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1. Introduction

The appearance of puberty in the female Many real data problems, such as automobile insurance claims, healthcare
economics, and medical science, can be studied using the Gamma Regression Model (GRM) (1, 2, 3). A GRM is used
particularly when a study's response variable is positively skewed or not normally distributed. As a result, gamma
regression requires gamma distributions for the response variables (4, 5, 6).
The GRM presumes that there is no correlation between the regressors. However, in reality, this presumption frequently
fails, which creates the multicollinearity issue. In the presence of multicollinearity, gamma regression coefficients are
typically unstable with a large variance and poor statistical significance when estimated using the maximum likelihood
(ML) approach (7, 8). To solve the multicollinearity issue, many solutions have been presented out. It has been frequently
shown that the ridge regression approach (9) is a desirable replacement for the ML estimation method.
The following relationship is typically used in classical linear regression models:

y=XB+¢ &Y
where y is an nx1 vector of response variable observations, X = (1,Xy, X5, ...,X,) is a known design matrix of
explanatory variables n x (p + 1), 8 = (By, B, ---, Bp) isa (p + 1) x 1 vector of unknown regression coefficients, and & is
an n x1 vector of random errors with mean 0 and variance o .
In order to decrease the high variance, the ridge regression shrinkage approach compresses all regression coefficients in the

direction of zero (7, 10). The diagonal of XTX is raised in a positive direction to achieve this. The ridge estimator has a
lower mean squared error than the ML estimator due to its bias.
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The ridge estimator in linear regression is defined as:

Briage = X"X + kD)7'XTy @
With | as the identity matrix of size pxp and k = 0 as the ridge parameter (shrinkage parameter) which controls the
shrinkage of 5 toward zero. A larger value of Kk yields greater shrinkage for the [?Ridge estimator (9).

2. Statistical Methodology

Gamma Ridge Regression Model (GRRM)

There are often positive skewed data used in studies in sociology, economics, and epidemiology, these kinds of data do
not have any negative numbers, making the gamma distribution an ideal choice for these kinds of data (5). If Y; be the

response variable and has a gamma distribution with nonnegative shape parameter v and nonnegative scale parameter z, i.e.
y;~ Gamma(v, 1), then the probability density function is defined as (6, 11):

fO) == @) le ™ 20 ®)

with E(y) = v/t = 8 and var(y) = v/t% = 62 /v. When the parameter is known, it is shown that the response variable's
variance is proportional to the square of its mean.

In a GRM, 6; = exp (X7 B) is expressed as a linear combination of repressors x; = (x;1, xi, ., Xip)T. The 6; is called the
log link function is what gives the relationship between the predictors and the response variable its linear shape. This log
like function is alternatively used rather than the canonical link function (reciprocal link function, 8; = —1/X7 ) because
it ensures that 6; > 0.

Using the Maximum likelihood technique is the most typical way to estimate the GRM coefficients. Considering that the

observations are presumed to be independent and T = v /0, the log-likelihood function is given by:
n

2(B) = Z {v [— X};iﬁ - XiTﬁ] —InTv +vin(vy,) — ln(yi)} 4

The first derivative of Eq. (4) is then calculated and set to zero to get the ML estimator, as:

() _
Z [(XT[?)Z ]Xi =0 )

Unfortunately, the first derivative cannot be analytically calculated since Eq. (5) is nonlinear. The ML estimators of the
gamma regression parameters may be obtained using either the iteratively weighted least squares (IWLS) technique or
Newton-Raphson approach. In each iteration, the parameters are updated by:

B+ = B 4 [-1(B™) (™M) (6)
Where S(B) = 3¢(B)/0€(B) and I"*(B) = (—E(3%£(B)/9BdBT)) . The estimated coefficients final step is defined as

EGRM = (XTWX}_lXTWﬁ ™)
Where W = diag(8?) and 4 is a vector where i element equals to U; =6, +((y; —6,)/ 0i2) . ML estimators
are normally distributed with covariance matrices that are inverses of Hessian matrices.

