Existence and Uniqueness of the Solution for Fractional Sturm - Liouville Boundary Value Problem

Rabeea Mohammed Hani

Department of Mathematic/ College of Basic Education/ University of Mosul

Received: 2/5/2011; Accepted: 10/7/2011

Abstract:

In this paper, we prove the existence and uniqueness of the solution for a fractional Sturm-Liouville boundary value problem. We give two results, one based on Banach fixed point theorem and the other based on Schaefer's fixed point theorem.

وجود و وحدانية الحل لمسألة شتورم - ليوفيل الحدودية الكسرية

ربيع محمد هاني محمود قسم الرياضيات / كلية التربية الأساسية/ جامعة الموصل

ملخص البحث:

في هذا البحث سوف ندرس وجود و وحدانية الحل لمعادلة تفاضلية كسرية من نوع شتورم ليوفيل ذات رتبة كسرية مع شروط حدودية ، حيث سنعطي نتيجتين:الأولى حسبمبرهنة بناخ للنقطة الثابتة والأخرى حسبمبرهنة شافير للنقطة الثابتة.

1- Introduction

Consider the following fractional boundary value problem

$$D^{\alpha}(p(t)y'(t)) + q(t)y(t) + f(t,y(t)) = 0$$

$$a y(0) - b y'(0) = 0$$
(1)

$$c v(T) + d v'(T) = 0$$
 (2)

Where ${}^CD^{\alpha}$ is the standard Caputo derivative, and $0 < \alpha < 1$ and $t \in J = [0, T], y \in C(J, R)$ The Banach space with norm:

 $||y||_{\infty} = \sup\{|y(t)|: t \in J\}$ and the functions $p: J \to R, q: J \to R, f: J \times R \to R$ are continuous functions, p(t) > 0 for all $t \in J$ and a, b, c, d are constants.

The problem of the existence and uniqueness of the solution for fractional differential equations have been considered by many authors; see for example [1], [2], [3], [7], [9],[12]. The existence and uniqueness problems of fractional nonlinear differential equations as a basic theoretical part of some applications are investigated also by many authors (see for examples [2], [11], and [12]). It arises in many fields like

electronic, fluid dynamics, biological models, and chemical kinetics. A well-known example is the equations of basic electric circuit analysis. Some results for fractional differential inclusions can be found in the book by Plotnikov [10].

Very recently some basic theory for the initial value problems of fractional differential

Equations involving Riemann-Liouville differential operator has been discussed by Lakshmikantham and Vatsala [13, 14and 15].

In [8] the authors studied the existence of solutions for first order boundary value problems (BVP for short), for fractional order differential equations: $D^{\alpha}y(t) = f(t,y(t))$ for each $t \in J = [0,T]$, $0 < \alpha < 1$, with boundary condition ay(0) + by(T) = c by using Banach fixed point theorem and Schaefer's fixed point theorem.

Sturm-Liouville problem $(py')' + qy + g(y) = \mathbf{0}$ with periodic nonlinearities was studied in [11], and in [2] the author studied the third-order Sturm-Liouville boundaryvalue problem, with p-Laplacian,

$$(\varphi_p(y''))' + f(t,y) = 0, \alpha y(0) - \beta y'(0) = 0, \gamma y(1) + \delta y'(1) = 0, y''(0) = 0$$

In this paper, we present existence results for the fractional Sturm-Liouville problem (1)-(2). In Section 3, we give two results, one based on Banach fixed point theorem (Theorem 3.1) and theother based on Schaefer's fixed point theorem (Theorem 3.2).

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts from fractional calculus theories which are used throughout this paper. These definitions can be found in the recent literature.

Definition 2.1.[4]Let $\alpha > 0$, for a function $y : (0, +\infty) \to R$. the fractional integral of order α of y is defined by

$$I^{\alpha}y(t) = \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1}y(s)ds$$

Provided the integral exists.

Definition 2.2. The Caputo derivative of a function $y:(0,+\infty)\to R$ is given by

$$^{c}D^{\alpha}y(t) = I^{n-\alpha}(D^{n}y(t)) = \frac{1}{\Gamma(n-\alpha)} \int_{0}^{t} (t-s)^{n-\alpha-1}y^{(n)}(s)ds$$

Provided the right side is point wise defined on $(0, +\infty)$, where $n = [\alpha] + 1$, and $[\alpha]$ denotes the integer part of the real number α .

