100 or 5 ?, in 

this case, we cannot use the method of maximum likelihood because there are missing values. 

The expectation maximization algorithm consists of two steps (Chris & Raftery, 2017): 

a-Step One: E-Step 

This step aims to estimate probability distributions by taking the expectation of the logarithm of the likelihood function 

in order to find an appropriate estimate of the parameters. 

𝑄(𝜃) = 𝐸[𝑙𝑛 𝑙𝑛⁡𝑙(𝜃)]⁡ 

here the missing values are treated as constants and not variables (Chojogh et al, 2019). 

b-Step Two: M-Step 

This step aims to determine the optimal values of the parameters using the expectation function in the first step. 

𝜃 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑄(𝜃) 

To estimate mixture Gamma distribution we have the p.d.f of mixture Gamma distributions 

𝑓(𝑥|𝜃𝑗) = ∑𝜆𝑗𝑓𝑗(𝑥|𝜃𝑗)

𝑘

𝑗=1

 

by used (3) 

𝑓(𝑥𝑖|𝛼, 𝛽, 𝜆) =∑𝜆𝑗
𝛽
𝑗

𝛼𝑗

Ґ𝛼𝑗
𝑥𝑖

𝛼𝑗−1𝑒−𝛽𝑗𝑥𝑖
𝑘

𝑗=1

 

 

𝐿(𝛼, 𝛽, 𝜆) =∏∑𝜆𝑗
𝛽
𝑗

𝛼𝑗

Ґ𝛼𝑗
𝑥𝑖

𝛼𝑗−1𝑒−𝛽𝑗𝑥𝑖
𝑘

𝑗=1

𝑛

𝑖=1

 

Taking the logarithm to the above equation we get 

𝑙𝑛 𝑙𝑛⁡𝐿(𝛼, 𝛽, 𝜆) ⁡⁡ = ∑ 𝑙𝑛⁡[∑ 𝜆𝑗
𝛽
𝑗

𝛼𝑗

Ґ𝛼𝑗
𝑥𝑖

𝛼𝑗−1𝑒
−𝛽

𝑗
𝑥𝑖]𝑘

𝑗=1
𝑛
𝑖=1 ⁡                                                        (7) 
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Optimizing this log-likelihood is difficult because of the summation within the logarithm. However, we can use  the 

indicator parameter⁡𝑧𝑖 for each observation 𝑥𝑖 as follows (Corduneanu and Bishop, 2001). 

 

𝑧𝑖𝑗 = {1⁡⁡𝑖𝑓⁡𝑡ℎ𝑒⁡𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛⁡𝑥𝑖⁡⁡𝑏𝑒𝑙𝑜𝑛𝑔⁡𝑡𝑜⁡𝑡ℎ𝑒⁡𝑗
𝑡ℎ⁡𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡⁡0⁡⁡⁡⁡⁡⁡⁡⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

And the probability is: 

𝑝(𝑧𝑖𝑗 = 1) = 𝜆𝑗 

𝑝(𝑧𝑖𝑗 = 0) = 1 − 𝜆𝑗 

For fixed i , ∑ 𝑧𝑖𝑗 = 1𝑘
𝑗=1 ⁡ , 𝑧𝑖𝑗~⁡𝐵𝑒𝑟𝑛𝑜𝑙𝑙𝑖(𝜆𝑗)and 𝑧𝑖|𝜆~⁡𝑚𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(1, 𝜆1, 𝜆2, , , 𝜆𝑘), the probability density function 

for 𝑧𝑖 as the following form: 

(Saeed,2005)   

(𝜆) =
1!

𝑧𝑖1! 𝑧𝑖2! … . 𝑧𝑖𝑘!
∏ 𝜆

𝑗

𝑧𝑖𝑗
= ∏ 𝜆

𝑗

𝑧𝑖𝑗

𝑘

𝑗=1

𝑘

𝑗=1

 

 

Since⁡⁡𝑧1, 𝑧2, , , 𝑧𝑛 Are independent, we write the joint indicator density as the following form: 

𝑓(𝜆) = ∏ ∏ 𝜆
𝑗

𝑧𝑖𝑗𝑘
𝑗=1

𝑛
𝑖=1                                                                                                       (8) 

where (𝑥1, 𝑧1), (𝑥2, 𝑧2),… , (𝑥𝑛, 𝑧𝑛) denoted the complement data. Therefore we can write the joint pdf of the 
observation 𝑥𝑖 and the indicator 𝑧𝑖 as following form: 

𝑓(𝛼, 𝛽, 𝜆) =∑𝑧𝑖𝑗𝑓𝑗(𝑥𝑖|𝜃𝑗)

𝑘

𝑗=1

 

