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ABSTRACT

In this paper, centrally prime and centrally semiprime rings are
defined and the relations between these two rings and prime (resp.
semiprime) rings are studied. Among the results of the paper some
conditions are given under which prime (resp. semiprime) rings become
centrally prime (resp.centrally semiprime) as in:1-A nonzero prime (resp.
semiprime) ring which has no proper zero divisors is centrally prime
(resp.centrally semiprime).Also we gave some other conditions which make
prime (resp. semiprime) rings and centrally prime (resp.centrally
semiprime) rings equivalent, as in :2-A ring which satisfies the- (BzP) for
multiplicative systems is prime (resp. semiprime) if and only if it is centrally
prime (resp.centrally semiprime).3-A ring with identity in which every
nonzero element of its center is a unit is prime (resp. semiprime) if and only
if it is centrally prime (resp.centrally semiprime).

Keywords: prime rings, semiprime rings, centrally prime rings, centrally
semiprime rings, localization.
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Introduction:

Let R be a ring .A non-empty subset S of R is said to be a
multiplicative closed set in R if abeS implies that abeS ,(Larsen and

McCarthy,1971) and a multiplicative closed set S is called a multiplicative
system if O ¢ S (Larsen and McCarthy ,1971).Let S be a multiplicative

system in R such that [s,R]={0},where [S,R]={[s,r]:seS,reR}.

Define a relation (~) on Rx S as follows :
If (as),(b,t)eRxS then (a,s)~ (b,t) if and only if there exists x e S such that

x(at—bs)=0.Since [S,R]1={0}, it can be shown that (~) is an equivalence
relation on RxS.Now denote the equivalence class of (a,S) in RxS by
ag, thatis ag ={(b,t) e RxS:(a,s) ~ (b,1)} (this equivalence class is also denoted

by %(Larsen and McCarthy,1971) or by s~1a, and then denote the set of

all equivalence classes determined under this equivalence relation by R,
that is let Rg ={a;:(a, s)eRxS}.Note that Rg Is also denoted by

s~Ir (Larsen and McCarthy, 1971).

On Rg we define addition (+) and multiplication (.) as follows:

ag +b =(at+bs)gt and ag.by =(ab)gt, for all ag,by eRg .

It can be shown that these two operations are well-defined and that (Rg +..)
forms a ring which is known as the localization of R at S (Larsen and

McCarthy, 1971).

Let R be aring.Then R is called a prime ring if whenever a,beR are
such that aRb={0}then a=0 or b=0, (Ashraf,2005, Jung and Park,
2006), and it is called a semiprime ring if aeR, is such that ara={0} then
a=0,(MVukman, 1999, Argac, Nakajima and Albas, 2004), where
aRb={arb:r e R}.

Before giving the main results of the paper we introduce some definitions .
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Let R be aring and S a multiplicative system in R. We say S has zero
commutator if [s,R]={0} and we call S a bi-zero multiplicative system if:

i: [S,R]1={0} and ii: ann(s)={0}, forall ses, and we say R satisfies the bi-
zero property (BzP) for multiplicative systems in R if every multiplicative
system S in R which has the property [s,R]={0}has also the property that
ann(s)={0}, forall sesS.

Example 1:
It is easy to show that every multiplicative system in Z is a bi-zero

multiplicative system, that is if S is any multiplicative system in Z then
[S,R]={0} and ann(s)={0}, forall sesS.
Now let us take the ring of all 2x2 matrices over Z, (M,,,+,.).It is

known that this ring is not commutative.Take S :{((1) (1)},(_01 OJ}, it is not

difficult to show that S is a multiplicative system in M, ,,also we can
show that [S,M,, ,]1={0}.

10 00 -1 0
To show ann((o J):{(o OJ}:ann([o _J)-
If (X YJeann([l Oj% then [1 OMX yj:(o OJ which implies that
u v 01 0 1)lu v 00

x y) (00 1 0), (00
[u v]_(o oj , and hence ann((0 J)_{(O O)}.

Similarly it can be shown that ann([_o1 _OJ):{(E gj}.That means it is also

possible for non commutative rings to have multiplicative systems with
above two properties.

Remark:

Let R bearingand S a multiplicative system in R such that [S, R]={0}.If

A is an ideal of R then it is easy to show that Ag ={as:acAsesS} is an
ideal of Ry .

