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ABSTRACT

The current research developed a new formula for
calculating the theoretical value of nuclear binding energy and
comparing it with the experimental binding energy. The liquid
drop model was modified to show the effect of the
interconnected relationship between the dead nucleus, i.e. The
region of the nucleus composed of protons and neutrons (Z=N)
which are in pairs, with the surface of the nucleus which
represents the levels occupied by the unpaired neutrons (N>Z)
surrounding the region of the nucleus through the potential
energy (Xo), which allows a clearer understanding of the nuclear
structure, leading to good information in the field of applied
nuclear physics. The least squares method (LSM) was used to
determine the constants of the proposed formula, by creating a
code using the Fortran 95 language, and the code was solved
using the Gaussian method, and the constants were found for
more than 400 different nuclei (even-even, even-odd,
odd-odd) within the range (2 > Z > 92). To determine the
reliability of the proposed formula, a statistical measure was used
the standard deviation (o), its accuracy in calculating the
theoretical binding energy, and the standard deviation (6=0.384)
of the updated formulation of the modified liquid drop model or
(MLDM).
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INTRODUCTION

There have been three distinct periods in the history of nuclear physics: The discovery of the
nucleus’ radioactivity at the beginning, nuclear fission at the end, and the discovery of the nucleus’
fundamental constituents’ protons and neutrons as well as the quantum laws governing their
behavior (Nesvizhevsky and Villain, 2017). Nuclear spectroscopy and nuclear models were
developed during the second period, which ran from 1947 to 1969. Eventually, the theory of
microscopic uniformity, which started in the 1960s, emerged, helping to explain the behavior and
structure of neutrons and protons in terms of the fundamental interactions of their constituent
particles, quarks, and gluons. During this time, non-classical micro-mechanisms in the nuclear
structure were also identified (Ackermann and Theisen, a 2017).

The LDM, one of the most significant nuclear models to emerge during this time, was used to
explain a variety of nuclear phenomena. It was predicated on a number of suppositions, such as the
idea that each nucleus had an identical nuclear force and that the nuclei are composed of an
incompressible material. And at equilibrium, the atomic nuclei remain spherically symmetrical
under the influence of attractive nuclear forces (Albertsson, 2022).

N. Bohr and Wheeler discovered remarkable expansions of the idea of a semi-experimental
mass formula, which they applied to explain nuclear fusion and determine nuclear binding energy.
It is based in part on demo accounts and part on theory. It is therefore referred to as the
semi-experimental mass formula (SEMF) (Bohr and Wheeler, 1939).

Numerous research articles have been done since then to improve the LDM’s form.
Nevertheless, the formula’s fundamental structure has remained unchanged over time, even with
these advancements. To bring the theoretical nuclear binding energies closer to the experimental
binding energies, the semi-experimental mass formula (SEMF) has been expanded over the years
either modifying the way that different coefficients’ dependence on the mass number and atomic
number is altered or by adding different new coefficients. The SEMF, which consists of five
different types of energy components (surface, volume, asymmetry, Coulomb repulsion, and pairing

term), has significantly advanced nuclear physics (Yiksel et al., 2021).

The SEMF, which consists of five different types of energy components (volume, surface,
Coulomb repulsion, asymmetry, and pairing term), has significantly advanced nuclear physics. The
mass data is updated by the parameters of energy, which are derived from experimental data on
nuclear reactions. With the use of these atomic data, numerical techniques can be used to determine
a new set of energy parameters for the SEMF; the least-squares method (LSM) is one of the most
significant of these techniques (Ackermann and Theisen, b 2017) however, even if the LDM
provides a good estimate for atomic masses and a wide range of other phenomena, it is unable to
explain the emergence of magic numbers. The predicted binding energies of the LDM are less than
the real binding energies of “magic nuclei.”. For nickel (35N1i), for instance, the LDM estimates an

energy 477.7 MeV, n on one the less the measured value is 484.0 MeV, and the LDM indicates that
tin (1325n) will have a binding energy of 1084 MeV, while the actual value is 1110 MeV. Over the