R a%¢
COU(ﬁGRM) = [_E(aﬁifggz
Eg. (7)'s mean squared error (MSE) can be calculated as follows:

MSE(ﬁGRM) = E(BGRM - /?)T(/?GRM - B)
= tr v | (x"Wx)"] ©)
14

= XWX )

4\
A
j=
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where /”LJ- is the eigenvalue of the XWX matrix. The matrix XWX becomes ill-conditioned in the presence of

multicollinearity, the ML estimator of the gamma regression parameters becomes unstable and has an excessive amount of
variation. As a remedy, the gamma ridge regression model (GRRM) can be described as:

ﬁAGRRM = (XTWX + k[)_leWXﬁGRM
= (X"WX + k) X"Wa
where K >0 . A specific estimator from Eq. (10) with K =0 might be thought of as the ML estimator.

(10)

Generalized Ridge Estimator

The generalized ridge estimator (GRE), differs from the generalized ridge regression model (GRR) in that it takes p
values of Kk into account (9).

Pore = (XTX + K)7'X"y, (1n
where K = diag(ky, k,, ..., kp). Finding the optimal values of ki while using GRE is advantageous because the MSE is
smaller than when the ridge estimator and OLS are used.

The definition of the GRE for the gamma regression model (GRM) is:
~ o~ -1 ~ ~
Bocrrm = (XTWX + K)  X"WXPeru

- -1 (12)
= (XWX +K) X"Wa

K matrix selection must be carefully considered. Several approaches are modified to estimate K in this study, including (9,
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22). These approaches are listed below, in order.
- v

ki(HK) = ﬁ, (13)
i
where &; is defined as the i*" element of y 35z, and ¥ is the eigenvector of the X" WX and the dispersion parameter, v, is

estimated by = (1/(n —p)) T, ((yi - éi)z/éiz) (5.

~ v ~ ~
ki(N) = ?{1 + [1 + Ai(aiz/v)l/z]} (14)
L
_ A0
Kirey = FW (15)
l
~ A0
k i (16)

O xar+ (n—p)d
~ A~ Z?:l(ll&tz)z

k. HSL = ]] (17)
T s ead)’
R P (1&%)2 1
kicamy =0 ;,_1( 1:2) >t 1 (18)
(., (a@d)"  Amax
kipy = v 19
O Amax@? )
R A0 1
3 =— 20
(S8 = 75215 Aar (20)
~ pP 1
kisv1y = 2zt 1 a? (21)
l L
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~ 1% 1

kisy2) = Z__z + > (22)
: 2(\/ Amax/lmin)

- (n—p)? + A, @2

kiony = 1 a2 : (23)

L

~ v 1

kicas) = Tt 7 (24)
L

3. Modeling and Simulation

With the help of Monte Carlo simulations, the effectiveness of these approaches is examined using the GGRRM and
different levels of multicollinearity.

The Design of Simulations
The GRM's response variable y;,~Gamma(8;,v) for n observations is produced by (8, 11, 23, 24, 25, 26, 27, 28).
P
where 8 =exp(X7B), B = (Bo, By -.Bp) with > BF=1 and B =p,=..=f,[29], and v e{0.50,2}.
j=1

Explanatory variables X7 = (x;q, X2, ..., Xin) have been generated from the following formula:

xij =1 —p) V2w + pwy,, i =1,2,..,n,j = 1,2,...,p, (25)
where p represents the correlation between explanatory variables and w;;’s are independent standard normal pseudo-
random numbers. Three exemplary sample size values 50, 100, and 200 are taken into consideration since the sample size
directly influences prediction accuracy. Additionally, the number of explanatory factors is taken into account as p =4
and p =8 because doing so might result in an increase in the MSE. Further, three values of the pairwise correlation are
taken into consideration with p ={0.90,0.95,0.99} since we are interested in the influence of multicollinearity, in

which the degrees of correlation are deemed more essential. The produced data is repeated 1,000 times for a combination of
these various values of n, p ,and p, the averaged mean squared errors (MSE) is determined as follows:

1000

A 1 A «
MSE(R) = 1555 . Beonn = B)' (Bewrm = B). (26)

4. The Results of Simulations

There are six tables showing the averaged MSE for the combinations of n,v, p, and o . Throughout the table, the best

MSE value is highlighted to emphasize its importance. The following are some possible observations:

1- GRRM frequently has a lower MSE than MLE.