Conversly, if Kis an ideal in Rg then there exists an ideal J in R such that
K =Jg ,(Jabbar,2004).1t is necessary to mention that if A B are ideals of R
such that A=B then Aq =Bgbut in general the converse is not true and we

give below an example to establish this fact.
Example 2:
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Consider the ring (Z15.+15. 12).S ={1.2,4,8} is a multiplicative system in

Z4, .By simple computation we can get:

(Z19)g =101,05.04.0g 1) 1514 15,21,25,24,2g,..11; 115 11, 116}

Note that

0,=0,=04=0g=3 =3,=3,=33=6/=6,=6,=65=9,=9,=9, =9,
1y=1y =25 =2g =4y =4, =5, =5g =71 =7, =85 =83 =107 =104 =11, =115 and
2)=1y,=1g=2,=4,=45=5/=5,=7,=7g=8 =8, =10, =10g =11y =11,.

So that (Z15)g ={0111,2¢} which is an ideal in (Z,)g .

Now 1={0,2,4,6810} and J ={0,4,8}are two ideals in z;, so that 15,35 are

ideals in
(Z15) g -By the same technique as we used above we can get that

and also we will show that this existence becomes unique under certain
conditions as we see latter(see Theorem 2 and Theorem 3).Now we
mention the following two results the proof of which could be found in
(Jabbar,2004).
LetR bearingand S is a multiplicative system in R such that [S, R]={0}.If
| and J are ideals of R then:
1:(0)g =1gJg, and 2:(1Mg =(15)", forall nez*.
The Main Results:

First we prove a lemma which will play the basic role ,as we see latter,

in the proof
of the main results of the paper.

Lemma 1:
Let R be a ring and S a bi-zero multiplicative system inR.If
abeRrand S,teS then aRb={0} if and only if agRgb; ={0}.

Proof :
Now let arRb={0}.Then if ry eRg (is any element), where reRand

xe S ,we have agryb; = (arb) gyt =0g¢t =0,(SINCe arb caRb={0}, SO arb=0).
Hence agryb; =0,for all ry eRg, thus agRgby ={0}, which proves the “only

if “ part.
To prove the “if’part, let agRgbt ={0}, where a,beR and s,teS, then for

any reR we have rseRg, and hence asrsht eagRgbt, which gives
asrsby =0 Or (arb)gst =0, then there exists teS(t depends on rysuch that
t(arb)=0, thus arbeann(t) and S bieng a bi-zero multiplicative system so
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ann(t) =0 and hence we get arb =0, this last result is true for all reR, which
implies that aRb ={0}, and this completes the proof .

Remark:

If R isaringand S isa multiplicative system in R such that [S, R]={0}.If
I, J are ideals in R such that 1=Jthen Ig=Jg.But in general the
converse is not true (see Example 2). Now we give some conditions under
which Ig =Jg implies 1=J.

Theorem 2:

Let R be a ring and suppose that Sis a multiplicative system
in R such that [s,R]={0}.

If 1 and J are prime ideals of R such that Ins=¢=JnS,then 1=J if and
only if 15 =Jg .
Proof:

For the proof of the “only if” part see the last remark so we prove only
the “ifpart.

Let Ig=Jg.Toshow I=J.Let acl.Since S=¢ sotakeseS.Thenagelg
andhence ageJg, and SO ag=b; for somebelJ, teS, so that
(a,s) ~ (b,t) which implies that there exists ueS such that u(at—bs)=0, then
uat=ubse JOr utaeJ but u,teS implies uteS and JNS=¢ thus uteJ and
J being a prime ideal so acJ .Hence I < J.By the same technique we can
show that J <1 and hence 1=J o.

Theorem 3:

Let R be a ring with identity 1, _ is a multiplicative system in R
such that [s,R]={0}and 1,J are ideals in R.If every non-zero element of
CentR isaunitin R, then 1=J ifandonlyif 15 =Jg.