The properties of the above operators can be found in [5] and the general theoryoffractional differential equations can be found in [4]. Γ denotes the Gamma function:

$$\Gamma(\alpha) = \int_0^{+\infty} e^{-t} t^{\alpha - 1} dt$$

The Gamma function satisfies the following basic properties:

(1) For any $n \in R$

 $\Gamma(n+1) = n\Gamma(n)$ and if $n \in Z$ then $\Gamma(n) = (n-1)!$

(2) For any $1 < \alpha \in R$, then

$$\frac{\alpha + 1}{\Gamma(\alpha + 1)} = \frac{\alpha + 1}{\alpha \Gamma(\alpha)} < \frac{2}{\Gamma(\alpha)}$$

From Definition (2.2) we can obtain the following lemma.

Lemma 2.3.Let $0 < n - 1 < \alpha < n$. If we assume $y \in C^n(0,T)$, the fractional differential equation ${}^cD^{\alpha}y(t) = 0$ has a unique solution

$$y(t) = y(0) + y'(0)t + \frac{y''(0)}{2!}t^2 + \frac{y'''(0)}{3!}t^3 + \dots + \frac{y^{(n)}(0)}{n!}t^n$$

Where $n = [\alpha] + 1$

Theorem 2.4. (Schaefer's Theorem)[18]. Let X be a Banach space and let $T: X \to X$ be a completely continuous operator Then either

(a) T has a fixed point, or

(b) the set $\varepsilon = \{x \in X | x = \lambda Tx, \lambda \in (0, 1)\}$ is unbounded

Theorem 2.5. (Arzela-Ascoli Theorem).[17]For $A \in C[0,1]$, A is compact if and only if A isclosed, bounded, and equicontinuous.

Compact operators on a Banach space are always completely continuous. [16]

Theorem 2.6. (Banach's Fixed Point Theorem).[17]Let K be Banach space, and let $F: K \to K$ be a contraction mapping, Then F has a unique fixed point, i.e. there exists a unique $A \in K$ such that F(A) = A Lemma2.7.Let $\mathbf{0} < \alpha < \mathbf{1}$ and let $p: J \to R, q: J \to R, h: J \to R$ are continuous functions, $p(t) > \mathbf{0}$ for all $t \in J$ and a, b, c, d are constants. A function $p(t) = \mathbf{0}$ for all $p: J \to R$ are constants. A

$$\begin{cases} D^{\alpha}(p(t)y'(t)) + q(t)y(t) + h(t) = \mathbf{0} \\ a y(\mathbf{0}) - b y'(\mathbf{0}) = \mathbf{0} \\ c y(T) + d y'(T) = \mathbf{0} \end{cases}$$

If and only if y is a solution of the following fractional integral equation:

$$y(t) = y(0) \left[1 + \frac{a}{b} \int_{0}^{t} \frac{p(0)}{p(s)} ds \right]$$

$$- \int_{0}^{t} \frac{1}{p(s)} \left[\frac{1}{\Gamma(\alpha)} \int_{0}^{s} (s - r)^{\alpha - 1} \left(q(r) y(r) + h(r) \right) dr \right] ds$$
(3)

Where

$$y(0) = \frac{c \int_{0}^{T} \frac{1}{p(s)} \left[\frac{1}{\Gamma(\alpha)} \int_{0}^{s} (s - r)^{\alpha - 1} \left(q(r)y(r) + h(r) \right) dr \right] ds}{C + \frac{a}{b} \left[c \int_{0}^{T} \frac{p(0)}{p(s)} ds + d \frac{p(0)}{p(T)} \right]} + \frac{d \frac{1}{p(T)} \left[\frac{1}{\Gamma(\alpha)} \int_{0}^{T} (T - s)^{\alpha - 1} \left(q(s)y(s) + h(s) \right) ds \right]}{C + \frac{a}{b} \left[c \int_{0}^{T} \frac{p(0)}{p(s)} ds + d \frac{p(0)}{p(T)} \right]}$$

