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ABSTRACT

A Taylor series expansion is developed and applied to evaluate an
approximate solution of the non-linear system of Volterra integral equation
of the second kind for both Urysohn and Hammerstein types. The solution is
based on substituting for the unknown function after differentiating both
sides of the integral equation. Program associated with above methods is
written in Matlab, finally, by using various examples, the accuracy of this
method will be shown.
Keywords: non-linear system, Volterra integral equation.
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1. Introduction
Integral equations appear in many engineering and physics,
Numerical methods of solution for integral equations have been largely
developed in the last 20 years [3,7]. Al-Faour used Taylor series expansion

to evaluate the approximate solution of linear system of integral equations
for Volterra type [2].

The main purpose of this paper is to consider Taylor series
expansion of non-linear system of Volterra integral equation for Urysohn
(SNLUVIEs) and Hammerstein (SNLHVIES) types of the form

uj(s) = fi(s)+ El? Kij (s,t,uj (t))dt i=12,..,n ()
J=10
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uj(s) = fj(s) + gl? Kij (s, t)W (t, uj (t))dt i=12,..,n 2)
1=10

where kij(s,t) and fi(s) are known functions.

This system appear in many applications for instance: the Dirichelt-
Neumann mixed boundary value problems (MBVPs) on closed surfaces in
R based on an equivalent formulation of the MBVP as a system of two
integral equations [7].

2. Basic Theorem
Taylor theorem :

Assume that y(t)e CN*! [to,b] and that y(t) has a Taylor series
expansion of order N about the fixed value t=txe [to,b] :

Yt + 1) = y(t) + My (G, y(t) + O™ ) ©)
where
N ) )
Tuley) =Y St pin (@

C jt

j=1
and yO(t) =f0-D(t,y(t)) denotes the (j-1)st total derivative of the function f
with respecttot .

Fundamental Theorem of Integral Calculus (Leibnitz Generalized

Formula):
8 Feyr= | 2D 0y px 00y 20 o 40
ax 2 ’ A ’ dx ’ dx

Theorem (Precision of Taylor’s Method of Order N):

Assume that y (t) is the solution to the initial value problem if y(t)
CN*to,b] and {(tx,yx)}x=0M is the sequence of approximations generated by
Taylor's method of order N ,then

| €« | :| y(tk)_yk |:O(hN+l)

| Skl |:| Y(te.)) =Y —hTy (., Vi) | :O(hN)
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In particular, the final global error (F.G.E.) at the end of the interval will
satisfy:

E(y(b),h)=[y(b)-Yy[=O(h")

3. The Existence and Uniqueness Theorem

In this section we discuss the existence and uniqueness of the
solution of equation (1) and (2).
Definition:

Let H be a Hilbert space and T a bounded on H, T is not necessary a
linear operation, T is said to be a contraction operator if there exists a
positive constant L<1 such that

| T, —Tf, |<L| f,— 1, || forall f,, f,inH

Theorem 1: (Fixed Point Theorem)

Let T be a contraction operator on H, and if
Tf=A
has a unique solution f in H, then such a solution is said to be a fixed point
of T.(see [7] for proof)

Now in operator form eg. (1) can be written as:

U, -Kn,U)=F,, m=12,...,n (5)

where Fm, m=1,2,....,n arein H,

Km(u):zn:j Ky (5.t u; ()t

i=lo
and K, m=1,2,...,n are bounded operators such that v Mm € R*:

IKnUn)-Ko (Vo) [ M JUn=Vy | sm=12...n

Let M = max (M1, Ma,..., Mm ) , then we have

[KnWU)-Ka() | <Mu-V| (6)

We can now write eq.(5) in the form :
T(Um) =Un , m=1,2,...,n (7)
where T (Um) =Fm+ Kn (U), m=1,2,.. LN

Theorem 2:

Equation (5) has a unique solution for all Fm , m=1,2,...,n, provided that
Km, m=1,2,...,n are bounded operators
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4. Taylor series method for (SNLUVIES)
Consider the following non-linear SUVIE :

u; (s) = fi(s)+Zn:IKij (s,t,u; (O)dt i=12,..n ®)
i=lo

Differentiating both sides of eq. (7) 3-times with respect to s, to get

. oKii\s, t, t
U (s)= fl (S)+ g: {? ] (S u J( dt + Kij (S, s,u J (S))} s i=12,..., n (9)
j=1 s
2
" " 0 Kjils, t,u(t oKii\s, t,u oKiji\s,s,U '
SO 6) {? |J(52”J())dt+ u(s UJ(S))+ u(ssuj(s))uj(s)} )
IENE! as os os
? 53Kij (s,t,u j (t))dtJr 62Kij (S, S,Uj (S)) +£ 6Kij (S,t, uj (S)) u.. (S)Jr
n |a 553 532 0s 0s J
uj (s): fi (s)+ ; ) (11)
1= 0°Kjj (s, SUj (s)) L, K (s,t,u j (s)) "
— W+ —E006)
0s 0s
Now, put s = a into eq. (8-11) to obtain:

