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ABSTRACT

The Hosoya polynomials of Steiner distance of complete m-partite
graphs K(py, p,....p,) and Straight hexagonal chains G, are obtained in this

paper. The Steiner n-diameter and Wiener index of Steiner n-distance of
K(py, p,..--py) @nd G, are also obtained.
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1. Introduction
We follow the terminology of [2,3]. For a connected graph G=(V,E)
of order p, the Steiner distance[8,7] of a non-empty subset S <V (G) denoted

by dg(S) or simply d(S), is defined to be the size of the smallest connected

subgraph T(S) of G that contains S, T(S) is called a Steiner tree of S. If
[S|=2, then the definition of the Steiner distance of S yields the (ordinary)
distance between the two vertices of S. For 2<n<p and |S|=n, the Steiner

distance of S is called Steiner n-distance of S in G.
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The Steiner n-diameter of G (or the diameter of the Steiner n-
distance), denoted by diam,G or &,(G), is defined to be the maximum
Steiner n-distance of all n-subsets of V(G), that is

diam, G = max{d(S):S cV(G),|S |= n}.

Remark 1.1. It is clear that
(1) If n>m, then diam, G>diam, G .
(2) If s'cs,then dg(S")<ds(S).
The average Steiner n-distance of a graph G, denoted by 4, (G), or

average n-distance of G is the average of the Steiner n-distances of all n-
subsets of V(G), that is

-1
u:<G>=(Ej > de(s).

Scv
|S|=n

If G represents a network, then the Steiner n-diameter of G indicates
the number of communication links needed to connect n processors, and the
average n-distance indicates the expected number of communication links
needed to connect n processors [8].

The Steiner n-eccentricity [7] of a vertexveV(G), denoted bye; (v),
is defined as the maximum of the Steiner n-distances of all n-subsets of
V(G) containing v. The Steiner n-radius of G, denoted by rad,(G), is the
minimum of Steiner n-eccentricities of all vertices in G.

The Steiner n-distance of a vertexveV(G), denoted by W, (v,G) is the
sum of the Steiner n-distances of all n-subsets of V(G) containing v.

The sum of Steiner n-distances of all n-subsets of V(G) is denoted by
d,(G) or W, (G) . Notice that

W, G)= Ydg(s)=nt Y w;(v,e)z(ﬂy;(e). ....... (1.1)
lzlg:\r/](e), VeV (G)

The graph invariant W, (G) is called the Wiener index of the Steiner

n-distance of the graph G.
Bounds for the average Steiner n-distance of a connected graph G of
order p are given by Danklemann, Oellermann and Swart [4].

Definition 1.2[1] Let C,(G,k) be the number of n-subsets of distinct vertices
of G with Steiner n-distance k. The graph polynomial defined by
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5
HaGx)= Y CrGhkx*, L (1.2)

k=n-1
where &, is the Steiner n-diameter of G; is called the Hosoya polynomial of
Steiner n-distance of G.[1].
Then the n-Wiener index of G, w.'(G) will be

S
W,(G)= Y kCpGky (1.3)

k=n-1
The following proposition summarizes some properties of H. (G;x).
Proposition 1.2. For 2<n< p(G),
(1) degH,(G;x) is equal to the Steiner n-diameter of G.

§n
(2) Hi(GD= Zc;*(G,k):[rfj, ....... (1.4)
k=n-1
@ W@ - HGL (1.5)
@ Forn=2, H;G;x)=HG;x)-p, . (1.6)

where H(G;x) is the ordinary Hosoya polynomial of G.
(5) Each end-vertex of a Steiner tree T(S) must be a vertex of S.

For 1<n<p, let C (u,G,k) be the number of n-subsets S of distinct
vertices of G containing u with Steiner n-distance k. It is clear that

C, (u,G,0)=1.
Define

H, (u,G;x) = f:c;(u,G,k)xk S (1.7)

k=n-1
Obviously, for 2<n<p

HIGX == SHIWGX. (1.8)
ueVv (G)

Ali and Saeed [1] were first who studied this distance-based
polynomial for Steiner n-distances, and established Hosoya polynomials of
Steiner n-distance for some special graphs and graphs having some kind of
regularity, and for Gutman’s compound graphs G, «G, and G, :G, in terms of
Hosoya polynomials of G1 and Go.

In this paper, we obtain the Hosoya polynomial of Steiner n-distance
of a complete m-partite graph K(p,, p,....p,,) ; and we determine the Hosoya
polynomial of Steiner 3-distance of a straight hexagonal chain G, .

