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ABSTRACT 

 

This paper is devoted to drive the matrix algebraic equation for the one-

dimensional nonlinear Klein-Gordon equation which is obtained from using the 

implicit finite difference method. The convergence analysis of the solution is 

discussed. Numerical computations are conducted and the solutions are stable and 

convergent when the sine function is used as an initial condition. 
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convergence analysis.  
 اللاخطية  Klein-Gordonتحليل تقارب الحل للفروقات المنتهية لمعادلة 

 اخلاص سعدالله الراوي 
 كلية علوم الحاسوب والرياضيات، جامعة الموصل 

 06/2007/ 28تاريخ القبول:                              2007/ 03/ 22تاريخ الاستلام: 
 الملخص 

غير الخطية ذات   Klein-Gordonالجبرية لمعادلةهذا البحث باشتقاق معادلة المصفوفة يختص 
دراسااة و حلياال  قااارب  تالبعد الواحد التي نحصل عليها من استخدام طريقة الفروقااات المهتهيااة الةاامهية   و ماا 

مسااتقر و ومتقار ااة فااي حالااة اسااتخدام دالااة الجياا  ك اار   كاناات الحلااو الحسااابات العدديااة و وقااد رجرياات الحاال  
 ابتدائي   

 حليل ، غير الخطية  Klein-Gordonمعادلة، طريقة الفروقات المهتهية الةمهيةلمفتاحية: الكلمات ا 
  تقاربال

1-Introduction 
 

 Let us consider the following nonlinear Klein-Gordon equation 

(NKG) [2,4] 

 
2

22

2
0

p
c

t


   

−
−  + − =


     (1) 

where ),( tx =  is a function from RtoRRL  ),0(),0( , and  

c R  

with Dirichlet boundary conditions 
 

                    == tLtt 0,),(0)0,(    

and initial conditions 
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                     Lxvu ttt == == 0,, 0000   

 let p=4 eq.(1) becomes 
2

22

2
0c

t


   


−  + − =


      (2) 

The relativistic wave equation of the motion of a free particle with 

zero spin, found by physicists O. Klein and V. Gordon is called Klein-

Gordon equation (KGE)[1]. The Klein-Gordon equation is one of the 

nonlinear extensions of the wave equation. For example, such an equation 

describes the vibration of a string that lies on an elastic foundation with 

nonlinear elastic forces. The Klein-Gordon equation, and especially the Sin-

Gordon equation, is often encountered in physics [3]. From equation (1) it is 

possible to develop the theory of electrically charged fields and study the 

interaction of ψ with an assigned electromagnetic field. On the other hand, it 

is also possible to study the interaction of ψ with its own electromagnetic 

field, which is not assigned but is an unknown of the problem. In the last 

years a wide interest was born about solitary waves of eq.(1) , i.e. solutions 

of the form  

                            iwtexutx )(),( =  

where u is a real bounded function and w R  [4 ]. 
 

Jean-Philippe Nicolas [5] studied the nonlinear Klein-Gordon 

equation outside a slow kerr black hole and solved the global Cauchy 

problem for large data with minimum regularity and also proved the 

existence of smooth profiles and Summerfield radiation conditions. Dimitri 

Mugnai [4] established the existence of infinitely many nontrivial radially 

symmetric solitary waves for the nonlinear Klein-Gordon equation, coupled 

with a Born-Infeld type equation under general assumptions. Bektas, Bulut 

and Ergut [1] obtained the Klein-Gordon equation(KGE) in the Galilean 

space and applied Adomain Decomposition method to (KGE), the 

advantage of the decomposition methodology displays a fast convergence of 

the solutions. The decomposition method provides a reliable technique that 

requires less work if compared with the traditional techniques .Jean-Marc 

Delort and Jeremie Szefel [2] devoted to the proof of almost global 

existence results for Klein-Gordon equations on compact resolution 

hypersurfaces with non-Hamiltonian nonlinearities when the data are 

smooth, small and radial and used the method combines normal forms with 

the fact that the eigenvalues associated with radial eigenfunctions of the 

Laplacian on such manifolds are simple and satisfy convenient asymptotic 

expansions. 

In this paper, we will derive the matrix equation for the one-

dimensional Klein-Gordon equation which is obtained from using finite 
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difference method by using the implicit time discretization method, then we 

will prove the existence of the solution of the matrix equation, and give two 

examples for the Klein-Gordon equation in order to show the convergence 

analysis for the numerical results.  