Proof. Assume y Satisfied (1) and (2) then by lemma (2. 3)

$$p(t)y'(t) + \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} (q(s)y(s) + h(s))ds = c$$

$$y'(t) = \frac{c}{p(t)} - \frac{1}{p(t)\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} (q(s)y(s) + h(s))ds$$

when
$$t = 0$$
 we get $y'(0) = \frac{c}{p(0)} \implies c = y'(0) \ p(0)$ then $y'(t) = \frac{y'(0) \ p(0)}{p(t)}$
$$-\frac{1}{p(t)\Gamma(\alpha)} \int_{0}^{t} (t-s)^{\alpha-1} (q(s)y(s) + h(s))ds$$
 (4)

By Integrating we get

$$y(t) = y(0) + y'(0) \int_0^t \frac{p(0)}{p(s)} ds$$

$$- \int_0^t \left(\frac{1}{p(s)\Gamma(\alpha)} \int_0^s (s - r)^{\alpha - 1} (q(r)y(r) + h(r)) dr \right) ds$$

By condition $a y(\mathbf{0}) - b y'(\mathbf{0}) = \mathbf{0} \implies y'(\mathbf{0}) = \frac{a}{b} y(\mathbf{0})$ then

$$y'(t) = y(0) \frac{a}{b} \frac{p(0)}{p(t)} - \frac{1}{p(t)\Gamma(\alpha)} \int_{0}^{t} (t-s)^{\alpha-1} (q(s)y(s) + h(s)) ds$$

and

$$y(t) = y(0) + y(0) \frac{a}{b} \int_0^t \frac{p(0)}{p(s)} ds$$
$$- \int_0^t \left(\frac{1}{p(s)\Gamma(\alpha)} \int_0^s (s-r)^{\alpha-1} \left(q(r)y(r) + h(r) \right) dr \right) ds$$

$$y(t) = y(0) \left(1 + \frac{a}{b} \int_0^t \frac{p(0)}{p(s)} ds \right)$$
$$- \int_0^t \left(\frac{1}{p(s)\Gamma(\alpha)} \int_0^s (s - r)^{\alpha - 1} (q(r)y(r) + h(r)) dr \right) ds$$
 (5)

By the condition cy(T) + dy'(T) = 0 then

$$c \left[y(0) + y(0) \frac{a}{b} \int_{0}^{T} \frac{p(0)}{p(s)} ds - \int_{0}^{T} \left(\frac{1}{p(s)\Gamma(\alpha)} \int_{0}^{s} (s - r)^{\alpha - 1} (q(r)y(r) + h(r)) dr \right) ds \right]$$

$$+ d \left[y(0) \frac{a}{b} \frac{p(0)}{p(T)} - \frac{1}{p(T)\Gamma(\alpha)} \int_{0}^{T} (T - s)^{\alpha - 1} (q(s)y(s) + h(s)) ds \right] = 0$$

$$y(0) = \frac{c \int_{0}^{T} \left(\frac{1}{p(s)\Gamma(\alpha)} \int_{0}^{s} (s - r)^{\alpha - 1} (q(r)y(r) + h(r)) dr \right) ds}{c + \frac{a}{b} \left(c \int_{0}^{T} \frac{p(0)}{p(s)} ds + d \frac{p(0)}{p(T)} \right)} + \frac{\frac{d}{p(T)\Gamma(\alpha)} \int_{0}^{T} (T - s)^{\alpha - 1} (q(s)y(s) + h(s)) ds}{c + \frac{a}{b} \left(c \int_{0}^{T} \frac{p(0)}{p(s)} ds + d \frac{p(0)}{p(T)} \right)}$$

The converse obtained by substituting (5) in (1)-(2).

3. Main Result

In this section, we give the existence and uniqueness of the solutions for problem (1)-(2).

Our first result based on Banach fixed point theorem.

Theorem 3.1 Assume that:

(H₁) There exists a positive constant K > 0 such that

$$|f(t,u) - f(t,v)| \le K|u - v|$$

For each $t \in J$ and all $u, v \in R$

(H₂)There exists a positive constant Qsuch that

$$q(t) \leq Q$$

For all $t \in J$

If
$$\theta = (Q + K) \int_0^T \frac{1}{p(s)} \frac{s^{\alpha}}{\Gamma(\alpha + 1)} ds$$

$$< 1 \tag{6}$$

then (1)-(2) has a unique solution on J.

Proof. we transform the problem (1)-(2) into fixed point problem.

