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ABSTRACT
The aim of this paper is to establish some new two dimensional
Taylor series formulas using some concepts of nonstandard analysis given
by Robinson and axiomatized by Nelson
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1- Introduction: -
Let f be a continuous function defined on a domain D and posses its
derivatives up to order nin D , then the Taylor development of f (X)

about X, with remainder form is given by:
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n-1¢ (k)
=3 0D x, R0,

where X, €D and R, ,(X) is the remainder, which takes one of the
following forms:

R0 =2 g
Rn,l(x>=fm(§)<x—xo)“, for  &elx, ]
Ry (%)= _1), J, -ty ) dt

Through this paper we need the following nonstandard concepts:
Every set or element defined in a classical mathematics is called standard

[1].

Definition 1.1

A real number X is called lit ~ ;.. " there exists a positive standard real
number I such that x| <r otl it is called unlimited. The set of all

unlimited real numbers is denoted byr [1].

Definition 1.2
A real number X is called infinitesimal if x| <r for all positive standard

real numbers 1 [1]

Definition 1.3
Two real numbers, X and Yy are infinitely close if x —y is infinitesimal,

and isdenoted by X =y [1].

Definition 1.4
A function f is differentiable at x_ , denoted byf '(x,), if there exists a

standard number A such that: f(x )= < FXo +AX) =T (X5) 3]
° AX

2- Higher Order Differentiation

In [2] and [6] a brief introduction of higher order differentiation is
given. Suppose that z =f (x,y) is a function of two variables with

continuous partial derivatives of first order, then the differentiation of zZ ,
denoted by dz , is defined by:
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dz =df (x,y)="f,(x,y)dx +f,(x,y)dy ,
since dz is also a function of X and Y , so if the second order partial

derivatives of f exists then differentiation of dz exists, and it is called
second order differentiation, which is denoted by d %z .
It is important to emphasize that the quantities dX and dy are

assumed to be constants. Therefore we have:
d?z =d’f (x,y)=d (df (x,y))

= (fdx +f,,dy Jdx +(f,dx +f, dy )dy

=f,dx? +2f dxdy +f,dy?

= (D,dx +D,dy )2f (x,y), where y _ 0
o ox

that is

d% (x,y)=(D,dx +D,dy ) 'f (x,y)- (2.1)
In general

d"f (x,y)=(D,dx +D,dy ) f (x,y)

= (3 )Py Dk Fdy *f (x,y) .22
k=0

Consider now z =f (x,y) such that:

x =u(t) and y =v (t) then df (x,y)and d% (x,y),--- are given as follows:
df (x,y) =f, (x,y)dx +f, (x,y )dy

where dx and dy are differentials of other functions not still constant,

therefore

d* (x,y)=(D,dx +D,dy )Zf (x,y)+(D,d* +D,d?y Jf (x.y)

and

d¥(x,y)= (Dxdx +D,dy )3f (x,y)+fd° +2f d*x?+f d°+2f d?y?+
3f,,d *xdy +3f d?y.

Therefore
2

d’f (x,y) = (D,dx +D,dy )’f 0y)+ D (2)(F,d“x! +f d*'y')+g(D,.D, .dx,dy),
i=1

where g(D,,D,,dx,dy)=3f,d?xdy +3f_ dxd? .
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The following lemma gives a general form of any compound function
f(x,y)

Lemma 2.1
Let f (x,y) be a continuous function of two variables X and Yy such

that x =u(t) andy =v(t) where a <t <b fora,b eR, then the n"
order differentiation of f (x,y) is given by:

4" () = (D, +D,y J'F iy )+ (1) (F, 0" x4,y
i=1
n-2 n-k-1 n-k

+ a. (n) (ijykdi—jﬂxjd n—i—k+1yk)

k=l j=1 i<

where ¢ are real constants

Proof:
Use mathematical induction to get the result.

3- Taylor Expansion of f(x,y)

Let f be areal valued function defined on a domainD , then

Af (x,)=F (x)-f(X,)=f (X, +AX)-f(X,), ..(3.1)
where Ax =x —x, (later we shall use h =x —x_).
Therefore
0 n-1¢ (k
Af (x,) = Z (X T (Xo) gy —Z%Akx +R,,(X,) ..(3.2)
k= ! k=1 :

where g (”r:(lé) for some ¢e[x,,x] [3].