Lemma (1): The nonlinear Klein-Gordon equation (1) has a unique solution 

ψ continuous and bounded and also t  is continuous and bounded [2]. 

2-Derivation of the matrix equation using the finite difference method 

We introduce a uniform grid by defining the following discrete set of 

points in the x, t plane: 

 

          xi = ih ,       i=0,1,...,n-1,n  

           tj = jk ,       j=0,1,...,m-1,m 

 

The discretized solution of equation (2), by using the implicit finite 

difference method is  
 

1 2

1 12 2

2
2

1 1
( ( ) 2 ( ) ( )) ( ( ) 2 ( ) ( ))

( ) ( ) ( ) 0 (3)

j j j j j j

i i i i i i

j j j

i i i

x x x x x x
k h

c x x x

     

  

− −

+ −− + − − +

+ − =

Divide the interval  (0 , L) into  n  subintervals ),( 1 ii xx −  with length  
n

1
 ,  

i =1,2,…,n, 0=x0<x1<…< xn-1<xn=L, and multiply equation (3) by k2, we get 

the following equation 
2

1 2

1 12

2
2 2 2

( ) 2 ( ) ( ) ( ( ) 2 ( ) ( ))

( ) ( ) ( ) 0

j j j j j j

i i i i i i

j j j

i i i

k
x x x x x x

h

c k x k x x

     

  

− −

+ −− + − − +

+ − =

 

after arranging the above equation in terms of 1 1( ) , ( ) ( )j j j

i i ix x and x  − + , 

we get 
2 2 2

2
2 2 2 1 2

1 12 2 2

2
( ) (1 ( ) ) ( ) ( ) 2 ( ) ( )j j j j j j

i i i i i i

k k k
x c k k x x x x x

h h h
     − −

− +− + + + − − = −

1

1 1( ( )) ( ) ( ( )) ( ) ( ( )) ( ) ( ( ))j j j j j j j

i i i i i i iA x x B x x A x x F x       −

− ++ + =   (4) 

for i=1,2,…,n-1, where 
2

2

2
2

2 2 2

2

1 1 2

( ( ))

2
( ( )) 1 ( )

( ( )) 2 ( ) ( )

j

i

j j

i i

j j j

i i i

k
A x

h

k
B x c k k x

h

F x x x



 

  − − −

= −

= + + −

= −
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Note that the definitions of    ( ( )) ( )j j

i iB x depend on x and                                                               
1 1 2( ( )) ( ) ( )j j j

i i iF x depend on x and x  − − −
. Equation (4) now becomes in 

following algebraic matrix equation.: 

  ( ) 1( )j j j   −=C F
 
 

where  ,
( 1) ( 1)

( ) ( ( ))j j

l s i
n n

C x 
−  −

=   C is the tri-diagonal matrix. 

1 1

2 2 2

2 2 2

1 1

( ( )) ( ( )) 0 0 ........ 0

( ( )) ( ( )) ( ( )) 0 ........ 0

0 ...........

. ... ............

.... ...........

0 ( ( )) ( ( )) ( ( ))

0 0 ( ( )) ( ( ))

j j

j j j

j j j

n n n

j j

n n

B x A x

A x B x A x

A x B x A x

A x B x

 

  

  

 

− − −

− −

 
 
 
 
 
 
 
 
 
 
 
 

 

and   {ψj}={ψj(x1), ψ
j(x2), ….. , ψj(xn-1)}

T 

        ( ) 1j −F ={F(ψj-1(x1)),F(ψj-1(x2)), ….. , F(ψj-1(xn-1))}
T 

 

Since ( ( ))j

iA x  is a constant then the matrix )( j  is 

symmetric. 

In each time step jЄ , we assume that 1( ) ( )j j

i i  −=C C , 1

0

j j  −=  for 

iЄ which allows the use of an iterative solution method to compute ψj. we 

stop when the norm of the difference of  1

j j

i iand  −   is sufficiently 

small. This method is called the direct iterative method. 
 

3- Existence of the Finite Difference Solution 

we now prove the existence of the solution of the matrix equation. 
 

Theorem (1): The solution of the matrix equation 

                      ( ) 1( )j j j   −=C F  exists. 
 