Conseder the operter $F: C(J,R) \to C(J,R)$ defined by:

$$F(y)(t)$$

$$= y(0)[1 + \frac{a}{b} \int_{0}^{t} \frac{p(0)}{p(s)} ds]$$

$$- \int_{0}^{t} \frac{1}{p(s)} \left[\frac{1}{\Gamma(\alpha)} \int_{0}^{s} (s - r)^{\alpha - 1} \left(q(r) y(r) + f(r, y(r)) \right) dr \right] ds \qquad (7)$$

Cearly, any fixed point of the operater F is asolution of the problem (1)-(2).

We shall use the Banach contraction principle to prove that F has afixed point.

Let
$$x, y \in C(J, R)$$
, Then for each $t \in J$ we have $|Fy(t) - Fx(t)|$

$$\leq \int_{0}^{t} \frac{1}{p(s)} \left[\frac{1}{\Gamma(\alpha)} \int_{0}^{s} (s-r)^{\alpha-1} \left[|q(r)| |y(r) - x(r)| \right] + |f(r,y(r)) - f(r,x(r))| dr \right] ds
+ \int_{0}^{t} \frac{1}{p(s)} \left[\frac{1}{\Gamma(\alpha)} \int_{0}^{s} (s-r)^{\alpha-1} \left[Q|y(r) - x(r)| \right] + K|y(r) - x(r)| dr \right] ds
\leq \int_{0}^{t} \frac{1}{p(s)} (Q+K) ||y-x||_{\infty} \left[\frac{1}{\Gamma(\alpha)} \int_{0}^{s} (s-r)^{\alpha-1} dr \right] ds
\leq (Q+K) \int_{0}^{t} \frac{1}{p(s)} \frac{s^{\alpha}}{\Gamma(\alpha+1)} ds ||y-x||_{\infty}
= \theta ||y-x||_{\infty}$$

Therfore

$$\|F(y)-F(x)\|_{\infty}\leq\theta\|y-x\|_{\infty}$$

Consequently by (6), F is acontraction. As consequence of Banach fixed point theorem, we deduce that F has a unique fixed point which is the solution of the problem (1)-(2).

Our second result basedon the Schaefer's fixed point theorem

Theorem 3.2 Assume that

(H₃) The funcation $f: J \times R \rightarrow R$ is continuous.

(H₄) There exists a positive constant M > 0, N > 0 such that

$$||f(t,u)|| \leq M$$

For each $t \in I$ and $u \in R$, and

$$\int_0^T \frac{1}{p(s)} \ ds \le N$$

Then the problem (1)-(2) has at least one unique solution on J.

Proof. We shall use Schaefer's fixed point theorem to prove that F defined by (7)has a fixed point.

The proof will be given in several steps.

Step 1: F is continuous.

Let $\{y_n\}$ be a sequence such that $y_n \to y$ in C(J, R). Then for each $t \in J$ $|F(y_n)(t) - F(y)(t)|$

$$\leq \int_{0}^{t} \frac{1}{p(s)} \left(\frac{1}{\Gamma(\alpha)} \int_{0}^{s} (s-r)^{\alpha-1} \left[|q(r)| |y_n(r) - y(r)| + \left| f(r, y_n(r)) - f(r, y(r)) \right| \right] dr \right) ds$$

$$\leq \int_{0}^{t} \frac{1}{p(s)} \left(\frac{1}{\Gamma(\alpha)} \int_{0}^{s} (s-r)^{\alpha-1} \left[Q|y_{n}(r) - y(r)| + \sup_{r \in J} \left| f(r, y_{n}(r)) - f(r, y(r)) \right| \right] dr \right) ds$$

$$\leq \left(Q\|y_{n} - y\|_{\infty} + \|f(., y_{n}(.))\right) + \|f(., y_{n}(.))\|_{\infty} \int_{0}^{t} \frac{1}{p(s)} \left(\frac{1}{\Gamma(\alpha)} \int_{0}^{s} (s - r)^{\alpha - 1} dr\right) ds$$

$$\leq \left(Q\|y_{n} - y\|_{\infty} + \|f(., y_{n}(.)) - f(., y(.))\|_{\infty}\right) \int_{0}^{t} \frac{1}{p(s)} \left(\frac{s^{\alpha}}{\Gamma(\alpha + 1)}\right) ds$$

$$\leq \left(Q\|y_n - y\|_{\infty} + \|f(., y_n(.)) - f(., y(.))\|_{\infty}\right) \frac{T^{\alpha}}{\Gamma(\alpha + 1)} \int_{0}^{T} \frac{1}{p(s)} ds$$

$$\leq \left(Q\|y_n - y\|_{\infty} + \|f(., y_n(.)) - f(., y(.))\|_{\infty}\right) \frac{T^{\alpha}}{\Gamma(\alpha + 1)} N$$
Since f is a continuous function and $y \in C(I, P)$, $y = y_0$, we have