                 = ∏ [𝑓𝑗(𝑥𝑖|𝜃𝑗)]
𝑧𝑖𝑗𝑘

𝑗=1  

= ∏ (𝜆𝑗
𝛽𝑗

𝛼𝑗

Ґ𝛼𝑗
𝑥𝑖

𝛼𝑗−1𝑒−𝛽𝑗𝑥𝑖)𝑧𝑖𝑗𝑘
𝑗=1                                                                                                (9) 

and the complement data likelihood is given by: 

𝐿(𝛼, 𝛽, 𝜆) = ∏ 𝑓(𝛼, 𝛽, 𝜆)𝑛
𝑖=1                                                                                               (10)    

             = ∏ ∏ [𝜆𝑗
𝛽
𝑗

𝛼𝑗

Ґ𝛼𝑗
𝑥𝑖

𝛼𝑗−1𝑒−𝛽𝑗𝑥𝑖]𝑧𝑖𝑗𝑘
𝑗=1

𝑛
𝑖=1  

               = ∏ [[⁡
𝜆𝑗𝛽𝑗

𝛼𝑗

Ґ𝛼𝑗
]
∑𝑛𝑖=1 𝑧𝑖𝑗

[∏ 𝑥
𝑖

𝑧𝑖𝑗
]𝛼𝑗−1𝑒−𝛽𝑗∑

𝑛
𝑖=1 𝑥𝑖𝑧𝑖𝑗𝑛

𝑖=1 ]𝑘
𝑗=1  

= ∏ [[⁡
𝜆𝑗𝛽𝑗

𝛼𝑗

Ґ𝛼𝑗
]
∑𝑛𝑖=1 𝑧𝑖𝑗

⁡⁡𝑝
𝑗

𝛼𝑗−1
𝑒−𝛽𝑗∑

𝑛
𝑖=1 𝑥𝑖𝑧𝑖𝑗]𝑘

𝑗=1 ⁡⁡⁡⁡⁡                                                                   (11) 

Where  𝑝𝑗 = ∏ 𝑥
𝑖

𝑧𝑖𝑗𝑛
𝑖=1  

The log of the complement data likelihood function is 

𝑙𝑛𝐿(𝛼, 𝛽, 𝜆) = ∑ ∑ 𝑧𝑖𝑗𝑙𝑛𝜆𝑗
𝑛
𝑖=1

𝑘
𝑗=1 + ∑ 𝛼𝑗∑ 𝑧𝑖𝑗𝑙𝑛𝛽𝑗 −

𝑛
𝑖=1

𝑘
𝑗=1 ∑ ∑ 𝑧𝑖𝑗𝑙𝑛Ґ𝛼𝑗

𝑛
𝑖=1

𝑘
𝑗=1 +∑ (𝛼𝑗 − 1)𝑘

𝑗=1 ∑ 𝑧𝑖𝑗𝑙𝑛𝑥𝑖
𝑛
𝑖=1 −

∑ 𝛽𝑗 ∑ 𝑥𝑖𝑧𝑖𝑗
𝑛
𝑖=1

𝑘
𝑗=1                                                                                            (12) 

 The⁡𝑧𝑖𝑗 ⁡is latent or missing value because we do not know whether it be⁡𝑧𝑖𝑗 = 0 or 𝑧𝑖𝑗 = 1 therefore we used the 

Expectation Maximization(EM) to estimate the parameters (Sattayatham and Talangtam, 2012). 

Case 1:E-Step 

𝐸[𝑥𝑖] = 0 × 𝑃(𝑥𝑖, 𝛼, 𝛽, 𝜆) + 1 × 𝑃(𝑥𝑖, 𝛼, 𝛽, 𝜆) 

          = ⁡𝑃(𝑥𝑖, 𝛼, 𝛽, 𝜆)  =𝑤𝑖𝑗                                                                                                 (13) 
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                 (𝑥𝑖) =
𝑓(𝑧𝑖𝑗=1)𝑝(𝑧𝑖𝑗=1)

∑ 𝑓(𝑧𝑖𝑗=1)𝑝(𝑧𝑖𝑗=1)
𝑘
𝑗=1

           =
𝜆𝑗

𝛽
𝑗

𝛼𝑗

Ґ𝛼𝑗
𝑥𝑖

𝛼𝑗−1
𝑒
−𝛽𝑗𝑥𝑖

∑ 𝜆𝑗

𝛽
𝑗

𝛼𝑗

Ґ𝛼𝑗
𝑥𝑖

𝛼𝑗−1
𝑒
−𝛽𝑗𝑥𝑖𝑘

𝑗=1

                                                                  (14) 

The expected complete log-likelihood is 

 