2- GGRRM achieved less MSE than GRRM, regardless of the estimating method of the matrix K.

3- A comparison of the F method with other approaches revealed that the gamma generalized ridge estimator was
significantly enhanced by Firinguetti (15) in Eq. (16)). HK and SB procedures consistently produced inadequate results,
when compared with other approaches tested.

4- MSE values increase as the degree of correlation increases with respect to p, regardless of the valuesof N,V and p .

5- In terms of the number of explanatory variables, it is easy to see that there is a negative impact on MSE, where their
values rise as p increases.
6- The MSE values decrease with increasing n, regardless of the values of p,v,or p

7- Asv increases, the MSE of all methods decreases for fixed n, p, and degree of multicollinearity.
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Table 1: Average MSE valueswhen N =50 and p =4

Methods v =0.5 v=2

p=090 p=095 p=099 p=090 p=095 p=0.99

MLE 3.2411 3.4042 3.6188 3.1475 3.3091 3.5793
GRRM 1.7671 1.7884 1.7661 1.6512 1.6981 1.7438
HK 1.3218 1.3761 1.3907 1.3147 1.3286 1.3408
N 0.9852 0.9934 0.9958 0.9780 0.9762 0.9714
TC 1.0638 1.1181 1.1327 1.0567 1.0706 1.0828
F 0.5384 0.5927 0.6073 0.5313 0.5452 0.5574
HSL 0.9508 1.0051 1.0197 0.9437 0.9576 0.9698
AH 0.876 0.9303 0.9449 0.8689 0.8828 0.895
D 0.7713 0.7821 0.7877 0.7629 0.7711 0.7836
SB 1.0685 1.1228 1.1374 1.0614 1.0753 1.0875
Sv1 0.9094 0.9637 0.9783 0.9023 0.9162 0.9284
SV2 0.8547 0.909 0.9236 0.8476 0.8615 0.8737
M 0.8735 0.9273 0.9419 0.8659 0.8798 0.8921
AS 0.9344 0.9887 1.0033 0.9273 0.9412 0.9534

Table 2: Average MSE valueswhen N =50 and p =8

Methods v =0.5 v=2

p=090 p=095 p=099 p=090 p=095 p=099

MLE 3.5658 3.7289 3.9435 3.4722 3.6338 3.904
GRRM 2.0918 2.1131 2.0908 1.9759 2.0228 2.0685
HK 1.6465 1.7008 1.7154 1.6394 1.6533 1.6655
N 1.3099 1.3181 1.3205 1.3027 1.3009 1.2961
TC 1.3885 1.4428 1.4574 1.3814 1.3953 1.4075
F 0.8631 0.9174 0.932 0.856 0.8699 0.8821
HSL 1.2755 1.3298 1.3444 1.2684 1.2823 1.2945
AH 1.2007 1.255 1.2696 1.1936 1.2075 1.2197
D 1.096 1.1068 1.1124 1.0876 1.0958 1.1083
SB 1.3932 1.4475 1.4621 1.3861 1.4 1.4122
Svi 1.2341 1.2884 1.303 1.227 1.2409 1.2531
SV2 1.1794 1.2337 1.2483 1.1723 1.1862 1.1984
M 1.1982 1.252 1.2666 1.1906 1.2045 1.2168
AS 1.2591 1.3134 1.328 1.252 1.2659 1.2781

Table 3: Average MSE values when N =100 and p =4

Methods v =0.5 v=2

p=090 p=095 p=099 p=090 p=095 p=0.99

MLE 3.1355 3.2986 3.5132 3.0419 3.2035 3.4737
GRRM 1.6615 1.6828 1.6605 1.5456 1.5925 1.6382
HK 1.2162 1.2705 1.2851 1.2091 1.223 1.2352
N 0.8796 0.8878 0.8902 0.8724 0.8706 0.8658
TC 0.9582 1.0125 1.0271 0.9511 0.965 0.9772
F 0.4328 0.4871 0.5017 0.4257 0.4396 0.4518
HSL 0.8452 0.8995 0.9141 0.8381 0.852 0.8642
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AH 0.7704 0.8247 0.8393 0.7633 0.7772 0.7894
D 0.6657 0.6765 0.6821 0.6573 0.6655 0.678