Now by using Definition (1.4) we get that Ay =f '(x,)Ax , and then

dy =Ay = dy =f'(x,)Ax, ...(3.3)
therefore

AF (x,) = i%
thus
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A= 39T ) oy .(3.4)
k=1
where Rnfl(Xo)=id 't (£) for some & e [x,,x].[4] ...(3.5)

n!

The formulas (3.4) and (3.5) represent differential formulas of a
Taylor series expansion with remainder.
Similarly with a necessary modification we can define a Taylor series
expansion of multiple variable functions [2], [5].
Let z =f(x,y) be a function of two variables defined in a rectangular

region D such that its N -partial derivatives are defined and continuous in
D . By using (3.1) and (3.4) we find that:

foy) = S 0T0Ya) Ry, -3.6)

with the assumption that

f(Xo,Y,)=dT(X,,y,) and R, ,(X,,Y, )——d"f (£,4) for some
& ela,x]and i e[c,y]in D={(x,y):a<x <b c<y<d}.

Now putting h, =x —x, and h =y -y , and then applying (2.2)and
(3.6)we get'

f(x,y)= 1 ( )DS kD hs khkf (X,,Y,)+R._(X..Y,) ...(3.7)

sl&E

MH

n
Il
o

whereRnl(Xo,yo)zéz( )DIDERI*hEF (£,4) for
k=0

someé e[a,x], A €][c,y] [6].
Consequentially, with the first formula of (2.2) we can write the

exponential Taylor expansion formula of a function of two variables as:

ntq S . (Deh DNy ) _
f(x,y)=f (.Y, )+ Z;—!(thx +D,h, ) (x,.y,) =€ " (x,,y,)for  unlimited
n.
In the next section we try to deduce new formulas of Taylor series with

different forms of remainders.

4- Integral Formula of Taylor Series with Remainders
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The integral formula of Taylor series of a function of two variables
is based on the line integral on a curve. Let z =f (x,y) be a two variables

function whose partial derivatives f, and f, are defined and continuous in

an open rectangle region D and its differentiation is given by:

df (x,y)=f,dx +f dy =Pdx +Qdy , ...(4.1)
provided that f (x,y) posses its integral line Idf (x,y) Where C is a curve

C
inD . Let A(x_,y,) be the initial point of C and B(x,y)be the terminal

point of C, then

B(x.y)
farooy)= ] df Geyy ..(4.2)
C

A Yo)
Therefore j(PdX +Qdy ) =f (x,y) ~f (X,,Y,) ...(4.3)
C

provided that the differentiation is not exact whenever we used it , since the
line integral of exact differentiation will vanish.

Theorem 4.1
Let z =f (x,y) be a function of two variables whose n partial

derivatives in x and y are continuous in an open rectanglular region D such
that f (x,y) has a total differential of any order over a sectionally smooth

curve C contained completely in D with initial point (x_,y_)and terminal
point(x,y). Then the Taylor series of f(x,y) whose integral form of the
remainder is given by:

n-1
FOGY) =F (X ¥o) + 2 g ([ AT (X0, ¥,) + R, 4(X,,y,) WheTe
k=1 c
Ry (oY) =2 [ [d"f (s.u) for some sefa,x] and uelcy] in

c C
D={(x,y):a<x<b,c<y<d}.

Proof:
. B(x,y) -
Since jdf (s,u)= J' df (s,u) =f (x,y)-f (Xo:yo)’ then by using (21) we
C AlXo o)
get
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FGy) =F(Xg.y,) +[df (s,u)
C
=F(Xg.Y,) +[[df (Xoy,)+3 [d?f (s,u)]
C Cc

where df (X,.y,) =df (X,¥ x—,

Y =Yo
In general we obtain:

£00Y) = (001 0) + 3 g 1A (X0 Y0) +R, (1Y)
k=1 C

where _Z%I“_Idnf (S7u),forsome sela,x]and u €lc,y].

c C

n—l(xo ’yo

Corollary 4.2

Let z =f (x,y) be a two variables function satisfying the conditions
of Theorem 4.1, then:

Rn,l<xo,yo)=§2%<j Y f (x,.y,)

—sz (j )ki Dk"D;dxk’sdyi
i=0 y=y

Proof:

For finding its Taylor expansion, expand f in a Taylor series and use
formula (2.2).