u(a) = fi(a) i=12..,n
i) (a)+ T Kij@auj@) =12
j=1

6Kij (s,s,uj(s))

uI (a): fi" (a)+ 2

|t:s:a +

s=a Uj T

j=1 0s 0s
0%Kij (5,5, () o [oKij(s.tuj(s) .
st 1 flt=s=atj @
u:" (a)— f.... (a)+ g s s 0s
=T )
! = 62Kij (S,S,Uj(s)) , 5 aKij (s,t,u]-(s)) " )
o2 |s:a (uj@)” + —68 |t:s:a uj(a) , 1=12,.,n

5. Taylor series method for (NLSHVIE)
Consider the following non-linear SHVIE:

uj(s) = fi(s) + g ?Kij(s,t)W(t,uj(t))dt i=12,..,n 12)

1=10

Differentiating both sides of eq. (12) 3 — times with respect to s, to get
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. . oK (st
6 (s)=f; (s)+ 3 {? i (s )W(t,uj(t))dt+Kij(s,s)W(s,uj(s))} o i=12...n 13)
j=l|la o0s
2
02K (s,t oK (st oK;i (s,
. . n ?—”(S )W(t,uj(t))dt+ i (s )W(s,uj(s))+ ! SSW(s,uj(s))
Ui(s):fi (S)+ ,21 a os? S s (14)
j=

K (S, )W (5,u(5)) uj(5)

3 2
s 0 Kij(S,t) 0 Kij(s,t) F) aKij(S,t)
W(t,uj)dt+ ——=——|[{_W(s,Uj —
;{1 653 ( UJ( Dt 652 |t7$ ¢ UJ(S)) ' 0s 0s
aKij (s,t) . 62Kij (S,S
W)U () W 5)
S

W= 6 ] W

oKijils,s) ! " .
+( UaE i (5.0 DV )2 K 9w s ©f

(15)

Kij (5, W (s, (s)u ] () i=12,..n

Now , put s = a into egs.(12-15) to get :

uj (@)= fj (a) i=12,..n
u;(a): fi‘(a)+ 'gl Kij (a, a)W(a,uj(a)) , i=12,..,n
j=
5Kij (S,t) aKij (S,S)
ui(@)-f @+ 2| & esma Wu @) + os [s-aW(auj @)
1= + Kij (a,a)W (a,uj(a)) uj(a)
2
0 K--(s,t) o | oKii(s,s)
als+|t=s—a W(a,uj (a))+£{ Uas |S=a}W(a, uj (a))
oo | X6 ‘ o Ki(sis
ui (a)=1; (a)+ ,E H— lt=s-aW @uj@)u @)+ 68—2|S:aW(a,uj(a))
aKij (S, S)

+2*(

' ' " ! 2
|s:aW (a,uj (a))uj (@) + Kij (a,a)W (a,u j (a))(u j (a))

Kij @, a)W (a,uj(@)u](a) i=12,..n

Solve the above system for the quantities uj(a),uj(@), and uj(a),
j=1,2,...,n using forward substitution . Then these values are substituted in
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Taylor series eq. (3), (4) att =to, N = 3, and h = t-to to obtain the solution to
order O (s°)
6. Numerical Results

Here we present the results of applying the Taylor series expansion
discussed to three different problems.

Example 1:
Consider the following non-linear system

S
ug(s)=f; +(I)(s ~t)(up ()2 dt

2u, (t
ul()dt

us(s)="fo +?te_
0
With the equation

2s

1 s s
f1=Z(1—e ) and fo=-se” +2¢" -1

The exact solution of this problem is

1 s
ul(s):—zs and uo(s)=e

h = 0.1using a Taylor series expansion method with grid intervals 0< s <1

The approximate solution of the unknown function u(s) is given as:

1 1 2 1 3
up(s)=——s and Up(s)=1l+s+—s" +—s
2 2! 3
A comparison of our results and exact solution gives on table (1).
s Ui(s) Ua(s)
Taylor Exact Taylor Exact
0.0 -0.0000000 | -0.0000000 | 1.0000000 | 1.0000000
0.1 -0.0500000 | -0.0500000 |1.1051666 | 1.1051709
0.2 -0.1000000 | -0.1000000 |1.2213333 | 1.2214028
0.3 -0.1500000 | -0.1500000 | 1.3495000 | 1.3498588
0.4 -0.2000000 | -0.2000000 | 1.4906666 | 1.4918247
0.5 -0.2500000 | -0.2500000 | 1.6458333 | 1.6487213
0.6 -0.3000000 | -0.3000000 |1.8160000 | 1.8221188
0.7 -0.3500000 | -0.3500000 | 2.0021666 | 2.0137527
0.8 -0.4000000 | -0.4000000 | 2.2053333 | 2.2255409
0.9 -0.4500000 | -0.4500000 |2.4265000 | 2.4596031
1.0 -0.5000000 | -0.5000000 | 2.6666666 | 2.7182818
L.S.E. 0.00000000 4.3491*10°3
Table (1)
Example 2:
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S
Dy (s)= f1(s)+ (j)ln | @ (1)t

®2(s):f2(s)+?te
0

®1O g

With the functions

f1(s)=s(1- % S) and

The exact solution is:

q)l(s) =S

and

fo(s)=—(se® +1)

D,(s)=—¢"°

Given fi(s), f2(s), We wish to find d1(s), ®@2(s) so that

When we apply Taylor's method, we have the following approximate

solution

Dq(s)=s

and

Dy(s)=—1-s-—s

2!

1 2 13
— S
3l

Table (2) gives a comparison of our results and exact solution

S D4(s) D,(s)
Taylor Exact Taylor Exact
0.0 0.0000000 | 0.0000000 | -1.0000000 | -1.0000000
0.1 0.1000000 | 0.1000000 | -1.1051666 |-1.1051709
0.2 0.2000000 | 0.2000000 | -1.2213333 | -1.2214028
0.3 0.3000000 | 0.3000000 | -1.3495000 | -1.3498588
0.4 0.4000000 | 0.4000000 | -1.4906666 |-1.4918247
0.5 0.5000000 | 0.5000000 | -1.6458333 | -1.6487213
0.6 0.6000000 | 0.6000000 | -1.8160000 |-1.8221188
0.7 0.7000000 | 0.7000000 | -2.0021666 | -2.0137527
0.8 0.8000000 | 0.8000000 | -2.2053333 | -2.2255409
0.9 0.9000000 | 0.9000000 | -2.4265000 | -2.4596031
1.0 1.0000000 | 1.0000000 | -2.6666666 | -2.7182818
L.S.E. | 0.00000000 4.3491*10°3
Table (2)
Example 3:
As a third example, we study the following non-linear
equation of the second order
Y+ sing () _ 1 xe (01, y(0)=0, y(0)=1

2y=-1,
y
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Which can be written as a system of first order non-linear differential
equations
y1=Y2 y1 (0)=0

cos (x)

' 1
Y o =sin (x) (—- )-1 y2 (0)=1 (16)

Y1 Y2

where the exact solution of this problem is:

y1 = sin (x) and y2 = cos (X)

by integrating both sides of eq.(16) over [0,x], we obtained the following
NLSVIEs

0=y, Odt
0

X X

sin (t) sin (t) cos (t)

Y (x)_1—x+J; 0 dt- | oo
Table (3) gives a comparison of our results and exact solution.
X yi(s) ya(s)

Taylor Exact Taylor Exact
0.0 0.000000 0.000000 | 1.000000 1.000000
0.1 0.099833 0.099833 | 0.995004 0.995004
0.2 0.198667 0.198666 | 0.980066 0.980066

0.3 0.295500 0.295520 | 0.955336 0.955337

0.4 0.389333 0.389418 | 0.921061 0.921066

0.5 0.479167 0.479425 | 0.877583 0.877604

0.6 0.564000 0.564425 | 0.825336 0.825400

0.7 0.642833 0.644218 | 0.764842 0.765004
0.8 0.714667 0.717356 | 0.696707 0.697066
0.9 0.778500 0.783327 | 0.621609 0.622337
1.0 0.833333 0.841471 | 0.540302 0.541666
L.S.E. | 90958 * 103 2.545*10°

Table (3)
7-Conclusion

Taylor series expansion method was used to evaluate an approximate
solution of non-linear system of Volterra Integral Equation for both
Urysohn and Hammerstein types. Three examples were considered in this
context.

In practice, we conclude that:
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The solution obtained by Taylor series expansion is given by a

function not only at some points.

Numerical computations of Taylor’s method are simple and the

convergence is satisfactory.
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