Proof:  Let jЄ  be fixed. Consider the following iteration of the matrix  

equation 

   1

1( ) ( ) ,j j j

i i i   −

− =  C F N    (5) 

where 1

0

j j  −= . By subtracting the equation(5) from 

   1

1( ) ( )j j j

i i   −

+ =C F , we have 

   1 1( ) ( ) 0j j j j

i i i i   + −− =C C  

    1 1( ) ( ( ) ( ))j j j j j j

i i i i i i     + −− = −C C C     (6) 



Ekhlass S. Al-Rawi 
 

 

 105 

from the right hand side of eq.(6), the kth element is 

                    
1

j j j

, i-1 , i i
1

( ( )) ( ( )) ( )
n

k s k k s k s
s

C x C x x  
−

=

−   

By the Mean Value theorem, it becomes 

                  
1 1

j j j j

, i i-1 i i
1 1

( ( )) ( ( ) ( )) ( )
l

n n

k s k l l s
x

s l

C x x x x   
− −


= =

   −     

where the value of ( )j

i kx   is between 1( )j

i kx −  and ( )j

i kx , and 

j

, i( ( ))
l

k s k
x

C x 
  

 represents the partial derivatives of j

, i( ( ))k s kC x   with 

respect to ( )j

i lx  . 

Now, the right hand side of eq.(6) becomes  

           
1 1

j j j j

i , i i-1 i
1 1

( ) ( ( )) ( ( ) ( ))
l

n n

s k s k l l
x

l s

x C x x x   
− −


= =

   −    

           =  1( )j j j

i i i   − −D  

where ( )j

i D  is the following matrix 

1 1

1 1

1

1 1
j j j j

i 1, i 1 i 1, i 1
1 1

1 1
j j j j

i 2, i 2 i 2, i 2
1 1

1
j j

i 2, i 2
1

( ) ( ( )) ... ( ) ( ( ))

( ) ( ( )) ... ( ) ( ( ))

... ... ...

( ) ( ( )) ...

n

n

n n

s s s s
x x

s s

n n

s s s s
x x

s s

n

s n s n
x

s

x C x x C x

x C x x C x

x C x

   

   

 

−

−

− −

 
= =

− −

 
= =

−

−  −
=

       

       

   

 

 

1

1 1

1
j j

i 2, i 2
1

1 1
j j j j

i 1, i 1 i 1, i 1
1 1

( ) ( ( ))

( ) ( ( )) ... ( ) ( ( ))

n

n

n

s n s n
x

s

n n

s n s n s n s n
x x

s s

x C x

x C x x C x

 

   

−

−

−

−  −
=

− −

−  − −  −
= =

 
 
 
 
 
 
 
 

   
 
         
 

 

 

 

let     
1

j j

1, i 1, i 1
1

( ) ( ) ( ( ))
l

n
j

l i s s
x

s

D x C x  
−

 
=

 =    

since j

1, i 1( ( ))sC x  , s= 1,2, … , n-1 contains only j

i 1( )x   then 
1

j j

1, i 1, i 1
1

( ) ( ) ( ( )) 0 , 1
l

n
j

l i s s
x

s

D x C x if l  
−

 
=

 =  =     
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1

1 1

1 1

1
j j

1,1 i 1, i 1
1

j j j j

i 1 1,1 i 1 i 2 1,2 i 1

2 2
2

j 2 2 2 j j

i 1 1 i 22 2

j 2 j

i 1 1

1

( ) ( ) ( ( ))

( ) ( ( )) ( ) ( ( ))

2
( ) 1 ( ) ( )

( ) 2 ( ) 0

2

n
j

i s s
x

s

x x

i

x x

i

when l

D x C x

x C x x C x

k k
x c k k x x

h h

x k x

  

   

  

 

−

 
=

 





=

 =  

   =  +    

   −
= + + − +   

   

 = − +
 





2 j j

i 1 1( ) ( ) (7)ik x x  

 

since k2 is sufficiently small and ψj  is bounded from Lemma(1), then 

1,1( )j

iD   in equation (7) is bounded by a small number. Therefore, all the 

elements in the first row of the matrix ( )j

i D  are zero except for the first 

element, and the first element is sufficiently small. 
  