Moreover, diam,K(p;, p,....p,) and diam,G, are also determined.
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2. Complete m-partite Graphs

A graph G is m-partite graph [3], m>1, if it is possible to partition
V(G) into m subsets v,,v,,...v,, (called partite sets ) such that every edge e
of G joins a vertex of v; to a vertex of v;, i=j. A Complete m-partite
graph G is an m-partite graph with partite sets v,,V,,...V,, having the added
property that if uev; and vev;, i=j, then weE@G). If V|=p;, then this
graph is denoted by K(p,, p,,...p,) -

It is clear that the order, the size and the diameter of K(p,,p,.....py)

are > p;, > p;p;,and 2, respectively.

i=l i)
The following proposition determines the diameter of Steiner n-
distance of K(py, p,,....py) -
Proposition 2.1. For n>2, m>2, let p’'=max{p,, p,,...p, |, then
diamZK(pl,pz,---pm)={nn’_17 ';2;::56_
Proof. Let S be any n-subset of the vertices of K(p,,p,,....py) - IT S contains
uv such that uev, and vev;, i=j, then (s) is connected, and so
d(S)=n-1.
Ifscv,, for 1<i<m, then d(S)=n, namely, the size of T(S)(=zK(n)).
Therefore, taking S <V, and 2<n<p’, we get diam,K(py, p,.....ppn) =n.
If n>p’, then S must contain vertices from at least two different partite sets.
This completes the proof. T(s) (= K (1 n)) L
Theorem 2.2. For nm=>2,
H o (K(py, PzoeeesPm) ) = Cix™ 4+ Cox",
in which

()50 50

Proof. From Proposition 2.1, for each n-subset S,
n-1<d(S)<n.
For each n-subset ScvV;, 1<i<m, d(S)=n, thus the numbers of such n-

subset is C,. Since, the number of all n-subsets is [Ej then C, is as given

in the statement of this theorem. [ ]
The next corollary follows directly from Theorem 2.2.
Corollary 2.3. For nm=>2,
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W, (K (Py, Povees pm))=(n—l)(sJ+Z[F:j1

5(7)
§ -

Remark. By combinatorial argument one can easily show that

S0 JH0)

o

/ur:(K(plva lllll pm)):n_l+

Thus form>2,

A complete m-partite graph is called a regular compete m-partite
graph[3], if p,=t for all i, and it will be denoted by K, . The Hosoya

polynomial and the Wiener index of Steiner n-distance of K, are given in
the following corollary. Its proof follows easily from Theorem 2.2.

Corollary 2.4. For 2<n<p=mt

) H;(Km(t);x)zmmxn {(H:J_m[:]ﬂxnl_
@ Wi ) =(n-3f 7 o .
H

3. Straight Hexagonal Chains

A cycle of length 6 can be drawn as a regular hexagon. A Straight
Hexagonal Chains G,, m>2, is a graph consisting of a chain of m
hexagons such that every two successive hexagons have exactly one edge in
common in the form shown in Fig. 3.1.
It is clear that

p(G,)=4m+2, q(G,)=5m+1
One can easily show that

diamG,,, =2m+1. ... (3.1)

The graph G,, is known to Chemists [5,6] as benzenoid chain of m

hexagonal rings.
We shall find a formula for the diameter of the Steiner n-distance of
the graph G,, for some values of n. The vertices of G,, are labeled as shown

in Fig. 3.1.
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Uom-a Usn_o Usm

u2m—5
Uomaa
us !
2m-5 u2m+1
’
Uom 4 Uzm-2 U
Fig. 3.1 G,

Proposition 3.1. Form>1, 2<n<m+2,
diam,G,, =2m+n-1.
Proof. It is clear that for n=2,
diamG,, =d (U, Upp,) =2m+1.
If n= 3, we find that a 3-subset s’ of maximum Steiner distance is
S'= {u1'u2m+l!U,2m }’
and so,
diam,G,, = d;(S") =2m+2.
For n=4, we notice that a 4-subset s” of maximum Steiner distance is
S"= {ul!u,2m+l’u2mvv},
in which
ve{uh, Uy, U o) -
Thus
diam,G,,, =d,(S") =2m+3

Hence, in general for an n-subset S, 2<n<m+2, of maximum
Steiner n-distance, we have the following cases:
(1) If nis even, then S consists of the first n vertices from the sequence:
u,, if miseven,

r ’ ’
ul!u2m+llu2mvu2m2!u2m4!u2m6""'{u' if misodd
4 .