𝐸[𝑙𝑛𝐿(𝛼, 𝛽, 𝜆)] = ∑ ∑ 𝑇𝑖𝑗𝑙𝑛𝜆𝑗
𝑛
𝑖=1

𝑘
𝑗=1 +∑ 𝛼𝑗 ∑ 𝑇𝑖𝑗𝑙𝑛𝛽𝑖

𝑛
𝑖=1

𝑘
𝑗=1 − ∑ ∑ 𝑇𝑖𝑗𝑙𝑛Ґ𝛼𝑗

𝑛
𝑖=1

𝑘
𝑗=1 +⁡∑ (𝛼𝑗 − 1)∑ 𝑇𝑖𝑗𝑙𝑛𝑥𝑖

𝑛
𝑖=1 −𝑘

𝑗=1

∑ 𝛽𝑗 ∑ 𝑥𝑖𝑇𝑖𝑗
𝑛
𝑖=1

𝑘
𝑗=1 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡                                                                                                    (15) 

 

∑∑𝑇𝑖𝑗 = ∑∑𝑃(𝑥𝑖)

𝑛

𝑖=1

𝑘

𝑗=1

𝑛

𝑖=1

𝑘

𝑗=1

 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= ∑

𝜆𝑗
𝛽
𝑗

𝛼𝑗

Ґ𝛼𝑗
𝑥
𝑖

𝛼𝑗−1
𝑒−𝛽𝑗𝑥𝑖

∑ 𝜆𝑗
𝛽
𝑗

𝛼𝑗

Ґ𝛼𝑗
𝑥
𝑖

𝛼𝑗−1
𝑒−𝛽𝑗𝑥𝑖𝑘

𝑗=1

𝑛

𝑖=1

 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= ∑ 1 = 𝑛𝑛
𝑖=1                                                                                                                  (16) 

 

Case 2:M-SteP 

 

𝑬[𝒍𝒏𝑳(𝜶,𝜷, 𝝀)] = ∑ ∑ 𝑻𝒊𝒋𝒍𝒏𝝀𝒋
𝒏
𝒊=𝟏

𝒌
𝒋=𝟏 +∑ 𝜶𝒋

𝒌
𝒋=𝟏 ∑ 𝑻𝒊𝒋𝒍𝒏𝜷𝒊

𝒏
𝒊=𝟏 −∑ ∑ 𝑻𝒊𝒋𝒍𝒏Ґ𝜶𝒋

𝒏
𝒊=𝟏

𝒌
𝒋=𝟏 + ∑ (𝜶𝒋 −

𝒌
𝒋=𝟏

𝟏)∑ 𝑻𝒊𝒋𝒍𝒏𝒙𝒊
𝒏
𝒊=𝟏 −∑ 𝜷𝒋

𝒌
𝒋=𝟏 ∑ 𝒙𝒊𝑻𝒊𝒋

𝒏
𝒊=𝟏 −𝜶(∑ 𝝀𝒋 − 𝟏𝒌

𝒋=𝟏 )                                                           (17) 

 

𝜕𝐸[𝑙𝑛𝐿]
𝜕𝜆𝑗

=
∑ 𝑇𝑖𝑗
𝑛
𝑖=1

𝜆𝑗
− 𝛼 = 0 

 

⇒ 𝜆𝑗 =
∑ 𝑇𝑖𝑗
𝑛
𝑖=1

𝛼
 

 

⇒∑ = ∑
∑ 𝑇𝑖𝑗

𝑛
𝑖=1

𝛼

𝑘

𝑗=1

𝑘

𝑗=1

 

⇒∑
∑ 𝑇𝑖𝑗

𝑛
𝑖=1

𝛼

𝑘

𝑗=1

= 1 

⇒
1

𝛼
∑∑ 𝑇𝑖𝑗

𝑛

𝑖=1

𝑘

𝑗=1

= 1 

⇒ 𝛼 = ∑∑ 𝑇𝑖𝑗

𝑛

𝑖=1

𝑘

𝑗=1

 

⇒ 𝜆𝑗 =
∑ 𝑇𝑖𝑗
𝑛
𝑖=1

∑ ∑ 𝑇𝑖𝑗
𝑛
𝑖=1

𝑘
𝑗=1

 

 

𝜆𝑗 =
∑ 𝑇𝑖𝑗
𝑛
𝑖=1

𝑛
                                                                                                                                              (18) 
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𝑛 × 𝜆𝑗 =∑𝑇𝑖𝑗

𝑛

𝑖=1

= 𝑁𝑗 

 
𝜕𝐸[𝑙𝑛𝐿]

𝜕𝛼𝑗
= ∑ 𝑇𝑖𝑗𝑙𝑛𝛽𝑗

𝑛
𝑖=1 − ∑ 𝑇𝑖𝑗

𝑑𝑙𝑛Ґ𝛼𝑗

𝜕𝛼𝑗

𝑛
𝑖=1 +∑ 𝑇𝑖𝑗𝑙𝑛𝑥𝑖

𝑛
𝑖=1 = 0                                                                    (19) 