Similarly j

1, i 1( ( )) , 1,2,..., 1n s nC x s n−  − = −  only contains j

i 1( )nx  −  

which implies  1,1 , ( ) 0j

n l iif l n D −  − =  

1 1

j j j j

1, 1 i 2 1, 2 i 1 i 1 1, 1 i 1

j 2 j

i 1 1

2 j j

i 1 1

1

1

( ) ( ) ( ( )) ( ) ( ( ))

( ) 2 ( )

2 ( ) ( )

n n

j

n n i n n n n n n n n
x x

n i n

n i n

when l n

D x C x x C x

x k x

k x x

    

 

 



− −
− −  − − −  − − − −  −

−  −

 − −

= −

   =  +    

 = −
 

 



for some 11  . Thus all the elements in the (n-1)th row of the matrix 

( )j

i D  are zero except for the (n-1)th element, and (n-1)th element is 

bounded by a small number.  

Since only j

i ( )kx   is in the  j

, i( ( )) , 1, 1 , 1,2,..., 1k s kC x k n s n   − = −                      

, ( ) 0 ,j

k l iD if l k  =   

j j

, i , i

j 2 j

i

2 j j

i

2

( ) ( ) ( ( ))

( ) 2 ( )

2 ( ) ( )

k

j

k k i k k k k
x

k i k

k i k

when l k

D x C x

x k x

k x x

  

 

 



 





=

 =  

 = −
 

 



 

for some 12  . 
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Therefore, the matrix ( )j

i D  is of the following form: 

        

1,1

2,2

3,3

1, 1

( ) 0 0 0 ...... 0 0

0 ( ) 0 0 ...... 0 0

0 0 ( ) 0 ...... 0 0

. . . .

. . . .

. . . 0

0 0 0 0 ...... 0 ( )

j

i

j

i

j

i

j

n n i

D

D

D

D















− − 

 
 
 
 
 
 
 
 
 
 
 
 
 

     

where the diagonal elements are sufficiently small. Thus, the norm of the 

matrix ( )j

i D , which is defined by 
2

1

sup ( ( ))
n

j

i
L

x R

x
−




D  is small and 

bounded. 

Now, it remains to show that ( )j

iC  is invertible and bounded away 

from zero. Consider the matrix ( )j

iC  as the sum of three matrices 

, , ( )j

iand J K L , where these matrices are: 
 

  

2 2

2 2

2 2

2 2

1 0 0 .... 0

0 1 0 .... 0

....

....

....

0 ... 0 1 0

0 ... 0 1

c k

c k

c k

c k

 +
 

+ 
 
 
 

=  
 
 +
 

+ 
  
 

J

,        

  











































−

−−

−−

−

=

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2
0....0

2
....0

....

....

....

0....
2

0....0
2

h

k

h

k

h

k

h

k

h

k

h

k

h

k

h

k

h

k

h

k


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and ( )j

iL is the following diagonal matrix 
2

1

2

2

2

2

2

2

1

( ) 0 0 .... 0

0 ( ) 0 .... 0

....

....
( ) ( )

....

0 ... 0 ( ) 0

0 ... 0 ( )

j

i

n

n

x

x

k

x

x











−

−

 
 
 
 
 
 
 = −
 
 
 
 
 
  
 

L
 

The matrix   is positive definite since eigenvalues of the matrix are 

positive  

                 


−
ij

ijiii kk   

 

where 
2

2

2

2

2,2
h

k
kand

h

k
k

ij
ijii = 



 . Thus the matrix ( )j

iC  is positive 

definite and bounded away from zero since 
 

    

22 2

2 2 22 2 2

2 22 2 2

2

(1 ) ( )

(1 )

(1 )

1

2

0

T T T j

i

i

i

c k

c k k

c k k

       

  

 



  = +  +   +  

 +  − 

= + − 





C K L

 

 

The proof is complete. 

4- Numerical computations 

In this section, we have solved two different examples by using the 

finite difference method (Implicit method). 
 

Example (1): we consider a linear KGE of the form [6] 

                   2 2 2

t xv c v rv =  −  

where c2 =1 and  r =1 , with the boundary and initial conditions are 
0,0),(,0),0( == ttvtv   

== xxvxVxv t 0,0)0,(,)()0,(  

where V(x) is piecewise smooth. 
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To solve this example we impose two forms of V(x), the sine function 

                     V1(x,0)= sin(10π x(x+1)), 

and the polynomial function 

                     V2(x,0)= 21x2 - 13.4x + 2.4 , 

then take the space step size h=0.3143 and time step size k=0.5 ,where 

n=11, and m= 21.The solutions are given in figure (1) and (2). 