last few decades, various research publications have been dedicated to enhancing the shape of the
LDM (Ryssens et al, 2019). The researchers UVS and Lakshminarayana, developed the LDM to
find the nuclei’s nuclear binding energy, and they fitted the constants of the SEMF to the LDM
using the LSM, then their results were compared with the results of the original LDM and they got
the rate of errors not exceeding 1.64% (UVS and Lakshminarayana, 2015), Mavrodiev, the
researcher, provided a generalization of the SEMF that starting with Z=1 and N=1, characterizes for
2,654 nuclei in the AME2012 nuclear database, the measured nuclear mass values with an accuracy
of less than 2.2 MeV (Mavrodiev, 2016).

Nine protons (2, 8, 14, 20, 28, 50, 82, 108, 124) and ten neutrons (2, 8, 14, 20, 28, 50, 82,
124, 152, 202) were found to have an impact. The nuclear binding energies were determined by
Ankita and Suthar, two researchers, utilizing the SEMF and various constants supplied by other
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researchers. Additionally, they contrasted the computed values with the results of the experiment.
To identify appropriate constants using the error plot, a comparative analysis was implemented.

The study was prolonged to determine the ideal constant to lower the error (Ankita and
Suthar, 2016). When the researchers UVS and Lakshminarayana compared their findings with
experimental values, they demonstrated a very satisfactory agreement. To comprehend nuclear
stability and nuclear binding energy in terms of strong nuclear interaction and mass difference for a
broad range of light, medium, and heavy nuclei, the researchers worked on constructing the LDM in
a novel approach (UVS and Lakshminarayana, 2017).

The researcher Vahid and his group used the LSM to calculate the coefficients (Coulomb,
asymmetry, volume, and surface) in the SEMF for the LDM for 22 nuclei (odd-even). Then their
results were compared with the results of similar previous work (Vahid et al., 2016). To provide the
mass formula with a new set of energy parameters, researcher Benzaid, and his team updated the
SEMF for mass with five energy terms and used LSM for the binding energy of 2,497 distinct
nuclides from the most recent update to estimate the atomic mass. They contrasted their findings
with those of related earlier research (Benzaid et al, 2020). The investigator Pan and his team
proposed a straightforward method, based on the LDM and accounting for the shell correction, to
determine the energy released from a proton’s radioactivity. By comparing the experimental results
for 29 nuclei with the proton’s radioactivity from the ground state, they were able to determine the
coefficients of this formula (Pan et al., 2021). The importance of the current research lies in
modifying the liquid drop model to show the effect of the interconnected relationship between the
dead core of the nucleus when (N=2Z) with the surface of the nucleus that represents levels occupied
by neutrons through the potential energy (Xo). This allows a clearer understanding of the nuclear
structure, which leads to good information in the field of applied nuclear physics

This research aims to calculate the nuclear binding energy to find an improved formula for the
liquid drop model that will calculate the nuclear binding energy for most types of nuclei by building
a computer program in Fortran that uses the matching process using the Least-Squares Method
(LSM) and finding new constants.

Theoretical framework
Liquid drop model (LDM)

Von Weizsacker devised the LDM based on the fundamental idea that the nucleus can be
viewed as a drop of an incompressible substance, which comes from the about equal internal
density. Strong nucleon interactions give rise to binding energy for the nucleus that is linearly
associated with its mass number (the volume of the nucleus) according to the LDM. Furthermore,
interactions between surface nucleons and deep nucleus nucleons are conceivable. As a result, they
have a lower binding energy than the others. Additionally, the Z has a coulomb repulsion force
between them, which normally reduces the nucleus’s binding energy. Higher energy levels would
result from increasing the number of N to the number of Z, which would negatively (Al-jomaily and
Abdullateef, 2022; Frank and Nam, 2021).