      

We solve this equation by Newton’s Raphson  method 

 

𝜕𝐸[𝑙𝑛𝐿]
𝜕𝛽𝑗

=
∑ 𝑇𝑖𝑗𝛼𝑗
𝑛
𝑖=1

𝛽𝑗
−∑𝑥𝑖𝑇𝑖𝑗

𝑛

𝑖=1

= 0 

𝛽
𝑗
=

∑ 𝑇𝑖𝑗𝛼𝑗
𝑛
𝑖=1

∑ 𝑥𝑖𝑇𝑖𝑗
𝑛
𝑖=1

                                                                                                                                             (20) 

2-Bayesian Estimation Approach 

In many cases, it is easy to find a suitable formula for the posterior distribution, but sometimes we may face difficulties 

in finding posterior distributions, which may require the integration of high- dimensional functions (high-grade 

functions), so it was necessary to develop methods that facilitate the process of finding posterior distributions and solve 

this problem, and the most important of these methods is the Markov Chain Monte Carlo (MCMC) where this method 

was used by researchers in the early 1990s and was widely applied to solve Bayes' problems as it relies on the idea of 

obtaining a random sample of conditional distributions of parameters . 

The most commonly used methods of the Markov Chain Monte Carlo (MCMC) are the Gibbs Sampling Algorithm and 

the Metropolis-Hastings Algorithm, which we will use in this paper. 

Metropolis - Hastings Algorithm 

The Metropolis-Hastings algorithm is one of the main methods of the (MCMC) the main methods to estimate the 

parameters of mixture distributions and is used in many scientific and engineering applications, especially in the fields 

of Statistics and Physics. 

Let 𝑥1, 𝑥3, 𝑥2, … 𝑥𝑛 be identically distributed random (iid) and have a probability density function 𝑓(𝑥|𝜃) and we do not 

know the posterior distribution of the parameters of this function and suppose that 𝑞(𝜃|𝜃′) is a candidate distribution 

with the parameter θ', the steps of this algorithm are: (al-masri,2020) 

Metropolis-Hastings Algorithm Steps: 

1-Choose an initial value for the parameter 𝜃(0) so that it is close to the parameter values of the real data. 

2-Choose the default sample sizes for random variable observations x 

3-We make  a repetition  from i=1,2,…,N 

a- We generate a suggested value θ ́ followed the proposed distribution (we use the prior distribution for each 

model). 

b-  We calculate the acceptance probability: 

 

𝑝(𝜃𝑖−1, 𝜃′) = 𝑚𝑖𝑛⁡[1,
𝑓(𝑥1, 𝑥2, … , 𝑥𝑛)𝑞(𝜃′, 𝜃𝑖−1)

𝑓(𝑥1, 𝑥2, … , 𝑥𝑛)𝑞(𝜃𝑖−1, 𝜃′)

̇
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where the numerator  represents the value of the proposed parameter compensated in the equation for a conditional 

distribution. The denominator represents the value estimated by the equation of a conditional distribution.. 

c-  Generate random numbers ui of uniform (0,1).  

d- If ui < α(θ 
i−1

,θ ′) , we assume that  𝜃𝑖= 𝜃′              and if ui≥ α(θ 
i−1

,θ ′) , we assume that 𝜃𝑖 = 𝜃𝑖−1 

4- We repeat the previous steps each time by making       i=i +1 and go to step 1.1-𝑧𝑖Posterior 

When the indicator parameter zi is unknown, for all observation xi, i = 1, 2, . . . , n and the scale parameter a, the 

shape parameters 𝛽 and the weight parameter λ are known. The conjugate prior p (𝑧𝑖) of 𝑧𝑖 is multinomial with 

hyper parameters (1, λ1, λ2, . . . , λk). 

By using Bayes’ theorem, the posterior distribution: 

(𝑧𝑖𝑗 = 1|𝑥𝑖, 𝛼, 𝛽, 𝜆) =
𝑓(𝑥𝑖,𝛼,𝛽,𝜆|𝑧𝑖𝑗=1)𝑝(𝑧𝑖𝑗=1)

∑ 𝑓(𝑥𝑖,𝛼,𝛽,𝜆|𝑧𝑖𝑗=1)𝑝(𝑧𝑖𝑗=1
𝑘
𝑗=1 )

 =
𝜆𝑗

𝛽
𝑗

𝛼𝑗

Ґ𝛼𝑗
𝑥𝑖

𝛼𝑗−1
𝑒
−𝛽𝑗𝑥𝑖

∑ 𝜆𝑗

𝛽
𝑗

𝛼𝑗

Ґ𝛼𝑗
𝑥
𝑖

𝛼𝑗−1
𝑒
−𝛽𝑗𝑥𝑖𝑘

𝑗=1

 = 𝑤𝑖𝑗                                 (21) 