             
 

 

               

Figure (1): Numerical solutions of the example (1) using the initial   condition 

V1(x,0)= sin(10π x(x+1)) 

Figure (2): Numerical solutions of the example (1) using the initial   condition 

V2(x,0)= 21x2 - 13.4x + 2.4 
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Table (1): numerical solutions using the implicit finite difference method at 

t=0.9429 of the example (1) 
The values of  t 

 

Solution (1) with 

the initial 

condition V1(x,0) 

Solution (2) with 

the initial condition 

V2(x,0) 

0     

0.5000    

1.0000    

1.5000    

2.0000    

2.5000    

3.0000    

3.5000 

4.0000    

4.5000    

5.0000    

5.5000    

6.0000    

6.5000    

7.0000    

7.5000 

8.0000    

8.5000    

9.0000    

9.5000   

10.0000 

.8558701 

.6377119 

.2921410 

-.3158034e-1 

-.2451307 

-.3149860 

-.2587071 

-.1319557 

-.2699218e-3  

.8874284e-1     

.1180779 

.9752016e-1  

.5090318e-1  

.2839250e-2 

-.3001029e-1 

-.4180047e-1 

-.3571276e-1 

-.1979325e-1 

-.2628169e-2  

.9674528e-2  

.1466398e-1 

8.435409     

12.62647     

14.08372     

7.812533     

-3.287807 

-12.02026 

-13.64413 

-8.829426     

-1.649570     

3.934614     

6.105594    

5.209351     

2.716023     

.1437973    

-1.554242    

-2.109822     

-1.754360     

-.9387796  

-.9779943e-1     

.4843633     

.7083982 

From table (1) we can see that the numerical solutions which are 

obtained by the implicit finite difference method at the point x=0.9429 are 

converged ( which is clear from figure (1) and figure (2)). We compared 

between two solutions (1) and (2) by taking two initial conditions and we 

obtained the solution (1) as the best convergence. But, the solution (2) will  

start with a blowing-up which makes a slight difference from solution (1) in 

converging at each time step. Therefore, the solution of this example is 

increasing and is decreasing then it vanishes and converges to zero at each 

space step size. 

Example (2): 

we consider a nonlinear partial differential equation (NKG) [1] 

                     2 0 , 0 1 , 0tt xx xv v v vv x t − + − =     

The boundary conditions and initial conditions posed are 

             0,1),1(,0),0( == ttvtv  

             10,)0,()0,( == xexvxv x

t  
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We take the space step size h=0.1 and time step size k=0.05 , where n=11, 

and m= 21.The solutions are given in figure (3). 

            
 

 

 

If we impose the initial condition of the form  10,)sin()0,( = xxxv , 

then we obtain figure (4) 

        
 

 

 

 

Figure (3): Numerical solutions of the example (2) using the implicit 

finite difference method 

 

Figure (4): Numerical solutions of the example (2) using the implicit 

finite difference method with v(x,0)=sin(x) 
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Table (2): numerical solutions using the implicit finite difference method at 

t=0.35 of the example (2) 

 
The values of  x 

 

Solution (1) with the 

initial condition 

exp(x) 

Solution (2) with the 

initial condition 

sin(x) 

0 

0.1     

0.2     

0.3     

0.4     

0.5     

0.6     

0.7   

0.8 

0.9 

1.0 

0     

.6057965    

1.401828    

2.159058    

2.590769    

2.532223    

1.877799    

.8556628    

.4664556    

1.246132           

1.0000 

0     

0.3661     

0.7196    

1.0142     

1.2141    

1.2828     

1.1880    

1.0083 

1.0429     

1.3248    

1.0000 

 

               Table (2) compares between two solutions by taking two initial 

conditions as exp(x) and sin(x) functions, respectively. It is clear from the 

two figures (3) and (4) that the sin(x) function converges uniformly faster 

than the exp(x) function.   

 

5- Conclusions 

           In this study, the solution of the matrix equation for one-dimensional 

Klein-Gordon equation exists. It is clear from numerical computations that 

the solutions are stable and convergent when the sine function is used as an 

initial condition. 
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