The nuclear binding energy can be represented as a function of atomic number Z and mass
number AB (A, Z) as follows, according to the LDM (Cui et al., 2022):

2 72 (52 1
B(A,Z) = ayA —a;A3 —a,— — g = + A7 e (1)
A3
Where (a,, as, a., a,, a,) represents the terms of volume, surface, coulomb, asymmetry, and

pairing term, respectively.
Their values (14.8,16.8,0.703, 28.8,11.2), respectively.
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Modified liquid drop model (MLDM)
It has been supposed that the nucleus consists of two regions: The core or internal region,
which contains equal numbers of protons and neutrons, which are in pairs (N = Z). And the outer

region which contains unpaired neutrons (N > Z). The interaction energy between pairs of nucleons
will equal the pairing energy E,. Because there will be (2Z) nucleons in the core area, the pairing
energy will be:

Ep = £,(22) /2 i ettt e e (2)

The core would be considered to be an incompressible system, comparable to the liquid drop
model, and hence the volume energy E,, will be:

Likewise, due to the existence of Z in the nucleus’ core, the Coulomb energy E. gonna be:

ZZ

¢~ (22)"/

. (4)

In this model proposed, we will not take into account the energies of the surface and the
asymmetry because we will deal with the surface region separately and we will also have (N = Z)

in the core region, this implies that there is no asymmetry. It remains for us to know what kind of
interaction might occur between the core region of the nucleus with the surface region containing
unpaired neutrons. To simplify the matter, we will work on the assumption that the reaction leads to
the average potential through which each neutron moves in the (outer) region of the surface. This
will be close to what is required by the Hartree-Fock theory (Jiménez-Hoyos et al., 2012). Thus, if
the average voltage per neutron is denoted by x,, then the total potential energy B, (A4, Z) will be -

X o(N — Z); to denote this by Ep, we write (KK et al., 2020).
E, = —xo(N —Z) = —xp(A = 2Z) ccc i ccs e ittt et v e e e e (B)

By merging (2,3,4,5) equations, we will get

2

e xo(A —22) + a,(22) /2 ..(6)

Btot("q-z) = ap(zz) — Qg

Equation (5) represents the new formula for the nuclear binding energy according to the
proposed model, it should be noted that the MLDM, will be used to represent the question above.
(ay, a;,xq,a,) represents the coefficients of the volume, coulomb, average potential, and pairing.

As it is known, all the coefficients in the equation are known except for the value of the x,, and we
will get new values for all the coefficients in the above equation through LSM.

Least-squares method (LSM)
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The LSM’s foundation is cutting down on mistake € (Noon, 2022; Ahmed et al., 2022) in the

LDM’s coefficient calculations for surface, Coulomb, volume, pairing, and asymmetry, particularly
when incorporating newly discovered nuclei or treating other nuclei as extensions of super-mass
nuclei. The following equation represents the following equation represents the quantity &£:

&= Z(S’i - B(ZI-Ai))Z - = Z(yi — Bi(ay, ac, x0,3p) )2 (7

Where y; is an empirical value for the nucleus’s binding energy, and B; is the hypothetical
binding energy that equation (1) gives us. Stated differently; by minimizing the function E, it is
possible to obtain the coefficients of volume, surface, Coulomb, asymmetry, and pairing. Stated

otherwise, the initial derivative of the system needs to be zero.

o6 _ e _ o _ . 0 _ (8)
aap — ' aac — ' a—_{ﬂ — ' a—a’p - sea s waw was amw sax waw wes owow

Through equation (8), we get the matrix equation (9).