SB 0.9629 1.0172 1.0318 0.9558 0.9697 0.9819
Svi 0.8038 0.8581 0.8727 0.7967 0.8106 0.8228
SV2 0.7491 0.8034 0.818 0.742 0.7559 0.7681
M 0.7679 0.8217 0.8363 0.7603 0.7742 0.7865
AS 0.8288 0.8831 0.8977 0.8217 0.8356 0.8478

Table 4: Average MSE values when N =100 and p =8

Methods v =0.5 v=2

p=090 p=095 p=099 p=090 p=095 p=0.099

MLE 3.2564 3.4195 3.6341 3.1628 3.3244 3.5946
GRRM 1.7824 1.8037 1.7814 1.6665 1.7134 1.7591
HK 1.3371 1.3914 1.406 1.33 1.3439 1.3561
N 1.0005 1.0087 1.0111 0.9933 0.9915 0.9867
TC 1.0791 1.1334 1.148 1.072 1.0859 1.0981
F 0.5537 0.608 0.6226 0.5466 0.5605 0.5727
HSL 0.9661 1.0204 1.035 0.959 0.9729 0.9851
AH 0.8913 0.9456 0.9602 0.8842 0.8981 0.9103
D 0.7866 0.7974 0.803 0.7782 0.7864 0.7989
SB 1.0838 1.1381 1.1527 1.0767 1.0906 1.1028
Svi 0.9247 0.979 0.9936 0.9176 0.9315 0.9437
SV2 0.87 0.9243 0.9389 0.8629 0.8768 0.889

M 0.8888 0.9426 0.9572 0.8812 0.8951 0.9074
AS 0.9497 1.004 1.0186 0.9426 0.9565 0.9687

Table 5: Average MSE values when N =200 and p =4

Methods v =0.5 v=2

p=090 p=095 p=099 p=090 p=095 p=0.99

MLE 3.00376 3.16686 3.38146 2.91016 3.07176 3.34196
GRRM 1.52976 1.55106 1.52876 1.41386 1.46076 1.50646

HK 1.08446 1.13876 1.15336 1.07736 1.09126 1.10346
N 0.74786 0.75606 0.75846 0.74066 0.73886 0.73406
TC 0.82646 0.88076 0.89536 0.81936 0.83326 0.84546
F 0.30106 0.35536 0.36996 0.29396 0.30786 0.32006
HSL 0.71346 0.76776 0.78236 0.70636 0.72026 0.73246
AH 0.63866 0.69296 0.70756 0.63156 0.64546 0.65766
D 0.53396 0.54476 0.55036 0.52556 0.53376 0.54626
SB 0.83116 0.88546 0.90006 0.82406 0.83796 0.85016
Svi 0.67206 0.72636 0.74096 0.66496 0.67886 0.69106
Sv2 0.61736 0.67166 0.68626 0.61026 0.62416 0.63636
M 0.63616 0.68996 0.70456 0.62856 0.64246 0.65476
AS 0.69706 0.75136 0.76596 0.68996 0.70386 0.71606

Table 6: Average MSE values when N =200 and p =8

Methods v =0.5 v=2

p=090 p=095 p=099 p=090 p=095 p=0.99
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MLE 3.10106 3.26416 3.47876 3.00746 3.16906 3.43926
GRRM 1.62706 1.64836 1.62606 1.51116 1.55806 1.60376

HK 1.18176 1.23606 1.25066 1.17466 1.18856 1.20076
N 0.84516 0.85336 0.85576 0.83796 0.83616 0.83136
TC 0.92376 0.97806 0.99266 0.91666 0.93056 0.94276
F 0.39836 0.45266 0.46726 0.39126 0.40516 0.41736
HSL 0.81076 0.86506 0.87966 0.80366 0.81756 0.82976
AH 0.73596 0.79026 0.80486 0.72886 0.74276 0.75496
D 0.63126 0.64206 0.64766 0.62286 0.63106 0.64356
SB 0.92846 0.98276 0.99736 0.92136 0.93526 0.94746
Svi 0.76936 0.82366 0.83826 0.76226 0.77616 0.78836
Sv2 0.71466 0.76896 0.78356 0.70756 0.72146 0.73366
M 0.73346 0.78726 0.80186 0.72586 0.73976 0.75206
AS 0.79436 0.84866 0.86326 0.78726 0.80116 0.81336