Since f is a continuous function and $y \in C(J,R), y_n \to y$, we have $\|F(y_n) - F(y)\|_{\infty}$

$$\leq \left(Q\|y_n - y\|_{\infty} + \|f(., y_n(.)) - f(., y(.))\|_{\infty}\right) \frac{T^{\alpha}}{\Gamma(\alpha + 1)} N \to \mathbf{0} \operatorname{Asn} \to \infty$$

Step 2. F maps bounded sets into bounded sets in C(J, R).

Indeed, it is enough to show that for any $\eta > 0$, there exists a positive constant l

such that for each $y \in B_{\eta} = \{ y \in C(J, R) : ||y||_{\infty} < \eta \}$; we have $||F(y)||_{\infty} < l$.

By (\mathbf{H}_3) we have for each $t \in J$ |Fy(t)|

$$\leq y(\mathbf{0}) \left(1 + \left| \frac{a}{b} \right| \int_0^t \frac{p(\mathbf{0})}{p(s)} ds \right)$$

$$+ \int_0^t \frac{1}{p(s)} \left(\frac{1}{\Gamma(\alpha)} \int_0^s (s - r)^{\alpha - 1} [|q(r)|| y(r)| + |f(r, y(r))|] dr \right) ds$$

$$\leq y(0) \left(1 + \left|\frac{a}{b}\right| \int_0^t \frac{p(0)}{p(s)} ds\right)$$

$$+ \int_0^t \frac{1}{p(s)} \left(\frac{1}{\Gamma(\alpha)} \int_0^s (s - r)^{\alpha - 1} [Q\eta + M] dr\right) ds$$

$$\leq y(0) \left(1 + \left|\frac{a}{b}\right| \int_0^t \frac{p(0)}{p(s)} ds\right)$$

$$+ (Q\eta + M) \int_0^t \frac{1}{p(s)} \left(\frac{1}{\Gamma(\alpha)} \int_0^s (s - r)^{\alpha - 1} dr\right) ds$$

$$= y(0) \left(1 + \left|\frac{a}{b}\right| \int_0^t \frac{p(0)}{p(s)} ds\right) + (Q\eta + M) \int_0^t \frac{1}{p(s)} \left(\frac{s^{\alpha}}{\Gamma(\alpha + 1)}\right) ds$$

$$\leq y(\mathbf{0}) \left(1 + \left| \frac{a}{b} \right| \int_0^t \frac{p(\mathbf{0})}{p(s)} ds \right) + (Q\eta + M) \left(\frac{T^{\alpha}}{\Gamma(\alpha + 1)} \right) \int_0^1 \frac{1}{p(s)} ds$$

$$\leq y(\mathbf{0}) \left(1 + \left| \frac{a}{b} \right| p(\mathbf{0}) N \right) + (Q\eta + M) \frac{T^{\alpha}}{\Gamma(\alpha + 1)} N \quad \text{Thus}$$

$$\|F(y)\|_{\infty} \leq y(\mathbf{0}) \left(1 + \left| \frac{a}{b} \right| p(\mathbf{0}) N \right) + (Q\eta + M) \frac{T^{\alpha}}{\Gamma(\alpha + 1)} N := l$$

Step 3. F maps bounded sets into equicontinuous sets of C(J,R). Let $t_1, t_2 \in J$, $t_1 < t_2.B_{\eta}$ be a bounded set of C(J, R) as in Step 2, and let $y \in B_n$,