When m is even, a Steiner tree, T(S) of such S consists of a (2m+1)-path,
Say, Up,U,,Us,....Usm.q,Usmy tOQEther with %2 paths each of length 2, namely
(UpmtUsm 1 U2 ) (Usm_s: Usm 5, Usm )~ Therefore, the size of T(S) is

(2m +1)+2[n%2): 2m+n-1.

When mis odd T(S) has the same structure as for the case of even m, and so
have size 2m+n-1.
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(2) If nis odd, then S consists of the first n vertices from sequence:
u,, if misodd,

Uy, Uty Usm U2, U4, Uomgs Usmgo--os PR
1 ¥2m+1 ¥2m s Y¥2m-21Y2m—4Y2m-6Y2m-8 U;;. if miseven.

When m is odd, a Steiner tree T(S) of such S consists of a 2m-path, say,

(U3, Uy, Upm, Upmey) - tOgeEther with nT_l paths each of length 2, namely

(Upmsts Ut s Usm ) s (Upm 35U 3,Usm_a ) » ---- Therefore, the size of T(S) is
2m+2(n7_1j:2m+n—1.

When m is even, T(S) has the same structure as for odd case of m, and so
has size 2m+n-1.
|

Proposition 3.2. Form>3, m+3<n<2m,
diam,G,, =3m+[n_2mJ.

Proof. An n-subset S of vertices, m+3<n<2m which has maximum Steiner
n-distance consists of m+2 vertices described in the proof of Proposition 3.1
together with other n-m-2 vertices chosen in pairs, each pair consists of 2
vertices, belonging to a hexagon, one of degree 2 and the other of degree 3.
For instance, when n and m are even, the added (n-m-2) vertices are
U Usm_13Usm_2,Usm 35+ EACH such pair of vertices gives one edge added to

the size of T(s"), |S|=m+2. Therefore the Steiner n-distance of S is
2m+(m+2—1)+[n_r;_2J. |
Remark. For m>2, n=p-2,

diam,G,, =n=4m.
Thus, for 2m+1<n<4m,

3m+{n_szdiam:Gm§ p-2,

and
diam,G,, = p—1, for n=p-1 or p.

We now find the Hosoya Polynomial of the Steiner 3-distance of G,,.
Theorem 3.3. For m>3, we have the following reduction formula for
H3(Gm; %),

H3(GmiX) = 2H3(GpyiX) — H3 (G2 X) + Py (%)
where F, (x) = 2x*™P[(2m - 3) + (9m —11)x + (13m — 9)x* + (Tm —1)x® + mx*]

Proof. Let S be any 3-subset of V(G,,) . We refer to Fig 3.1, and denote
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AZ{Ul,UZ,U]'_,U'z}, A':{u2mvu2m+l’u’2m!u’2m+l}1
B={u3,u5 ----- u2m—1}’ B’={u§,u5 ----- U'mel}’
C ={Us,Ug, Uy o} @ND C'={u},Ug,...Upm o -

For all possibilities of ScV(G,)-A (or ScV(G,)-A ), we have
the corresponding polynomial H;(G,_;;x). And for all possibilities of
S cV(G,)-{AUA}, the corresponding polynomial is H;(G,,_,; x).

Thus

H3(GmiX) = 2H3(Gpy3X) — H3 (G2 X) + P (%)

in which Fm(x) is the Hosoya polynomial corresponding to all 3-subsets of

vertices that each contains at least one vertex from A and at least one vertex
from A’. Therefore Fm(x) can be spilt into two polynomials F,(x) and F,(x),

where F(x) is the Hosoya Polynomial of all 3-subsets S that each contains

one vertex from A, one vertex from A and one vertex from
W =BUB'UCUC', and F,(x) is the Hosoya polynomial corresponding to all

3-subsets S such thats c AUA", SNA=¢ and SNA =¢.
(1) Now, to find F,(x), we consider the following subcases:
(@) If S =1y, Upm, v} OF {uf, Uz, v}, then
(1) Wheny e BUC, there are (2m-3) such subsets S each of 3-distance (2m-1).
(2) When y e B, there are (m-1) such subsets S, each of 3-distance 2m.
(3) When y ec’, there are (m-2) such subsets S, each of 3-distance 2m+1.