4. Application Of Real Data

Here, we offer a chemical dataset with (n,p) = (212,10), where n denotes the quantity of antifungal drugs, to illustrate
the applicability of the GGRRM estimator in practical applications. pMIC (the logarithm of reciprocal of MIC, where MIC
is the lowest inhibitory concentration against C. albicans in mM/L) was used to quantify the antibacterial activity. As
explanatory variables, molecular descriptors are represented by the integer P (29, 30). In chemometrics, the quantitative

structure-activity relationship (QSAR) investigation has gained significant attention. The fundamental idea behind QSAR
is to simulate various biological functions across a group of chemical substances in terms of their structural characteristics.
Regression modeling is therefore one of the most crucial techniques for building the QSAR model. Table 7 lists the
explanatory variables that were employed. Every variable is a number.

The Chi-square test is performed first to determine if the answer variable is part of the gamma distribution. The test yielded
a result of 10.0286 and a p-value of 0.9117. The gamma distribution closely matches this response variable, with an
estimated dispersion parameter of 0.0153. Using the predicted dispersion parameter of 0.0153 and log link function to
construct the gamma regression model, the test for multicollinearity, the eigenvalues of the matrix X" WX are obtained as:
1.97 x 10%,3.74 x 10°,1.21 x 10%,1.34 x 103,1.22 x 103,1.07 x 103,4.63 x 102,2.08 x 10%,10.68,and 1.57. The

determined condition number CN = /Aax/Amin Of the data is 35422.83 demonstrating the existence of the serious
multicollinearity problem.

Table 8 lists the estimated MSE values for the MLE, GRRM, and GGRRM estimators using various estimating matrices.
Table 8 makes it abundantly evident that the F approach effectively reduces the value of the calculated coefficients. The
MSE has also been considerably decreased in favor of the F method. It is clear that the MSE of the F technique was around
64.97%, 60.63%, 59.33%, 47.98%, 44.34%, 46.79%, 45.37%, 42.43%, 48.26%, 65.96%, 44.34%, 44.47%, and 45.49%
lower than that of MLE, GRRM, HK, N, TC, HSL, AH, D, SB, SV1, SV2, M, and AS estimators, respectively.

Table 7: Description of the used explanatory variables

Variable name’s Description

SpMax3_Bh(s) largest eigenvalue n. 3 of Burden matrix weighted by I-state

P_VSA e 3 P_VSA-like on Sanderson electronegativity, bin 3

IC3 Information Content index (neighborhood symmetry of 3-order)

Mor21e signal 21 / weighted by Sanderson electronegativity

MATS2s Moran autocorrelation of lag 2 weighted by I-state

GATS4p Geary autocorrelation of lag 4 weighted by polarizability

SpMax8_Bh(p) largest eigenvalue n. 8 of Burden matrix weighted by polarizability

ATS8v Broto-Moreau autocorrelation of lag 8 (log function) weighted by van der Waals
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volume
MATS7v Moran autocorrelation of lag 7 weighted by van der Waals volume
TDB08m 3D Topological distance based descriptors - lag 8 weighted by mass

Table 8: The estimated MSE values for the real data application

5.

Methods MSE

MLE 4.3291
GRRM 3.8507
HK 3.3008
N 2.9147
TC 2.9348
F 1.5161
HSL 2.8492
AH 2.7751
D 2.6335
SB 2.9301
Svi 2.7571
SV2 2.7238
M 2.7304
AS 2.7816

Conclusion

In this study, a generalized ridge estimator was suggested as a solution to the gamma regression model's multicollinearity
issue. The K matrix has been estimated using a variety of techniques. According to Monte Carlo simulation tests, the
GGRRM estimator performs better than MLE and GRRM in terms of MSE regardless of the kind of estimating method
used for the K matrix. To further demonstrate the advantages of utilizing the GGRRM estimator in the context of gamma
regression models, a real data application is also taken into consideration. It was determined that the GGRRM estimator is
superior based on the resultant MSE, and it was further demonstrated that the outcomes are compatible with those of Monte
Carlo simulations.
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