+Z(zzi)2 _Zﬁ Z(A —27,)(2Z,) +Z(2‘Z)
2 4
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Z}’i (221)_1&
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The matrix equations mentioned above are a collection of linear equations with four variables
that are solved using the Gauss technique using a Fortran 95 computer application. The algorithm is
composed of three steps: The first is to input the information contained in a file, the second is to
estimate the system’s different parameters, and the third is to solve it using the Gauss method. The
volume, Coulomb, mean voltage, and pairing terms have been tabulated in the proposed new
MLDM formula. Equation (10) for the MLDM model illustrates the findings of this approach, and
the MLDM equation takes on the following form:
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2

Bo:(4,Z) = 9.5(2Z) — 0.015 —0.17(A —22) +9.9(22) /2. (10)

(22)"/3
The above formula, when applied to all the nuclei under investigation, revealed a highly
respectable degree of agreement between the experimental and theoretical values, especially for
heavy nuclei, and with a very acceptable standard deviation of 0.384.
Determine the standard deviation
The standard deviation was computed to assess equation (10) and compare the results with the

experimental findings (Qasim and Al-jomaily, 2020).

N

o :Z [Beexs _ Batneo| e e e e e e e (1D)

L

i=1
BE,,: Indicating experimental values.
BE;;,.,: Indicating to theoretical values.

RESULTS AND DISCUSSION
Fig. (1) shows the difference between the experimental and theoretical values of nuclear
binding energy and the relationship of this difference with the mass number A of MLDM, for nuclei
in the range (2 > Z > 92) under study.
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Fig. 1: The relationship between A and the difference between the theoretical and experimental
binding energy.

From the figure above, we notice that the closer the difference between the theoretical and
experimental values, the greater the probability of adopting the model. It is also clear that the
difference between the experimental and theoretical values fluctuates around zero, which indicates
the validity of the results, especially for medium and heavy nuclei, while the discrepancy between
the theoretical and actual values is greater for light nuclei, due to the presence of nuclei with magic
numbers (2, 8, 20, 28) for both protons and neutrons or both, and due to their closed nuclear shells,
these nuclei are more stable compared to the nuclei close to them, which makes the nuclear binding
energy very high. As can be explained, the Coulomb limit has a negative sign in equation (10), and
as a result, its effect is weak on light nuclei and becomes stronger when the number of protons
increases relative to the number of neutrons, which leads to the convergence of the experimental
and theoretical values, which encourages the adoption of the model for calculating energy.
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Table 1: Shows standard deviation values and root mean square deviation of the LDM and the
proposed model (MLDM).

The Model o The Model o Improvement rate

LDM 0.682 MLDM 0.384 44%

The standard deviation of MLDM was calculated with the proposed LDM model for the
model to know the accuracy and agreement of the values of the theoretical and experimental results
for the nuclei under study. As we know, the closer the results are to zero, the more reliable the
model is in calculating the nuclear binding energy. (Table 1) shows the validity and acceptance of
the results obtained through the development rate (44%) for the proposed model compared to the
original model.
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Fig. 2: A comparison of the theoretical and experimental binding energies with mass number.

Fig. (2) shows that the theoretical binding energy obtained through the new equation (11) is
highly comparable to the experimental values, which indicates the accuracy of the new constants
using the LSM method and supports the validity of the proposed model in estimating the nuclear
binding energy. The results show that changing the number of neutrons by one unit in the surface
region leads to an increase of (x,) 30 MeV with an inverse variation and with (Z) fixed for the

isotopes, while in isotopes and with (N) fixed, the potential energy (x,) uses linearly with an
increase in both (A) and (Z). It can be noted that the value of (x,) approaches zero in nuclei in

which the number of neutrons is equal to the number of protons, due to the absence of neutrons in
the surface region. For nuclei with low mass, the value of (x,) changes by a very large amount

compared to the change for heavy elements due to a significant change in the ratio N/Z.

CONCLUSIONS

A modified model for determining the binding energy based on the liquid drop model was
proposed, where the component coefficients were determined by fitting the least squares approach
to 400 nuclei. The following conclusions can be drawn from the data.

The module MLDM, can be adopted because of the broad range of magic and non-magic
nuclei that exceeded 400 nuclei.

The MLDM model gave results that showed a very satisfactory level of agreement between
the theoretical and experimental values.

Statistical correlations of the standard deviation demonstrated the feasibility of using the
model to calculate the nuclear binding energy.
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The results showed that the proposed model outperformed the original liquid drop model in
terms of the improvement rate.
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