then

then
$$|Fy(t_{1}) - Fy(t_{2})| = \left| y(0) \frac{a}{b} \int_{0}^{t_{1}} \frac{p(0)}{p(s)} ds \right| \\
- \int_{0}^{t_{1}} \left(\frac{1}{p(s)\Gamma(\alpha)} \int_{0}^{s} (s - r)^{\alpha - 1} (q(r)y(r) + f(r, y(r))) dr \right) ds - y(0) \frac{a}{b} \int_{0}^{t_{2}} \frac{p(0)}{p(s)} ds \\
+ \int_{0}^{t_{2}} \left(\frac{1}{p(s)\Gamma(\alpha)} \int_{0}^{s} (s - r)^{\alpha - 1} (q(r)y(r) + f(r, y(r))) dr \right) ds \right| \\
\leq \left| y(0) \frac{a}{b} \right| \left(\int_{t_{1}}^{t_{2}} \frac{p(0)}{p(s)} ds \right) \\
+ \int_{t_{1}}^{t_{2}} \left(\frac{1}{p(s)\Gamma(\alpha)} \int_{0}^{s} (s - r)^{\alpha - 1} [|q(r)||y(r)| + |f(r, y(r))|] dr \right) ds \\
\leq \left| y(0) \frac{a}{b} \right| \left(\int_{t_{1}}^{t_{2}} \frac{p(0)}{p(s)} ds \right) \\
+ \int_{t_{1}}^{t_{2}} \left(\frac{1}{p(s)\Gamma(\alpha)} \int_{0}^{s} (s - r)^{\alpha - 1} [Q\eta + M] dr \right) ds$$

$$= \left| y(\mathbf{0}) \frac{a}{b} \right| \left(\int_{t_1}^{t_2} \frac{p(\mathbf{0})}{p(s)} ds \right) + \left(Q\eta + M \right) \int_{t_1}^{t_2} \left(\frac{1}{p(s)} \frac{s^{\alpha}}{\Gamma(\alpha + 1)} \right) ds$$

As $t_1 \rightarrow t_2$, the right-hand side of the above inequality tends to zero.

As a consequence of Steps 1 to 3 together with the Arzela-Ascoli theorem, we can conclude that $F: C(J,R) \to C(J,R)$ is continuous and completely continuous.

Step 4. A priori bounds.

Now it remains to show that the set

$$A = \{y \in C(J;R): y = \lambda F(y) \text{ for some } 0 < \lambda < 1\}$$

is bounded.

Let $y \in A$, then $y = \lambda F(y)$ for some $0 < \lambda < 1$. Thus, for each $t \in J$ we have

$$y(t) = \lambda \left| y(0) \left[1 + \frac{a}{b} \int_{0}^{t} \frac{p(0)}{p(s)} ds \right] \right|$$

$$- \int_{0}^{t} \frac{1}{p(s)} \left[\frac{1}{\Gamma(\alpha)} \int_{0}^{s} (s - r)^{\alpha - 1} \left(q(r) y(r) + f(r, y(r)) \right) dr \right] ds$$

This implies by (\mathbf{H}_3) that for each $t \in I$ we have

$$|Fy(t)| \le |y(0)| \left[1 + \left| \frac{a}{b} \right| \int_{0}^{t} \frac{p(0)}{p(s)} ds \right]$$

$$+ \int_{0}^{t} \frac{1}{p(s)} \left[\frac{1}{\Gamma(\alpha)} \int_{0}^{s} (s - r)^{\alpha - 1} \left(|q(r)| |y(r)| + |f(r, y(r))| \right) dr \right) ds$$

$$\le |y(0)| \left[1 + \left| \frac{a}{b} \right| p(0)N \right] + (Q\eta + M) \frac{T^{\alpha}}{\Gamma(\alpha + 1)} N$$

Thus for every $t \in J$, we have

$$||Fy(t)||_{\infty} \le |y(\mathbf{0})| \left[1 + \left|\frac{a}{b}\right| p(\mathbf{0})N\right] + (Q\eta + M) \frac{T^{\alpha}}{\Gamma(\alpha + 1)}N := \ell$$

This shows that the set A is bounded. As a consequence of Schaefer's fixed point theorem, we deduce that F has a fixed point which is a solution of the problem (1) - (2).