Since each 𝑧𝑖𝑗 takes two values only 1 or 0, then 

𝑝(𝑥𝑖, 𝛼, 𝛽, 𝜆) = 1 − (𝑥𝑖, 𝛼, 𝛽, 𝜆) = 1 −𝑤𝑖𝑗                                                                                          (22) 

Therefore, the posterior distribution⁡⁡𝑝(𝑥𝑖, 𝛼, 𝛽, 𝜆) has a multinomial distribution (1, wi1, wi2, . . . , wik), where i = 
1, 2, . . . , n and j = 1, 2, . . . , k. 

 

2- 𝜆𝑗 Posterior 

When the weight parameter 𝜆𝑗 is unknown and the scale parameter a and the shape  parameters 𝛽⁡are known. By ignoring 

terms that contain 𝛼⁡, 𝛽 in (11) the complete data likelihood function is given by: 

𝐿(𝜆) ∝∏(𝜆𝑗)
∑ 𝑧𝑖𝑗
𝑛
𝑖=1

𝑘

𝑗=1

 

∝ ∏ (𝜆𝑗)
𝑁𝑗𝑘

𝑗=1                                                                                                                               (23) 

Where 𝑁𝑗⁡is the number of the observations  

𝑁𝑗 = 𝑛 × 𝜆𝑗 

=∑𝐸(𝑧𝑖𝑗|𝑥𝑖

𝑛

𝑖=1

) 

By using (13) 

= ∑ [0 × 𝜋(𝑥𝑖, 𝛼, 𝛽, 𝜆) + 1 × 𝜋(𝑧𝑖𝑗 = 1|𝑥𝑖, 𝛼, 𝛽, 𝜆)
𝑛
𝑖=1  = ∑ 𝜋(𝑧𝑖𝑗 = 1|𝑥𝑖, 𝛼, 𝛽, 𝜆)

𝑛
𝑖=1  = ∑ 𝑤𝑖𝑗

𝑛
𝑖=1         (24)                                

The conjugate prior p (λ) is a  Dirichlet  distribution  with  hyperparameters  µ  = (µ1, µ2, . . . , µk) is given  

𝑝(𝜆) =
Ґ∑ (𝑀𝑗

𝑘
𝑗=1 )

∏ Ґ𝑀𝑗
𝑘
𝑗=1

∏𝜆
𝑗

𝑀𝑗−1
𝑘

𝑗=1
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𝑀𝑗 > 0 ,⁡0 < 𝜆𝑗 < 1 

By ignoring terms that contain 𝛼, 𝛽the posterior distribution is a Dirchlet with hyperparameters (𝑀1 + ∑ 𝑤𝑖1
𝑛
𝑖=1 ,𝑀2 +

∑ 𝑤𝑖2
𝑛
𝑖=1 , … ,𝑀𝑘 + ∑ 𝑤𝑖𝑘

𝑛
𝑖=1 ) is given by 

𝑝(𝜆|𝛼, 𝛽, 𝑥, 𝑧) ∝ 𝐿(𝜆)𝜋(𝜆) 

∝
Ґ∑ (𝑀𝑗

𝑘
𝑗=1 )

∏ Ґ𝑀𝑗
𝑘
𝑗=1

∏ 𝜆
𝑗

𝑀𝑗−1

𝑘

𝑗=1

(𝜆𝑗)
𝑁𝑗

 

∝
Ґ∑ (𝑀𝑗

𝑘
𝑗=1 )

∏ Ґ𝑀𝑗
𝑘
𝑗=1

∏ 𝜆
𝑗

𝑀𝑗−1+𝑁𝑗

𝑘

𝑗=1

 

∝ ∏ 𝜆
𝑗

𝑀𝑗−1+∑ 𝑤𝑖𝑗
𝑛
𝑖=1𝑘

𝑗=1                                                                                                         (25) 

3-aj Posterior 

 When the shape parameter aj is unknown, for some j = 1, 2, . . . , k and both the weight parameter λ and the scale 

parameters ⁡𝛽are known. By ignoring terms that contain ⁡𝛽, 𝛼1. . , aj−1, aj+1, . . . , ak in (11), the complete data 

likelihood function is given by: 

𝑙(𝛼𝑗) ∝ (
𝛽
𝑗

𝛼𝑗

Ґ𝛼𝑗
)∑ 𝑧𝑖𝑗

𝑛
𝑖=1 (∏𝑥

𝑖

𝛼𝑗
)𝑧𝑖𝑗

𝑛

𝑖=1

 