Therefore, for all such possibilities of S, S ={u;,u,,,y} Or {uj,usn, v}, yeW,
the corresponding polynomial is
P (x) = 2x™[(2m = 3) + (M= 1)x + (M — 2)x°]
(b) If S={u;,upm1,y} OF {Ui,upm.,y}, for all yew, then the corresponding
polynomial can be obtained by a similar way of (a) as given below
P, (x) = 2x™[(2m - 3) + (M = 1)x + (M — 2)x*]
() If s ={u,uby, y}Or{ui,u,,, vy}, y eW , then the corresponding polynomial is
Py(x) = 42m—3)x*™ .
(d) If s={u,upnay} OF {Uj,Upmay}, yeW, then the corresponding
polynomial is
P, (x) = 4(2m - 3)x*™*
(e) If S={u,uy,,y} Or {uy,uy,,y}, for all yew, then the corresponding
polynomial is
P (x) = 2x*™2[(2m - 3) + (M- )x + (m - 2)x°] .
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() If S={u, Uy, y}or{us,usm,g,y}, for allyew, then the corresponding
polynomial is

Py (x) = 2x*™[(2m = 3) + (M —1)x + (m - 2)x?] .
(@) If s={u,uy,,y} Or {uj,u,y,,y}, for all yew then the corresponding
polynomial is

P, (x) = 4(2m-3)x2™*,
(h) If S={u,,Upp,y} OF {Uy,umma,y}, for all yew then the corresponding
polynomial is

Py (x) = 4(2m—3)x*™ . Therefore

8
F(x)=> R

i=1

2x2M2[(2m - 3) + (2m —13)x + (13m —19)x? + (7Tm —11)x>

+(m-2)x*].
(I) To findF,(x), let S consists of two vertices from A and one vertex
from A", or one vertex from A and two vertices from A’'. Thus we have

2[2][3: 2(24) possibilities for the 3-subsets S, 24 of them give the same
Hosoya polynomials for the other 24 cases. These 24 cases are listed in the

following table with their Steiner 3-distances:
Table 3.1

3-subsets S Steiner 3-subsets S Steiner
distances distances

1.
2.
3.
4.
S.
6.
7.
8.
9.
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Therefore, there are 4 subsets S of 3-distance (2m-1), 20 of 3-
distance 2m, 20 subsets of 3-distance (2m+1) and 4 subsets of 3-distance
(2m+2). Thus,

F,o(x) = 4x®™ 11+ 5x +5x2 + x°).

Adding F(x) to F,(x) we get Fm(X) as given in the statement of the theorem.|li

Remark. Hosoya Polynomials of Steiner 3-distance of G, and G,are
obtained by direct calculation as shown below:

H3(Gy;x) = 6x% +12x° + 2x4,
and

H3(G,;x) =15x? +36x° +38x* + 27x° + 4x°.

The reduction formula given in Theorem 3.3 can be solved to obtain
the following useful formula.

Corollary 3.4. For m>3
H; (G, X) =3@m -1)x? +12(2m -1)x° + 2(18m —-17)x*
m-3
+27(M-1)x° +4m-1)x° + D" (K +DF 4 (X) ,
k=0
where
Foy (X) = 2x2M KD [(2m — 2k —3) + (9m — 9k —11)x + (13m —13k —9) x>

+(Tm=7k =)x® + (m-k)x*].
Proof. From Theorem 3.3,

H3(GiX) =2H3(Gpy 15 X) = H3 (G i %) + Fp ()
= 2[2H;(Gm—2;x) - H;(Gm—a‘;x) + Fm—l(x)] - H;(Gm—z;x) + Fm (X)
=3H3(Gpy ;%) — 2H3(Gpy 3 X) + Fy (X) + 2F;, 5 (X)
:3[2H;(Gm—3; X)_ H;(Gm—4;x)+ mez (X)]
—2H3(Gp_g; X) + Fy (X) + 2F 1 (X)

= 4H3(Gp_3;%) —3H3 (G4 X) + Zzl(k +D)F k(%)

k=0
m-3

=(M-DH;(GX) - (M=2)H3(G; x) + D (K+DF,  (x)  ...(3.1)
k=0

From the remark above, we have
H;(G,;x) =15x? +36x° +38x* + 27x° + 4x°,
and
H3(Gy; x) = 6x% +12x° + 2x*
Substituting in (3.1) and simplifying, we get the required result. H
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The 3-Wiener index of G,, is given in the following corollary.
Corollary 3.5. For m>3,

W (G,,) =%m(m—2)(8m2 +35m+83) +225m—1

Proof. It is known that
* d *
W, (Gm) :& HS(Gm;X)|X:1

m-3
Hence W (G,,) =393m—337+2 " [64k*® + (116 -128m)k > + (64m* —180m + 68)k
k=0

+8(16m? —13m + 4)]
Now, using the fact that

ék :%(m—S)(m—Z), gkz :%(m—BXm—Z)(Zm—S) iks :{%(m_gxm_z)} |

and simplifying we get the required result. [ |
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