4. An Example

In this section we give an example to illustrate the usefulness of our main results. Let us consider the following fractional BVP

$$D^{\alpha}\big((2-t^2)y'(t)\big) + \sin(2\pi t)y(t) + \frac{|y(t)|}{|y(t)|+1}$$

$$= 0 \qquad (8)$$

$$y(0) - y'(0) = 0$$

$$y(1) + y'(1) = 0 \qquad (9)$$
Here, $p(t) = 2 - t^2$, $q(t) = \sin(2\pi t)$, $f(t,y) = \frac{|y|}{|y|+1}$ for all $t \in [0,1]$, and $a = b = c = d = 1$

Then we have:

$$\begin{aligned} |q(t)| &= |\sin(2\pi t)| \le 1 := Q \\ \left| \frac{\partial f(t, y)}{\partial y} \right| &= \frac{1}{y^2 + 1} \le 1 := K \\ |f(t, y_1) - f(t, y_2)| &\le |y_1 - y_2| \\ \therefore \theta &= (Q + K) \int_0^1 \frac{1}{p(s)} \frac{s^{\alpha}}{\Gamma(\alpha + 1)} ds = (1 + 1) \int_0^1 \frac{1}{2 - s^2} \frac{s^{\alpha}}{\Gamma(\alpha + 1)} ds \\ &\le 2 \int_0^1 \frac{1}{2} \frac{s^{\alpha}}{\Gamma(\alpha + 1)} ds = \frac{1}{\Gamma(\alpha + 2)} < 1 \end{aligned}$$

Then (H₁) and (H₂) are satisfied with Q = 1 and $\theta = \frac{1}{\Gamma(\alpha+2)} < 1$.

Then by Theorem 3.1the fractional BVP (8)-(9) has a unique solution on [0, 1].

References

- [1] C. Yu, G. Gao; Existence of fractional differential equations, J. Math. Anal. Appl. 30 (2005), 26-29.
- [2] C. Zhai; Positive solutions for third-order sturm-liouville boundary-value problems with P-laplacian, Electronic Journal of Differential Equations, Vol. 2009(2009), No. 154, pp. 1–9.
- [3] D. Delbosco, L. Rodino; Existence and uniqueness for a nonlinear fractional differential equation. Math. Anal. Appl. 204 (1996), 609-625.
- [4] G.M. N'guerekata; A Cauchy problem for some fractional abstract differential equation withnonlocal condition, Nonlinear Analysis. 70 (2009), 1873-1876.
- [5]I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering 198. New York, London, Toronto: Academic Press, 1999.
- [6] K. S. Miller, B. Ross; An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons Inc., New York, 1993.
- [7] K. Balachandran, J. Y. Park; Nonlocal Cauchy problem for abstract fractional semi linear solution equations, Nonlinear Analysis. 71 (2009), 4471-4475.
- [8] K. M. Furati, N. Tatar; An existence result for a nonlocal fractional differential problem, Journal of Fractional Calculus. 26 (2004), 43-51.
- [9]M. Benchohra, S. Hamani & S. K. Ntouyas, Boundary ValueProblem fordifferential equations with fractional order. Surveys in Mathematics and its Applications.ISSN1842-6298 (electronic), 1843 7265 (print) Volume3 (2008), 1 12
- [10]O. K. Jaradat, A. Al-Omari, S. Momani; Existence of the mild solution for fractional semi linearinitial value problems, Nonlinear Analysis. 69 (2008), 3153-3159.
- [11]P. Girg, F. Roca and S. Villegas; Semilinear Sturm–Liouville problem with periodic nonlinearity; Nonlinear Analysis 61 (2005) 1157 1178.
- [12] V. A. Plotnikov & A. N. Vityuk, Differential Equations with a Multivalued Right-Hand Side, Asymptotic Methods "AstroPrint", Odessa, 1999. MR1738934 (2001k: 34022).

- [13] V. Lakshmikantham and A.S. Vatsala, General uniqueness and monotone iterative technique for fractional differential equations, Applied Mathematics LettersVolume 21, Issue 8, August 2008, Pages 828-834
- [14] V. Lakshmikantham and A. S. Vatsala, "Basic theory of fractional differential equations," Nonlinear Analysis: Theory, Methods & Applications, vol. 69, no. 8, pp. 2677–2682, 2008.
- [15]V. Lakshmikantham, and A.S. Vatsala, Theory of fractional differential inequalities and applications, Commun. Appl. Anal. 11 (3&4) (2007), 395-402.
- [16]Conway, John. B; A course on functional analysis. Springer-Verlag. ISBN 3-540- 96042-2 . (1985).
- [17]Huston, V. C. L. and Pym, J. S.; Application of functional analysis and operator theory. Academic Press London, New York/Toronto/Sydney (1980)
- [18] H. Schaefer, Uber die methode der a priori schranken, Math. Ann. 126 (1955), 415-416.