∝ (
𝛽
𝑗

𝛼𝑗

Ґ𝛼𝑗
)∑ 𝑧𝑖𝑗

𝑛
𝑖=1 (𝑝

𝑗
)𝛼𝑗                                                                                                             (26) 

Where  𝑝𝑗 = ∏ (𝑥𝑖)
𝑧𝑖𝑗𝑛

𝑖=1  

The conjugate prior p (aj) is an exponential family with hyper parameters (𝑠𝑗, 𝑡𝑗) is given by 

𝑝(𝛼𝑗) ∝ (
𝛽𝑗

𝛼𝑗

Ґ𝛼𝑗
)𝑠𝑗𝑡

𝑗

𝛼𝑗
                                                                                                                (27) 

The posterior distribution  ⁡𝑝(𝑥, 𝑧, 𝜆, 𝛽𝑗 , 𝛼1, 𝛼2, … , 𝛼𝑗−1, 𝛼𝑗+1, … , 𝛼𝑘) with hyper parameters (𝑠𝑗
′ = ∑ 𝑧𝑖𝑗

𝑛
𝑖=1 +𝑠𝑗⁡, ⁡𝑡𝑗

′ =

𝑝𝑗𝑡𝑗) is given by𝑝(𝑥, 𝑧, 𝜆, 𝛽𝑗 , 𝛼1, 𝛼2, … , 𝛼𝑗−1, 𝛼𝑗+1, … , 𝛼𝑘) ∝ 𝑙(𝛼𝑗)𝑝(𝛼𝑗) 

∝ (
𝛽
𝑗

𝛼𝑗

Ґ𝛼𝑗
)

∑ 𝑧𝑖𝑗+𝑠𝑗
𝑛
𝑖=1

(𝑝
𝑗
𝑡𝑗)

𝛼𝑗

 

∝ (
𝛽𝑗
𝛼𝑗

Ґ𝛼𝑗
)
𝑠𝑗
′

(𝑡𝑗′)
𝛼𝑗                                                                                                                     (28)⁡ 

4-𝛽j Posterior 

  When the scale parameter 𝛽
𝑗
is unknown, for some j = 1, 2, . . . , k and the shape parameter a, and the weight 

parameter λ are known. By ignoring terms that contain (𝛽1, 𝛽2, … , 𝛽𝑗−1, 𝛽𝑗+1, … , 𝛽𝑘, 𝛼𝑗, 𝜆) in (11), the complete 

data likelihood function is given by: 

𝑙(𝛽𝑗) ∝ (𝛽
𝑗

𝛼𝑗
)∑ 𝑧𝑖𝑗

𝑛
𝑖=1 𝑒−𝛽𝑗∑ 𝑥𝑖𝑧𝑖𝑗

𝑛
𝑖=1  
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The conjugate prior p (𝛽
𝑗
) is the gamma distribution with hyper parameters (𝑣𝑗, 𝑓𝑗) 

𝑝(𝛽𝑗) =
(𝑓𝑗)

𝑣𝑗

Ґ𝑣𝑗
𝛽
𝑗

𝑣𝑗−1
𝑒−𝑓𝑗𝛽𝑗                                                                                                        (29) 

The posterior distribution ⁡𝑝(𝑥, 𝑧, 𝜆, 𝛼𝑗, 𝛽1, 𝛽2, … , 𝛽𝑗−1, 𝛽𝑗+1, … , 𝛽𝑘) is the gamma distribution with hyper 

parameters (𝑣′𝑗, 𝑓′𝑗) 

𝑝(𝑥, 𝑧, 𝜆, 𝛼𝑗, 𝛽1, 𝛽2, … , 𝛽𝑗−1, 𝛽𝑗+1, … , 𝛽𝑘) ∝ 𝑙(𝛽𝑗)𝑝(𝛽𝑗) 

∝ (𝛽
𝑗

𝛼𝑗
)∑ 𝑧𝑖𝑗

𝑛
𝑖=1 𝑒

−𝛽𝑗 ∑ 𝑥𝑖𝑧𝑖𝑗
𝑛
𝑖=1 𝛽

𝑗

𝑣𝑗−1
𝑒
−𝑓𝑗𝛽𝑗  

∝ 𝛽
𝑗

𝛼𝑗 ∑ 𝑧𝑖𝑗+𝑣𝑗−1
𝑛
𝑖=1

𝑒
−𝛽𝑗 ∑ 𝑥𝑖𝑧𝑖𝑗

𝑛
𝑖=1 +𝑓𝑗 

∝ 𝛽
𝑗

𝑣𝑗−1
′

𝑒
−𝛽𝑗𝑓𝑗

′

                                                                                                                                       (30) 