Theorem 4.3
Let f(x,y)be a function whose n partial derivatives in x and y are

continuous in an open rectanglular region D such that ¢ (x,y) has a total

differential of any order over a sectionally smooth curve C where C is a
curve from A(0,x) to B(0,y). Then the Taylor series of f(x,y) with

integral form of the remainder is given by:

F(xy) = ”zlz T () D, )" (YD, ) £ (X.¥)|,, +Rya(Xo¥s)"

k=0i=0 2" (k — l)'l' y=Yo
where
X n-1
x—=u) f,(ut)du e
o1 |1 i )
" 2"(n -1l 2" = (m-k)k!

+I(y ~v ), ,s)dv
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Y X
and | = II(X —u)mfk (y Y )k fsmﬂtm(u v )dudv
00

Proof:
Put f, =f(X,)="f(x,.,Y,), then using theorem (4.1) we get

n-1
f=f,+> (] ydf,

k=1 C

X
=f, + 3 [£,(X,)dx +f, (X, )dy

XO
fo(X )dx? +2f (X )dxdy +f (X )dx no1

o Xy o X o

](' XX +Zz+<(,[ )kdkfO
X C

o |+f (X )dy? =
yy o

—+

Al
XKe— %

1 (%) + 2 (2 ) + 1, (%, )]

+%[ﬁfxx(xo)dxx +z]jfxy(xo)dxdy + [ [,y (< )dlyy +nzzik(j )d*f,
00 00 00 k=3 C
=T (xo) + 2 [xf, (%) + ¥, (X,)]
HEP L 06) 4 20 06) + 5, 06 )4 2] ya,
k=3 C

In general applying formula (2.2) to expand each d" and integrate the
result term by term we obtain:

253 S8 RO S TR

k0i=0 2 (k —i)!i! Y=Yo
for determination of R__ ,follows from Theorem 4.1, thus

R, zz%j,,_.[dnf (s,t) for some s €[0,x]and t €[0,y].

n

cC C
Therefore

R, :ZAJ'I
C cC

> (7)DI D} (s,t)ds™Sdit
=0
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(7 )j jD” DI (s,t)ds"dlt ...(4.4)
¢ ¢
for the last formula(4.4) we use integration by part to get the first and final
terms of R then using the result obtained by calculating the values of

between in terms of g to get the final result of R, , as follows:

2[]

X

_ n—lf i ,
. I(x u) f.(u,t)u (mz)

1 k+1
R =-—— |° il _\k )
T | . o kzo M —K)Kk! -
+J(y -v) f.{,s)v

0
where

x —u ) fsm”t"+1(u v )Ydudv

o!—..‘<
o'—'x

Theorem 4.4
Let z =f (x,y) be a function whose n partial derivatives in x and y

are continuous in an open rectangular region D such that f (x,y) has a

total differential of any order over a sectionally smooth curve C where C is
a curve whose parametric equations are given by x =h(), y =g(t)

a <t < B a,p <R, where the initial point is A(x,,y,)=(h(«),g(«)) and
the terminal pointis B(x,y) = (h(t),g(t)) for some t €[, f]. Therefore the

Taylor series of f whose remainder is given by:

f(xt).yt))=f (x(a)y(a))+s'(a)t —a)+#(t —05)2+---+S((n 1(1(;)( a)'?t
+ Rn—l(xoiyo)’
where
Ry 1K ¥o) = L [ ) )du
n-1\"*o07J o ( _l)l
And s(u) IS the integral of the quantity

P(x)yU)x'@)+Q(x(u)yu))y ')

Proof:
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(xy)
We have dex +Qdy = I Pdx +Qdy
c (9¥a)

=[P (x®).y O)x'O)+Q (x(t).y ©))y Okt -

wherea <t < f3.
Now using equation (4.3) to get

f(x@).y©)=f (x(a),y(a))+[s'u)Hu

Then applying integration by part on the last equation n-times we get:

n-1 (k)
F(xOYO)=F (<@ @)+ 3 DR,
where
R, 4, Y) = —— [t ~u)s(u)du

(n =1)!

a
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