Proof:
The “only if “ part has been proved.So it remains to prove the

converse part.
Let Ig =Jg.If xeI thenthere exists seS, (since S=¢ )and then

xs € lg =Jg, and hence there exists
at €Jg, for some acJ and te$ such that xs =a¢ Which gives (x,s) ~ (a,t) ,hence

there exists veS such that v(xt —as)=0 Or vxt=vase J then vtixe J .Nowv,te$S
implies vte S, thus vt =0 (since 0¢ S ). But then since [S, R]={0}so
[vt, R]={0} which means that vt e CentR, hence 0= vt e CentR and thus by the

given assumption vt is a unitin R, thatis (t)~1 <R and then vixe J
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implies (vt) lvtxe J thatis 1.xe J which means that x<J and hence

I < J .Similarly it can be shown that J 1 .Hence 1=1J .
Now we introduce the following definition:
Definition:
LetR be a ring.We say that R is centrally prime (resp. centrally
semiprime) if Rg is prime (resp. semiprime) for all multiplicative systems

S in R which have zero commutators.

Example 3:
As we have mentioned in Example 1, that every multiplicative system S in

Z is a bi-zero multiplicative system, that is Z satisfies the —(BzP)
property.Now we will show that zg is a prime (resp. semiprime) ring.Now

let for a,bez and s;teS we have agZghy ={0}, but S being a bi-zero

multiplicative system so by Lemma 1, we get that azb={0}, and hence as
especial case a.l.b=0 or a.b=0, which implies a=0or b=0, thus
ag=0g=0o0rb; =0y =0, SO Zg is a prime ring , and S being arbitrary

multiplicative system with zero commutator , so we get that Z is a centrally
prime ring .Since every prime ring is a semiprime ring so every centrally
prime ring is centrally semiprime and thus Z is also a centrally semiprime
ring.
Next we apply the result of Lemma 1, to prove some theorems which
determine the relations between prime (resp. semiprime) and centrally
prime(resp.centrally semiprime) rings, in each of the following two
theorems (Theorem 4 and Theorem 5) a condition is given which makes
prime (resp. semiprime) rings and centrally prime (resp. centrally
semiprime) rings equivalent.
Theorem 4 :

Let R be aring. If R satisfies the-(BzP) for multiplicative systems,

then R is prime (resp. semiprime) if and only if R is centrally prime (resp.
centrally semiprime).
Proof :

Let R be a prime ring and S be any multiplicative system in R
which has zero commutator, that is [S,R]={0}, to show R is a centrally

prime ring it is enough to show that Rg is a prime ring.Since R satisfies

the- (BzP) so  ann(s)={0}, for all ses, thatis S is a bi-zero multiplicative
system . Now let for ag,by eRg we have asRgbt ={0}, (where a,beR and

S,t € S).Then by Lemma 1, we get aRb={0} and R being a prime ring we
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get a=0 or b=0.If a=0 then ag=05=0 and if b=0 thenb; =0; =0 and
hence Rg is a prime ring and since S is arbitrarily choosen we get that Rg

is prime for each multiplicative system S in R which has zero commutator
and hence R is centrally prime .

Conversely, let R be centrally prime ring, we will show that R is prime.
So let for a,beR we have aRb={0}, if S is any multiplicative system in R

with zero commutator then Rg is a prime ring and since R satisfies (BzP)

for multiplicative systems so S has the property that ann(s)={0}, for all
seS,thatis S is a bi-zero multiplicative system. Now since S =4, so there
exists an ses, then ag,bseRg, and since aRb={0} and S is a bi-zero
multiplicative system so by Lemma 1, we get agRghs ={0}, but Rg being a
prime ring we get ag =0,0r bs=0. If ag =0, then there exists ueS such that
ua=0, thus aeann(u)and since R satisfies (BzP) for multiplicative systems
so ann(u) ={0} and hence a=0.If bg =0, by the same technique we get b=0.

Hence R is a prime ring which completes the proof of the case when R is
prime and for the case when R is semiprime the same technique is
applicable to get the result .
Remark:
In the Example 3, we have proved directly that Z is a centrally prime as
well as a centrally semiprime ring, here we can use Theorem 4, to show this
fact as follows:
It is known that a non-zero ring which has no zero divisors are prime as well
as semiprime and since Z has no zero divisors so it is prime and hence
semiprime,on the other hand Z satisfies the (BzP) for multiplicative
systems as we have mention in Example 3, thus by applying Theorem 4,
Z becomes centrally prime and hence centrally semiprime .
Theorem 5:

Let R be aring.If R has the identity 1 and every nonzero element of
CentR isaunitin R then R is a prime (resp. semiprime) ring if and only if
it is centrally prime (resp. centrally semiprime).
Proof:

We will show that R satisfies the- (BzP) for multiplicative systems in

R,so let S be any multiplicative system in R with zero commutator.If
seS is any element then since [S,R]={0} SO [s,r]=0,for all reRr, that is
sr—rs=0,for all reRr, and thus sr=rs,for all reR which means that
seCentR, and then 0¢S and seS implies s=0, hence 0=seCentR which
means that S is a unit , the next step is to show that ann(s)={0}, S0 let
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xcann(s) then sx=0 and S being a unit ,s™L <R thus sx=0 implies that
sIsx=s"10=0, hence x=0 which means ann(s)={0}, and S being arbitrary
in S so we get that ann(s)={0}, for all ses, and hence every multiplicative

system S in R with zero commutator satisfies also the property
ann(s)={0}, for allses, and thus R satisfies (BzP) for multiplicative

systems.Hence by Theorem 4, Ris prime (resp. semiprime) if and only if it
is centrally prime (resp.centrally semiprime) which completes the proof .
Now, in each of the following two theorems we give a condition which
makes prime (resp. semiprime) rings centrally prime (resp. centrally
semiprime),we see below that nonzero prime (resp. semiprime) rings which
have no zero divisors are centrally prime (resp. centrally semiprime), which
means , in some sense , that centrally prime (resp. centrally semiprime)
rings are generalizations of those non-zero rings which have no proper zero
divisors.
Theorem 6 :

If R is a non-zero prime (resp. semiprime) ring which has no proper
zero divisors then it is centrally Prime (resp. centrally semiprime).
Proof:

Suppose R has no proper zero divisors.We will show that R is
centrally prime , so let S be any multiplicative system in R with zero
commutator , to show that Rg is a prime ring, let for ag,b; eRg  we have

agRgbt ={0}, where abeR and steS. Since R={0}, so there exists
0#reR.Then rg eRg and hence agrsby cagRgby Which gives agrshy =0 or
(arb)gst =0, and hence we get that there exists teS such that t(arb)=0 or

tarb=0, but R has no proper zero divisors so t=0 or a=0 or r=0 or
b=0.But 0g¢SandteS implies that t=0.Also r=0(since r is choosen

non-zero in R) thus we get a=0 or b=0. If a=0 then ag =04 =0 and if
b=0 then b; =0; =0.

Hence Rg isaprimeringand S being arbitrary multiplicative system in R
with zero commutator we get Rg which is a prime ring for all multiplicative

systems S in R with zero commutators and hence R is a centrally prime
ring.The proof of semiprimeness case is exactly as the proof of primeness
case but we just take agRgag ={0} instead of agRgbt ={0} and repeating the

same outlines of the above proof .
Next we give another condition under which prime (resp. semiprime) rings
are centrally
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prime (resp. centrally semiprime) and that condition provides R to be a
finite ring and this can regarded as a corollary to Theorem 6.

Corollary 7 :

A finite prime (resp.semiprime) ring R is centrally prime (resp.
centrally semiprime).
Proof:

We will show only the case when R is a prime ring and the case when
R is semiprime can be done by the same technique. So let R={r;,ry.,....rm}
and S be any multiplicative system in R with zero commutator, we must
show that Rg is a prime ring.Now let ag,b; e Rg are such that agRgbt ={0},
where a,beR and s,teS.
For each i (1<i<n) we have (rj)s e Rg and thus as(rj)sby =0, for all I,or
(arjb) st =0, for all I ,and thus we get that for each i (L<i<n), there exists
tj €S such that t; (arjb)=0.Now let x=t;t,..ty . Since for all i, tj €S so that
x=tt,..tn €S. But since [S,R]={0} and for all I, we have tjeS, SO
titj =tjt;, forall i, j .Hence for each I we get
x(arjb) =tyty. .t (@rb) =tyts .4, 4t ot t(@nb) =ttt gt 4..1..0=0,
which gives that (xa)rjb =0, for all I, that is (xa)rib=0, for all r; eR and this
means (xa)Rb={0}, but R being a prime ring we get xa=0 or b=0.
If xa=0 then ag =xyag =(xa)ys =0xs =0, and if b=0 then b; =0; =0.
Hence Rg is a prime ring which proves that R is centrally prime .
In fact, Corollary 7, tells us that centrally prime (resp.centrally semiprime)
rings are, in some sense, generalizations of finite prime (resp. semiprime)
rings.
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