Where⁡⁡⁡𝑣𝑗
′ = 𝛼𝑗∑ 𝑧𝑖𝑗

𝑛
𝑖=1 + 𝑣𝑗⁡, ⁡⁡⁡𝑓𝑗

′ = ∑ 𝑥𝑖𝑧𝑖𝑗
𝑛
𝑖=1 + 𝑓𝑗  

 

5-Joint Posterior of 𝛼, 𝛽 

   When the weight parameter λ is known and the shape parameters 𝛼 and the scale parameter 𝛽 are unknown. By 

ignoring terms that contain λ in (11), the complete data likelihood function is given by: 

𝐿(𝛼𝑗, 𝛽𝑗) =∏(
𝛽𝑗

𝛼𝑗

Ґ𝛼𝑗
)

𝑘

𝑗=1

⁡∑𝑧𝑖𝑗

𝑛

𝑖=1

⁡⁡𝑝
𝑗

𝛼𝑗−1
𝑒−𝛽𝑗∑ 𝑥𝑖𝑧𝑖𝑗

𝑛
𝑖=1  

The conjugate prior p (𝛼𝑗, 𝛽𝑗) with hyper parameters (𝑠𝑗 ,𝑚𝑗) is given by 

𝑝(𝛼𝑗, 𝛽𝑗) ∝ ∏ (
𝛽𝑗

𝛼𝑗

Ґ𝛼𝑗
)
𝑠𝑗

𝑘
𝑗=1 ⁡⁡𝑡

𝑗

𝛼𝑗−1
𝑒−𝛽𝑗𝑚𝑗                                                                       (31) 

By ignoring terms that contain λ, the joint posterior distribution 

𝑝(𝛼𝑗 , 𝛽𝑗|𝑥, 𝜆, 𝑧) ∝ ⁡𝐿(𝛼𝑗, 𝛽𝑗)⁡𝑝(𝛼𝑗, 𝛽𝑗) 

    ∝ ∏ (
𝛽𝑗
𝛼𝑗

Ґ𝛼𝑗
)
∑ 𝑧𝑖𝑗+𝑠𝑗
𝑛
𝑖=1

𝑘
𝑗=1 𝑡𝑗𝑝𝑗

𝛼𝑗−1𝑒
−𝛽𝑗(∑ 𝑥𝑖𝑧𝑖𝑗+𝑚𝑗

𝑛
𝑖=1 )

 

         ∝ (
𝛽𝑗

𝛼𝑗

Ґ𝛼𝑗
)
𝑠𝑗
′

(𝑡𝑗
′)
𝛼𝑗−1

𝑒
−𝛽𝑗𝑚𝑗

′

                                                                                                 (32) 

with the hyper parameters 

𝑚𝑗
′ =∑(𝑥𝑖𝑧𝑖𝑗 +𝑚𝑗)⁡, 𝑠𝑗

′

𝑛

𝑖=1

=∑𝑧𝑖𝑗 + 𝑠𝑗 , 𝑡𝑗
′

𝑛

𝑖=1

= 𝑡𝑗𝑝𝑗 

4- Simulation Study 

In this section, a simulation study using Monte Carlo methods in Bayesian method of estimation and EM algorithm 

in maximum likelihood estimation and compare the efficiency of MLE method with Bayesian method of estimation 

using by computing  the mean of  the sum of  the modulus of the bias (MBias), and  the root-mean square error 

(RMSE),  
  

     The general  form of  tow-component  mixture  gamma  distribution  is given by 

𝑓(𝑥, 𝛼, 𝛽, 𝜆) = 𝜆
𝛽1

𝛼1

Ґ𝛼1
𝑥𝛼1−1𝑒−𝛽1𝑥 + (1 − 𝜆)

𝛽2
𝛼2

Ґ𝛼2
𝑥𝛼2−1𝑒−𝛽2𝑥 

 

The simulation study was written using R language. The simulation study included the following basic stages: 



Iraqi Journal of Statistical Sciences, Vol. 21, No. 1, 2024, Pp (137-149) 
 

147 

 

First stage: choosing the initial vales as follows: 

1-choosing the initial values for the parameters (𝛼1 = 3, 𝛼2 = 4, ⁡𝛽1 = 6, ⁡𝛽2 = 7, 𝜆 = 0.5) , the 𝜆 and (1-⁡𝜆) selected 

randomly from the first and the second component density. 

2- choose different sample size( 50, 100, 150) to generate the data set of tow-component mixture gamma distribution with 

parameters. 

3-Repeat the experiment 1000 repetitions for each experiment. 

4-choose values for the random variable. 

Second stage: data generation : 

A random variable is generated depending on the type of distribution 

Third stage: estimating the parameters according to the mixture distributions using the estimation methods. 

Fourth stage: the results compare the efficiency of MLE method with Bayesian method of estimation using by 

computing  the mean of  the sum of  the modulus of the bias (MBias), and  the root-mean square error (RMSE), where 

the smaller RMSE and MBias indicates a better overall quality of the estimates. 

 

𝑀𝐵𝑖𝑎𝑠 = 𝑁−1∑|𝛼̂ − 𝛼| + |𝛽̂ − 𝛽|

𝑁

𝑖=1

 

𝑅𝑀𝑆𝐸 = √𝑁−1∑(𝛼̂ − 𝛼)2 + (𝛽̂ − 𝛽)2
𝑁

𝑖=1

 

 

  To find the MLE estimators, the Newton Raphson method was adopted. The parameters (𝛼, 𝛽) are estimated with  

Metropolis method (MT) of estimation using the joint prior in (31) with hyperparameters (s = 1; m = 1; t = 1) where the 

simulation study was carried out 1000 times. Table 1 present the estimates (Est.) and the RMSE and MBias values by 

MLE and MT method. The smaller RMSE and MBias for each sample size is highlighted in bold . Looking at these 

tables we observe that: we obtained  that  Metropolis method is uniformly better than MLE  in all cases. 
 

Table 1: MBias and RMSE of the MLE estimates and the MT estimators for two component mixture Gamma distribution 

 

Sample 

size 

Method 𝛼̂1 𝛼̂2 𝛽̂
1
 𝛽̂

2
 𝜆̂ 

RMSE MBise 

 

 

50 

 

 

EM 

 

5.2594 

 

2.3304 

 

9.1590 

 

3.8302 

 

0.4065 

 

2.3633 

 

2.0702 

 

McMc 

 

2.5164 

 

3.3312 

 

4.1121 

 

5.8485 

 

0.5114 

 

1.0555 

 

0.8401 

 

 

100 

 

 

EM 

 

2.8220 

 

6.3777 

 

5.8096 

 

10.8190 

 

0.4999 

 

2.0152 

 

1.3130 

 

McMc 

 

2.6802 

 

6.2251 

 

5.5243 

 

10.6079 

 

0.5091 

 

1.9129 

 

1.3075 

 

 

150 

 

EM 

 

5.2594 

 

2.3304 

 

9.1590 

 

3.8302 

 

0.4065 

 

2.3633 

 

2.0702 

 

McMc 

 

2.5164 

 

3.3312 

 

4.1121 

 

5.8485 

 

0.5114 

 

1.0555 

 

0.8401 

5- Discussion  

 

       The parameters 𝜶, 𝜷, 𝝀 are estimated with Metropolis method and the Expectation Maximization  algorithm(EM) 

from the simulation results, it is observed that Bayes estimator better than maximum likelihood 

𝑳(𝜶,𝜷, 𝝀)𝑳(𝜶,𝜷, 𝝀)estimation in all cases 

 
6- Conclusion 

 

1- Mixture distributions ( in the case of similar and different components) the distributions formula becomes more 

complex, to make it easier to find a maximum likelihood estimator.it uses the EM algorithm . and MT algorithm to 

find the Bayesian estimators estimator  in all cases.  
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2- After creating the simulation by taking different sample sizes (50,100,150)and using comparison criteria RMSE and 

MBias show that the Bayesian estimators is the best. 
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 المختلط باستخدام دالة الامكان الاعظم واستدلال بيز   تقدير معلمات توزيع كاما
 

 2و  ريا سالم محمد علي الرسام  1نغم ابراهيم عبدالله نجم

 قسم الاحصاء والمعلوماتية ، كلية علوم الحاسوب والرياضيات ، جامعة الموصل، الموصل، العراق 2,1
ارزمية يركز هذا البحث على توزيع كاما المختلط حيث تستخدم تقنيتي دالة الامكان الاعظم واسلوب بيز لتقدير معلماته. تستخدم هذه الدراسة  خو   :الخلاصة

التوقع   هاستنغ     Expectation Maximization Algorithm (EM)تعظيم  ميتروبولس  خوارزمية  استخدام  تم  كما  الاعظم  الامكان  مقدرات  لإيجاد 
Algorithm (MT)    Metropolis-Hastings    لمحاكاة التقديرات البيزية لمعلمات توزيع كاما المختلط ، ثم تتم مقارنة هذه المقدرات باستخدام مجموع  ا

 هو افضل من مقدر الامكان الاعظم .  . وقد تبين ان مقدر بيز (MSE)( والجذر التربيعي لمتوسط الخطأ )MBiseمعامل التحيز )
 : توزيع كاما ، التوزيعات المختلطة ، التقدير البيزي ، دالة الامكان ، خوارزمية تعظيم التوقع ، ميتروبولس هاستينغ.الكلمات المفتاحية


